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Our viewpoint

“Smoking causes lung cancer.”

Not always. We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.
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Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V ).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)
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An example

U = {U1, . . . ,U5}.

V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?
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An example, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

Each model induces a graph.

The graph has a vertex for each

X ∈ V , an edge X → Y if fY
depends on X .

We will only be interested in models that induce acyclic

graphs!

What about confounders?

If fX , fY depend on a common U,

we represent this with

X Y
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Factorization

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

With no confounders the P(V ) induced by P(U) factors

according to G :

P(X1,X2,X3,X4,X5)

= P(X1)P(X2 | X1)P(X3 | X1)P(X4 | X2,X3)P(X5 | X4)
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Interventions

Interventions correspond to changing the mechanism determining

some Xi

, e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V ) change as well.

We write Px (V ) for the distribution obtained by intervening to set

X := x .
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Interventions, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

X1 SEASON

X2 RAINX3
SPRINKLER

=OFF

X4 WET

X5 SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

PX3=OFF(v)

= P(x1)P(x2 | x1)P(x4 | x2,X3 = OFF)P(x5 | x4)

We can compute this from P(V ) alone. We don’t need P(U).
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Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y ) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px(Y ) with knowledge only of P(V ).
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Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V ) uniquely determines Px (y) in any causal model that

induces G . In this case we say that Px (y) is identifiable.
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The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a

causal model, a distribution P(V ) for that model, and a target

intervention X ,Y ⊆ V , and returns

a formula for Px (y) if it is identifiable from P(V ), or

a proof that Px (y) is not identifable.
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The agenda

Understand the relationship between DAGs and distributions.

I When do G1 and G2 correspond to the same set of possible

distributions?
I What conditional independencies are implied by a graph G ?

Understand the do-calculus, rules for manipulating

interventional distributions.

Understand the Shpitser-Pearl ID algorithm.

14 / 55
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Probability review

X and Y are independent conditioned on Z if

∀x ∈ DX , y ∈ DY , z ∈ DZ ,

P(x | y , z) = P(x | z) if P(y , z) > 0.

Alternatively,

P(x , y | z) = P(x | z)P(y | z).

We write:

(X⊥⊥Y | Z )P
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Graph preliminaries
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Directed paths
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Parents, Pa(X ).
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Bayesian networks

A DAG G = (V ,E ) along with a distribution P(V ) factoring as

P(V ) =
∏
X∈V

P(X | pa(X )).

We say that P is compatible with, or Markov relative to G .

We write P(G ) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1.

2. P(V \ S | S) is compatible with G [V \ S ].
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Markov conditions

Ordered Markov Condition

P is compatible with G ⇔ in any topological ordering X1, . . . ,Xn,

each Xi is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with G ⇔ each X is independent of its

nondescendants given its parents.

Proof.

On board. . .
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Conditioning on common ancestors

Lemma

Fix any G and disjoint X ,Y ,Z ⊆ V . If An(X ) ∩ An(Y ) ⊆ Z and

An(Z ) ⊆ Z , then

P(X ,Y | Z ) = P(X | Z )P(Y | Z )

in any distribution P compatible with G .

Proof.

On board. . .
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Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E )P .

(B⊥⊥G | F )P .

(B⊥⊥F | E )P?

Let Iprob(P) := {(X ,Y ,Z ) : (X⊥⊥Y | Z )P}.
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Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ?

Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!
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d-Separation

Let X ,Y ,Z ⊆ V be disjoint. Then X is d-separated from Y by Z

if every trail between any vertex in X and any vertex Y in G is

blocked. We write

(X⊥⊥Y | Z )G .

If there is a trail from a vertex in X to a vertex in Y that is not

blocked, we say that X and Y are d-connected given Z .

Any trail that is not blocked is an active trail.
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d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E )G .

(B⊥⊥G | F )G .

(B⊥⊥F | E )G?

No!

Let Id-sep(G ) := {(X ,Y ,Z ) : (X⊥⊥Y | Z )G}.
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d-Separation and conditional independence

Theorem

(X⊥⊥Y | Z )G =⇒ (X⊥⊥Y | Z )P in every distribution P

compatible with G .

We’ll prove this later.

Theorem

If ¬(X⊥⊥Y | Z )G , then there exists a distribution P compatible

with G in which ¬(X⊥⊥Y | Z )P .

We’ll prove this later.
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Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C

The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.
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Proving Markov equivalence

We need a preliminary lemma

Lemma

If Xi and Xj are not adjacent in G , then (Xi⊥⊥Xj | Pai ,Paj)G .

Proof.

On board. . .
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Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W
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Tight active trails

An active trail is tight if. . .

Proposition

If X and Y are d-connected by Z , there is a tight active trail

witnessing the connection.
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Tight active trails, continued

Lemma

Let T = (X = X1� · · ·� Xk = Y ) be a tight active trail with

observation set Z . Then for i = 2, . . . , k − 1, if Xi−1 is adjacent

to Xi+1, then Xi−1 ← Xi → Xi+1 and at least one of Xi−1 or Xi+1
is a collider in T .

Corollary

If Xi is a collider in T , then Xi−1 → Xi ← Xi+1 is an immorality in

G .
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Proving Markov equivalence, continued

Lemma

If G1 and G2 with common vertex set V have the same skeleton

and immoralities then Id-sep(G1) = Id-sep(G2).

Proof.

On board. . .
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d-Separation and conditional independence

Theorem

Completeness If ¬(X⊥⊥Y | Z )G then there exists a

distribution P compatible with G such that ¬(X⊥⊥Y | Z )P .

Soundness If (X⊥⊥Y | Z )G then (X⊥⊥Y | Z )P in any

distribution P compatible with G .

Proof.

On board. . .
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Completeness of d-separation

Lemma

If ¬(X⊥⊥Y | Z )G then there exists a distribution P compatible

with G such that ¬(X⊥⊥Y | Z )P .

Proof.

Let T = (X = V1� · · ·� Vk = Y ) be an active path given Z .

Continued on board. . .
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Soundness of d-separation

Lemma

If (X⊥⊥Y | Z )G then (X⊥⊥Y | Z )P in any distribution P

compatible with G .

Proof.

Let (X⊥⊥Y | Z )G .

Let Z1, . . . ,Zk be a topological order of Z .

Define Z (j) :=
{

Z1, . . . ,Zj
}

.

Continued. . .

We complete a DAG G by picking a topological order and adding

all edges consistent with the order.
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The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z ] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj ] where Aj := AnGj−1 [Zj ] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D
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Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z )Gj ⇐⇒ (X⊥⊥Y | Z )G .

6. P is compatible with Gj .

Now we can finish the proof!
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Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y ).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X ) to X .
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The do-calculus

Rules for manipulating interventional distributions.

P is compatible with G =⇒ Px is compatible with Gx .

We can use d-separation to reason about interventional

distributions!
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Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

P(y | do(x), z ,w) = P(y | do(x),w)

if (Y⊥⊥Z | X ,W )GX .

Proof.

(Y⊥⊥Z | X ,W )Gx =⇒ (Y⊥⊥Z | X ,W )Px since Px is compatible

with GX .
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Rule 2: Action/observation exchange

Theorem (Action/observation exchange)

Let X ,Y ,Z ,W ⊆ V be disjoint. Then

P(y | do(x), do(z),w) = P(y | do(x), z ,w)

if (Y⊥⊥Z | X ,W )GXZ .

Lemma

Let H = GXZ . Then

(Y⊥⊥Z | X ,W )H ⇐⇒ (Ẑ⊥⊥Y | X ,Z ,W )Aug(H,Z).
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Rule 3: Insertion/deletion of actions

Theorem (Insertion/deletion of actions)

P(y | do(x), do(z),W ) = P(y | do(x),w)

if (Y⊥⊥Z |X ,W )G
XZ(W )

, where Z (W ) := Z \ AnGX (W ).

Lemma

Any trail in Aug(GX ,Z ) that is active given X ,W and uses only

edges present in G
XZ(W ) is also active in G

XZ(W ) given X ,W ,

where Z (W ) = Z \ AnGX (W ).
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Identifiability

Which causal effects can be determined from the observed

variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables

Y ⊆ V (for Y ⊆ V \ X ) is identifiable from P in a DAG G if

Px (y) is uniquely computable from P(V ) in any causal model

that induces G .

46 / 55



Identifiability

Which causal effects can be determined from the observed

variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables

Y ⊆ V (for Y ⊆ V \ X ) is identifiable from P in a DAG G if

Px (y) is uniquely computable from P(V ) in any causal model

that induces G .

46 / 55



The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for Px (Y ) whenever it

is identifiable from a graph G , and will return a witness to

nonidentifiability whenever Px (Y ) is not identifiable.

Every line of the algorithm is an application of a rule of the

do-calculus!
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The ID algorithm

function ID(y, x,P,G )
1: if x = ∅, return

∑
v\y P(v).

2: if V 6= An(Y)G ,

return ID(y, x ∩ An(Y)G ,P(An(Y)),An(Y)G ).
3: let W = (V \ X) \ An(Y)GX .

if W 6= ∅, return ID(y, x ∪w,P,G ).
4: if C (G \ X) = {S1, . . . ,Sk} (for k ≥ 2),

return
∑
v\(y∪x)

∏
i ID(si , v \ si ,P,G ).

else if C (G \ X) = {S},
5: if C (G ) = {G}, throw FAIL(G ,S).

6: if S ∈ C (G ), return
∑
s\y
∏
Vi∈S P(vi | v

(i−1)
π ).

7: if ∃S ′,S ⊆ S ′ ∈ C (G ),
return

ID(y, x ∩ S ′,
∏
Vi∈S ′ P(Vi | V

(i−1)
π ∩ S ′, v

(i−1)
π \ S ′,S ′).
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Two examples

W1 X Y1

W2 Y2

Is Px (y1, y2) identifiable?

How about now?
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A positive example

W1 X Y1

W2 Y2

Px (y1, y2) =
∑
w2

(∑
w1

P(y1|w1, x)P(w1)

)
P(y2|w2)P(w2).

50 / 55



Hedges

Definition (C-component)

Let G be a semi-Markovian graph such that a subset of its

bidirected edges form a spanning tree of V . Then G is a

C-component (confounded component).

Definition (Decomposition into C-components)

Any graph can be uniquely partitioned into a collection of

subgraphs C (G ), each of which is a maximal C-component. (If G

is itself a C-component, the partition is trivial.)

Definition (C-forest)

Let Y be the set of all sinks in a semi-Markovian graph G . Then

G is a Y -rooted C-forest if G is a C-component and all vertices

have at most one child.
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Hedges and identifiability

Definition (Hedge)

Let X ,Y ⊆ V in a graph G . Let F ,F ′ be R-rooted C-forests

such that F ∩ X 6= ∅, F ′ ∩ X = ∅, F ′ ⊆ F , and R ⊆ An(Y )GX .

Then (F ,F ′) form a hedge for Px (y) in G .

Theorem (Hedge Criterion for Identifiability)

Px (y) is identifiable if and only if there does not exists a hedge

for Px ′(y
′) in G for any X ′ ⊆ X , Y ′ ⊆ Y .
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Hedges

X
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Z X
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Non-identifiability in hedges

X

W

Y

Z

U1

U3

U4
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Non-identifiability in hedges

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0
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Non-identifiability in hedges
In M1 we also have P1(Y = 0) = 1:

Y = W ⊕ U4

= (X ⊕ U3)⊕ U4

= (Z ⊕ U1)⊕ U3 ⊕ U4

= (U1 ⊕ U3 ⊕ U4)⊕ (U1 ⊕ U3 ⊕ U4)

= 0

so P1(V ) = P2(V ).

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0
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Non-identifiability in hedges

What happens when we intervene on

X ?
X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0
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Non-identifiability in hedges

What happens when we intervene on

X ?
X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := x X := x

W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0
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Non-identifiability in hedges

Then Y = x ⊕ U3 ⊕ U4. We have

P1x (Y ) > 0, P2x (Y = 1) = 0.

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := x X := x

W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0
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Non-identifiability for the earlier example

W1 X Y1

W2 Y2

In this example, Px (y1, y2) is unidentifiable because

{W1,W2,Y1,Y2} and {W1,W2,Y1,Y2,X} form a hedge.
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