An Introduction to Causal Graphical Models

Spencer Gordon
Simons Institute Causality Bootcamp
Handout available at
https://tinyurl.com/causalitybootcamp

Table of Contents

Introduction

Bayesian Networks
Preliminaries
Bayesian Network basics
Markov equivalence of Bayesian Networks
d-Separation and Conditional Independence
The do-Calculus

The Shpitser-Pearl ID algorithm

Table of Contents

Introduction

Bayesian Networks
Preliminaries
Bayesian Network basics
Markov equivalence of Bayesian Networks
d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Our viewpoint

- "Smoking causes lung cancer."

Our viewpoint

■ "Smoking causes lung cancer." Not always.

Our viewpoint

- "Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.

Our viewpoint

- "Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.
■ We will start with probabilistic causal models.

Our viewpoint

- "Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.
■ We will start with probabilistic causal models.
■ We will (mostly) work with causal Bayesian networks.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.
2. $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.
2. $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
3. F is set of functions $\left\{f_{i}\right\}$ such that each f_{i} maps from a subset of $U \cup\left\{X_{1}, \ldots, X_{i-1}\right\}$ to X_{i}.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.
2. $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
3. F is set of functions $\left\{f_{i}\right\}$ such that each f_{i} maps from a subset of $U \cup\left\{X_{1}, \ldots, X_{i-1}\right\}$ to X_{i}.
4. $P(U)$ is a joint distribution over U.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.
2. $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
3. F is set of functions $\left\{f_{i}\right\}$ such that each f_{i} maps from a subset of $U \cup\left\{X_{1}, \ldots, X_{i-1}\right\}$ to X_{i}.
4. $P(U)$ is a joint distribution over U.

Together $P(U)$ and F induce a distribution on $V, P(V)$.

Probabilistic Causal Models

A tuple $M=\langle U, V, F, P(U)\rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.
2. $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
3. F is set of functions $\left\{f_{i}\right\}$ such that each f_{i} maps from a subset of $U \cup\left\{X_{1}, \ldots, X_{i-1}\right\}$ to X_{i}.
4. $P(U)$ is a joint distribution over U.

Together $P(U)$ and F induce a distribution on $V, P(V)$.

$$
P(v)=\sum_{u \in D_{u}} \prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(x_{i}\right)\right) P(u)
$$

An example

$\square U=\left\{U_{1}, \ldots, U_{5}\right\}$.

An example

- $U=\left\{U_{1}, \ldots, U_{5}\right\}$.

■ $V=\left\{X_{1}, \ldots, X_{5}\right\}$.

An example

■ $U=\left\{U_{1}, \ldots, U_{5}\right\}$.

- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:

An example

■ $U=\left\{U_{1}, \ldots, U_{5}\right\}$.

- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:

■ U_{i} are independent.

An example

- $U=\left\{U_{1}, \ldots, U_{5}\right\}$.
- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:
- U_{i} are independent.
- $U_{1} \sim \operatorname{Unif}(\{W i, S p, S u, F a\})$

An example

- $U=\left\{U_{1}, \ldots, U_{5}\right\}$.
- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:
- U_{i} are independent.
- $U_{1} \sim \operatorname{Unif}(\{W i, S p, S u, F a\})$
- $\operatorname{supp}\left(U_{i}\right)=\{-1,0,1\}$ for $i=2,3,4,5$.

An example

- $U=\left\{U_{1}, \ldots, U_{5}\right\}$.
- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:
- U_{i} are independent.
- $U_{1} \sim \operatorname{Unif}(\{W i, S p, S u, F a\})$
- $\operatorname{supp}\left(U_{i}\right)=\{-1,0,1\}$ for $i=2,3,4,5$.

SEASON: $\quad X_{1}:=U_{1}$
RAIN: $X_{2}:=\left(X_{1} \in\{W \mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $X_{3}:=\left(X_{3} \in\{S u, S p\} \vee U_{3}=1\right) \wedge\left(U_{2}>-1\right)$

$$
\text { WET: } \quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)
$$

SLIPPERY: $X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$

An example

- $U=\left\{U_{1}, \ldots, U_{5}\right\}$.
- $V=\left\{X_{1}, \ldots, X_{5}\right\}$.
- F is given below:
- U_{i} are independent.
- $U_{1} \sim \operatorname{Unif}(\{W i, S p, S u, F a\})$
- $\operatorname{supp}\left(U_{i}\right)=\{-1,0,1\}$ for $i=2,3,4,5$.

SEASON: $\quad X_{1}:=U_{1}$
RAIN: $X_{2}:=\left(X_{1} \in\{W \mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $X_{3}:=\left(X_{3} \in\{S u, S p\} \vee U_{3}=1\right) \wedge\left(U_{2}>-1\right)$

$$
\text { WET: } \quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)
$$

SLIPPERY: $X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$
Is there any better way to understand this?

An example, continued

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \rightarrow Y$ if f_{Y} depends on X.

An example, continued

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \rightarrow Y$ if f_{Y} depends on X.

■ We will only be interested in models that induce acyclic graphs!

An example, continued

Each model induces a graph.
The graph has a vertex for each $X \in V$, an edge $X \rightarrow Y$ if f_{Y} depends on X.

- We will only be interested in models that induce acyclic graphs!
- What about confounders?

An example, continued

Each model induces a graph.
The graph has a vertex for each $X \in V$, an edge $X \rightarrow Y$ if f_{Y} depends on X.

- We will only be interested in models that induce acyclic graphs!
- What about confounders? If f_{X}, f_{Y} depend on a common U, we represent this with

$$
X \leftrightarrow--->Y
$$

Factorization

With no confounders the $P(V)$ induced by $P(U)$ factors according to G :

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \\
& \quad=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}, X_{3}\right) P\left(X_{5} \mid X_{4}\right)
\end{aligned}
$$

Interventions

Interventions correspond to changing the mechanism determining some X_{i}

SEASON: $\quad X_{1}:=U_{1}$
RAIN: $\quad X_{2}:=\left(X_{1} \in\{\mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $\quad X_{3}:=\left(X_{3} \in\{S u, S p\} \vee U_{3}=1\right) \wedge\left(U_{2}>-1\right)$
WET: $\quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)$
SLIPPERY: $\quad X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$

Interventions

Interventions correspond to changing the mechanism determining some X_{i}, e.g.,turning the sprinkler off.

SEASON: $\quad X_{1}:=U_{1}$
RAIN : $\quad X_{2}:=\left(X_{1} \in\{W \mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $\quad X_{3}:=\left(X_{3} \in\{S u, S p\} \vee U_{3}=1\right) \wedge\left(U_{2}>-1\right)$
WET: $\quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)$
SLIPPERY : $X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$

Interventions

Interventions correspond to changing the mechanism determining some X_{i}, e.g.,turning the sprinkler off.

SEASON: $\quad X_{1}:=U_{1}$
RAIN: $\quad X_{2}:=\left(X_{1} \in\{\mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $\quad x_{3}:=$ OFF
WET: $\quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)$
SLIPPERY: $\quad X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$

Interventions

Interventions correspond to changing the mechanism determining some X_{i}, e.g.,turning the sprinkler off.

SEASON: $\quad X_{1}:=U_{1}$
RAIN : $\quad X_{2}:=\left(X_{1} \in\{W \mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $x_{3}:=$ OFF
WET: $\quad X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right)$
SLIPPERY: $X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)$
The induced graph and $P(V)$ change as well.

Interventions

Interventions correspond to changing the mechanism determining some X_{i}, e.g.,turning the sprinkler off.

SEASON: $\quad X_{1}:=U_{1}$
RAIN : $\quad X_{2}:=\left(X_{1} \in\{W \mathrm{Wi}, \mathrm{Fa}\} \vee U_{2}=1\right) \wedge\left(U_{2}>-1\right)$
SPRINKLER: $x_{3}:=$ OFF

$$
\begin{aligned}
\text { WET : } & X_{4}:=\left(X_{2} \vee X_{3} \vee U_{4}=1\right) \wedge\left(U_{4}>-1\right) \\
\text { SLIPPERY } & X_{5}:=\left(X_{4} \vee U_{5}=1\right) \wedge\left(U_{5}>-1\right)
\end{aligned}
$$

The induced graph and $P(V)$ change as well.
We write $P_{x}(V)$ for the distribution obtained by intervening to set $X:=x$.

Interventions, continued

Interventions, continued

Interventions, continued

Let v be an assignment to V such that $X_{3}=O F F$. Then

$$
\begin{aligned}
P_{x_{3}=\operatorname{OFF}}(v) & \\
& =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{4} \mid x_{2}, x_{3}=\text { OFF }\right) P\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

Interventions, continued

Let v be an assignment to V such that $X_{3}=O F F$. Then

$$
\begin{aligned}
P_{x_{3}=\text { OFF }}(v) & \\
& =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{4} \mid x_{2}, x_{3}=\text { OFF }\right) P\left(x_{5} \mid x_{4}\right)
\end{aligned}
$$

We can compute this from $P(V)$ alone. We don't need $P(U)$.

Interventions and confounders

Consider a model that induces this graph:

Interventions and confounders

Consider a model that induces this graph:

Interventions and confounders

Consider a model that induces this graph:

Then

$$
P_{x}(Y)=\sum_{u} P(u) P(Y \mid X=x, u)
$$

Interventions and confounders

Consider a model that induces this graph:

Then

$$
P_{x}(Y)=\sum_{u} P(u) P(Y \mid X=x, u)
$$

since the model after intervention induces the modified graph above.

Interventions and confounders

Consider a model that induces this graph:

Then

$$
P_{x}(Y)=\sum_{u} P(u) P(Y \mid X=x, u)
$$

since the model after intervention induces the modified graph above.

We can't compute $P_{x}(Y)$ with knowledge only of $P(V)$.

Causal inference with unobserved confounders

Consider a slightly different example:

Causal inference with unobserved confounders

Consider a slightly different example:

Can we compute $P_{x}(y)$ without knowing $P(U)$?

Causal inference with unobserved confounders

Consider a slightly different example:

Can we compute $P_{x}(y)$ without knowing $P(U)$?

$$
\begin{aligned}
P_{x}(y) & =\sum_{z} P_{x}(z) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)
\end{aligned}
$$

Causal inference with unobserved confounders

Consider a slightly different example:

Can we compute $P_{x}(y)$ without knowing $P(U)$?

$$
\begin{aligned}
P_{x}(y) & =\sum_{z} P_{x}(z) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)
\end{aligned}
$$

Here $P(V)$ uniquely determines $P_{x}(y)$ in any causal model that induces G.

Causal inference with unobserved confounders

Consider a slightly different example:

Can we compute $P_{x}(y)$ without knowing $P(U)$?

$$
\begin{aligned}
P_{x}(y) & =\sum_{z} P_{x}(z) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) P_{x}(y \mid z) \\
& =\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)
\end{aligned}
$$

Here $P(V)$ uniquely determines $P_{x}(y)$ in any causal model that induces G. In this case we say that $P_{x}(y)$ is identifiable.

The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a causal model, a distribution $P(V)$ for that model, and a target intervention $X, Y \subseteq V$, and returns

- a formula for $P_{x}(y)$ if it is identifiable from $P(V)$, or
- a proof that $P_{x}(y)$ is not identifable.

The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a causal model, a distribution $P(V)$ for that model, and a target intervention $X, Y \subseteq V$, and returns

- a formula for $P_{x}(y)$ if it is identifiable from $P(V)$, or
- a proof that $P_{x}(y)$ is not identifable.

The agenda

■ Understand the relationship between DAGs and distributions.

- When do G_{1} and G_{2} correspond to the same set of possible distributions?
- What conditional independencies are implied by a graph G ?
- Understand the do-calculus, rules for manipulating interventional distributions.
■ Understand the Shpitser-Pearl ID algorithm.

Table of Contents

Introduction

Bayesian Networks
Preliminaries
Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Probability review

■ X and Y are independent conditioned on Z if $\forall x \in D_{X}, y \in D_{Y}, z \in D_{Z}$,

$$
P(x \mid y, z)=P(x \mid z) \quad \text { if } P(y, z)>0
$$

Alternatively,

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

We write:

$$
(X \Perp Y \mid Z)_{P}
$$

Graph preliminaries

Graph preliminaries

- Directed paths

$$
A \rightarrow B \rightarrow E \rightarrow F \rightarrow G \quad(\text { written } A \leadsto G)
$$

Graph preliminaries

$$
D \leftarrow B \rightarrow E \rightarrow F \leftarrow C \quad \text { (written } D \text { ano } C \text {) }
$$

Graph preliminaries

- Directed paths
- Trails
- Parents, $\mathrm{Pa}(X)$.

$$
\operatorname{Pa}(F)=\{C, E\}
$$

Graph preliminaries

- Directed paths
- Trails
- Parents, $\mathrm{Pa}(X)$.
- Ancestors, $\operatorname{An}(X)$.

$$
\operatorname{An}(F)=\{A, B, C, E, F\}
$$

Graph preliminaries

- Directed paths

■ Trails

- Parents, $\mathrm{Pa}(X)$.
- Ancestors, $\operatorname{An}(X)$.
- Children, $\mathrm{Ch}(X)$.

$$
\operatorname{Ch}(B)=\{D, E\}
$$

Graph preliminaries

- Directed paths
- Trails
- Parents, $\mathrm{Pa}(X)$.
- Ancestors, $\mathrm{An}(X)$.
- Children, $\mathrm{Ch}(X)$.
- Descendants, $\operatorname{De}(X)$.

$$
\operatorname{De}(B)=\{B, D, E, F, G\}
$$

Graph preliminaries

- Directed paths
- Trails
- Parents, $\mathrm{Pa}(X)$.
- Ancestors, $\operatorname{An}(X)$.
- Children, $\mathrm{Ch}(X)$.
- Descendants, $\operatorname{De}(X)$.

■ Upwards-closed set
$\{A, B, C, D\}$

Graph preliminaries

- Directed paths
- Trails
- Parents, $\mathrm{Pa}(X)$.
- Ancestors, $\operatorname{An}(X)$.
- Children, $\mathrm{Ch}(X)$.
- Descendants, $\operatorname{De}(X)$.

■ Upwards-closed set

- Induced subgraph, $G\left[V^{\prime}\right]$

$$
G[\{B, C, D, F, G\}]
$$

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \operatorname{pa}(X))
$$

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \mathrm{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \operatorname{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.
We write $\mathcal{P}(G)$ for all distributions compatible with G.

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \operatorname{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.
We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \operatorname{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.
We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

1. $P(S)=\sum_{V \backslash s} \prod_{X \in V} P(X \mid P a(X))$

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \operatorname{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.
We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

1. $P(S)=\prod_{X \in S} P(X \mid P a(X))$ is compatible with $G[S]$.

Bayesian networks

A DAG $G=(V, E)$ along with a distribution $P(V)$ factoring as

$$
P(V)=\prod_{X \in V} P(X \mid \mathrm{pa}(X))
$$

We say that P is compatible with, or Markov relative to G.
We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

1. $P(S)=\prod_{X \in S} P(X \mid P a(X))$ is compatible with $G[S]$.
2. $P(V \backslash S \mid S)$ is compatible with $G[V \backslash S]$.

Markov conditions

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_{1}, \ldots, X_{n}, each X_{i} is independent of its predecessors given its parents.

Markov conditions

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_{1}, \ldots, X_{n}, each X_{i} is independent of its predecessors given its parents.

Proof.

On board...

Markov conditions

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_{1}, \ldots, X_{n}, each X_{i} is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with $G \Leftrightarrow$ each X is independent of its nondescendants given its parents.

Markov conditions

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_{1}, \ldots, X_{n}, each X_{i} is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with $G \Leftrightarrow$ each X is independent of its nondescendants given its parents.

Proof.

On board. . .

Conditioning on common ancestors

Lemma

Fix any G and disjoint $X, Y, Z \subseteq V$. If $\operatorname{An}(X) \cap \operatorname{An}(Y) \subseteq Z$ and $\operatorname{An}(Z) \subseteq Z$, then

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

in any distribution P compatible with G.

Conditioning on common ancestors

Lemma

Fix any G and disjoint $X, Y, Z \subseteq V$. If $\operatorname{An}(X) \cap \operatorname{An}(Y) \subseteq Z$ and $\operatorname{An}(Z) \subseteq Z$, then

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

in any distribution P compatible with G.

Proof.

On board. . .

Conditional Independencies

What conditional independencies hold in any P compatible with G ?

Conditional Independencies

What conditional independencies hold in any P compatible with G ?

$\square(A \Perp F \mid C, E)_{P}$.

Conditional Independencies

What conditional independencies hold in any P compatible with G ?

$\square(A \Perp F \mid C, E)_{P}$.
$■(B \Perp G \mid F)_{P}$.

Conditional Independencies

What conditional independencies hold in any P compatible with G ?

■ $(A \Perp F \mid C, E)_{P}$.
$\square(B \Perp G \mid F)_{P}$.
$\square(B \Perp F \mid E)_{P}$?

Conditional Independencies

What conditional independencies hold in any P compatible with G ?

■ $(A \Perp F \mid C, E)_{P}$.
$\square(B \Perp G \mid F)_{P}$.
$\square(B \Perp F \mid E)_{P}$?

Let $\mathcal{I}_{\text {prob }}(P):=\left\{(X, Y, Z):(X \Perp Y \mid Z)_{P}\right\}$.

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

■ Does $\{B\}$ block $D \leftarrow B \rightarrow E$?

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

■ Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$?

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!
- Does \varnothing block $B \rightarrow E \leftarrow C$.

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!

■ Does \varnothing block $B \rightarrow E \leftarrow C$. Yes!

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!

■ Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!

- Does \varnothing block $B \rightarrow E \leftarrow C$. Yes!
\square Does $\{E\}$ block $B \rightarrow E \rightarrow C \rightarrow F$?

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!
- Does \varnothing block $B \rightarrow E \leftarrow C$. Yes!
\square Does $\{E\}$ block $B \rightarrow E \rightarrow C \rightarrow F$? No!

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

■ Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!

- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!
- Does \varnothing block $B \rightarrow E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow C \rightarrow F$? No!

■ Does $\{G\}$ block $B \rightarrow E \leftarrow C$?

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

■ $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

■ $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

■ Does $\{B\}$ block $D \leftarrow B \rightarrow E$? Yes!

- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? Yes!
- Does \varnothing block $B \rightarrow E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \rightarrow E \rightarrow C \rightarrow F$? No!
\square Does $\{G\}$ block $B \rightarrow E \leftarrow C$? No!

d-Separation

Let $X, Y, Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

$$
(X \Perp Y \mid Z)_{G}
$$

d-Separation

Let $X, Y, Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

$$
(X \Perp Y \mid Z)_{G} .
$$

If there is a trail from a vertex in X to a vertex in Y that is not blocked, we say that X and Y are d-connected given Z.

d-Separation

Let $X, Y, Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

$$
(X \Perp Y \mid Z)_{G} .
$$

If there is a trail from a vertex in X to a vertex in Y that is not blocked, we say that X and Y are d-connected given Z.

Any trail that is not blocked is an active trail.

d-Separation examples

What d-separations hold in G ?

d-Separation examples

What d-separations hold in G ?

$\square(A \Perp F \mid C, E)_{G}$.

d-Separation examples

What d-separations hold in G ?

$\square(A \Perp F \mid C, E)_{G}$.
$\square(B \Perp G \mid F)_{G}$.

d-Separation examples

What d-separations hold in G ?

$\square(A \Perp F \mid C, E)_{G}$.
$\square(B \Perp G \mid F)_{G}$.
$\square(B \Perp F \mid E)_{G}$?

d-Separation examples

What d-separations hold in G ?

$\square(A \Perp F \mid C, E)_{G}$.
$\square(B \Perp G \mid F)_{G}$.
$\square(B \Perp F \mid E)_{G}$? No!

d-Separation examples

What d-separations hold in G ?

d-Separation and conditional independence

Theorem
$(X \Perp Y \mid Z)_{G} \Longrightarrow(X \Perp Y \mid Z)_{P}$ in every distribution P compatible with G.

d-Separation and conditional independence

Theorem
$(X \Perp Y \mid Z)_{G} \Longrightarrow(X \Perp Y \mid Z)_{P}$ in every distribution P compatible with G.

We'll prove this later.

d-Separation and conditional independence

Theorem

$(X \Perp Y \mid Z)_{G} \Longrightarrow(X \Perp Y \mid Z)_{P}$ in every distribution P compatible with G.

We'll prove this later.
Theorem
If $\neg(X \Perp Y \mid Z)_{G}$, then there exists a distribution P compatible with G in which $\neg(X \Perp Y \mid Z)_{P}$.

d-Separation and conditional independence

Theorem

$(X \Perp Y \mid Z)_{G} \Longrightarrow(X \Perp Y \mid Z)_{P}$ in every distribution P compatible with G.

We'll prove this later.
Theorem
If $\neg(X \Perp Y \mid Z)_{G}$, then there exists a distribution P compatible with G in which $\neg(X \Perp Y \mid Z)_{P}$.

We'll prove this later.

Table of Contents

Introduction
 Bayesian Networks
 Preliminaries
 Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Markov equivalence

Which graphs have the same d-separations?

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph G is an undirected graph with the same adjacencies as in G.

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph G is an undirected graph with the same adjacencies as in G.
■ An immorality is a collider $X \rightarrow Y \leftarrow Z$ in which X and Z are not adjacent.

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph G is an undirected graph with the same adjacencies as in G.
■ An immorality is a collider $X \rightarrow Y \leftarrow Z$ in which X and Z are not adjacent.
■ Flipping these edges doesn't change d-separations.

Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)
G_{1} and G_{2} have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph G is an undirected graph with the same adjacencies as in G.
■ An immorality is a collider $X \rightarrow Y \leftarrow Z$ in which X and Z are not adjacent.
■ Flipping these edges doesn't change d-separations.

Proving Markov equivalence

We need a preliminary lemma
Lemma
If X_{i} and X_{j} are not adjacent in G, then $\left(X_{i} \Perp X_{j} \mid \mathrm{Pa}_{i}, \mathrm{~Pa}_{j}\right)_{G}$.

Proving Markov equivalence

We need a preliminary lemma
Lemma
If X_{i} and X_{j} are not adjacent in G, then $\left(X_{i} \Perp X_{j} \mid \mathrm{Pa}_{i}, \mathrm{~Pa}_{j}\right)_{G}$.
Proof.
On board...

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proof.

On board. . .

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proof.

On board. . .

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proof.

On board. . .

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proof.

On board. . .

Proving Markov equivalence, continued

Lemma

$\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right) \Longrightarrow G_{1}$ and G_{2} have the same skeleton and immoralities.

Proof.

On board. . .

Tight active trails

An active trail is tight if. . .

Proposition

If X and Y are d-connected by Z, there is a tight active trail witnessing the connection.

Tight active trails, continued

Lemma

Let $T=\left(X=X_{1} 00 \cdots \circ \chi_{k}=Y\right)$ be a tight active trail with observation set Z. Then for $i=2, \ldots, k-1$, if X_{i-1} is adjacent to X_{i+1}, then $X_{i-1} \leftarrow X_{i} \rightarrow X_{i+1}$ and at least one of X_{i-1} or X_{i+1} is a collider in T.

Corollary

If X_{i} is a collider in T, then $X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$ is an immorality in G.

Proving Markov equivalence, continued

Lemma

If G_{1} and G_{2} with common vertex set V have the same skeleton and immoralities then $\mathcal{I}_{\text {d-sep }}\left(G_{1}\right)=\mathcal{I}_{\text {d-sep }}\left(G_{2}\right)$.

Proof.
On board. . .

Table of Contents

Introduction
 Bayesian Networks
 Preliminaries
 Bayesian Network basics
 Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

d-Separation and conditional independence

Theorem

- Completeness If $\neg(X \Perp Y \mid Z)_{G}$ then there exists a distribution P compatible with G such that $\neg(X \Perp Y \mid Z)_{P}$.
- Soundness If $(X \Perp Y \mid Z)_{G}$ then $(X \Perp Y \mid Z)_{P}$ in any distribution P compatible with G.

Proof.

On board. . .

Completeness of d-separation

Lemma

If $\neg(X \Perp Y \mid Z)_{G}$ then there exists a distribution P compatible with G such that $\neg(X \Perp Y \mid Z)_{P}$.

Proof.

Let $T=\left(X=V_{1} \propto \cdots \circ \multimap V_{k}=Y\right)$ be an active path given Z.
Continued on board. . .

Soundness of d-separation

Lemma
If $(X \Perp Y \mid Z)_{G}$ then $(X \Perp Y \mid Z)_{P}$ in any distribution P compatible with G.

Soundness of d-separation

Lemma
If $(X \Perp Y \mid Z)_{G}$ then $(X \Perp Y \mid Z)_{P}$ in any distribution P compatible with G.

Proof.

Let $(X \Perp Y \mid Z)_{G}$.

- Let Z_{1}, \ldots, Z_{k} be a topological order of Z.
- Define $Z(j):=\left\{Z_{1}, \ldots, Z_{j}\right\}$.

Continued...

Soundness of d-separation

Lemma

If $(X \Perp Y \mid Z)_{G}$ then $(X \Perp Y \mid Z)_{P}$ in any distribution P compatible with G.

Proof.

Let $(X \Perp Y \mid Z)_{G}$.

- Let Z_{1}, \ldots, Z_{k} be a topological order of Z.
- Define $Z(j):=\left\{Z_{1}, \ldots, Z_{j}\right\}$.

Continued. . .

We complete a DAG G by picking a topological order and adding all edges consistent with the order.

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.
■ $G_{0}:=G$ with the subgraph $G[Z]$ completed.

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j};

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.
■ $G_{0}:=G$ with the subgraph $G[Z]$ completed.

- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.
■ $G_{0}:=G$ with the subgraph $G[Z]$ completed.

- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

G

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

$$
G_{0}
$$

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.

- $G_{0}:=G$ with the subgraph $G[Z]$ completed.
- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

G_{1}

The modification procedure

We'll define a sequence of graphs: $G_{0}, G_{1}, \ldots, G_{k}$.
■ $G_{0}:=G$ with the subgraph $G[Z]$ completed.

- G_{j} is obtained from G_{j-1} by

1. completing $G_{j-1}\left[A_{j}\right]$ where $A_{j}:=\operatorname{An}_{G_{j-1}}\left[Z_{j}\right] \backslash Z(j-1)$;
2. reversing the edges in A_{j}; then
3. completing $G_{j}\left[A_{j} \cup Z(j-1)\right]$.

G_{2}

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.
3. G_{j} is acyclic.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.
3. G_{j} is acyclic.
4. $G_{j}\left[A_{j} \cup Z(j-1)\right]$ is complete.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.
3. G_{j} is acyclic.
4. $G_{j}\left[A_{j} \cup Z(j-1)\right]$ is complete.
5. $(X \Perp Y \mid Z)_{G_{j}} \Longleftrightarrow(X \Perp Y \mid Z)_{G}$.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.
3. G_{j} is acyclic.
4. $G_{j}\left[A_{j} \cup Z(j-1)\right]$ is complete.
5. $(X \Perp Y \mid Z)_{G_{j}} \Longleftrightarrow(X \Perp Y \mid Z)_{G}$.
6. P is compatible with G_{j}.

Soundness of d-separation

Proposition

In G_{j} :

1. $Z(j)$ is upwards-closed.
2. $A_{j} \cup Z(j-1)$ is upwards-closed.
3. G_{j} is acyclic.
4. $G_{j}\left[A_{j} \cup Z(j-1)\right]$ is complete.
5. $(X \Perp Y \mid Z)_{G_{j}} \Longleftrightarrow(X \Perp Y \mid Z)_{G}$.
6. P is compatible with G_{j}.

Now we can finish the proof!

Table of Contents

Introduction
 Bayesian Networks
 Preliminaries
 Bayesian Network basics
 Markov equivalence of Bayesian Networks
 d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Back to causal models

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

Back to causal models

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$
P(x, y)=\sum_{u} P(x \mid u) P(y \mid x, u) P(u)
$$

Back to causal models

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$
P(x, y)=\sum_{u} P(x \mid u) P(y \mid x, u) P(u)
$$

$$
P_{x}(y)=\sum_{u} P(y \mid x, u) P(u)
$$

Back to causal models

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$
P(x, y)=\sum_{u} P(x \mid u) P(y \mid x, u) P(u)
$$

$$
P_{x}(y)=\sum_{u} P(y \mid x, u) P(u)
$$

We write $\operatorname{do}(x)$ for the intervention $X:=x$ and define

$$
P(Y \mid \operatorname{do}(x)):=P_{x}(Y)
$$

Back to causal models

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$
P(x, y)=\sum_{u} P(x \mid u) P(y \mid x, u) P(u)
$$

$$
P_{x}(y)=\sum_{u} P(y \mid x, u) P(u)
$$

We write $\operatorname{do}(x)$ for the intervention $X:=x$ and define

$$
P(Y \mid \operatorname{do}(x)):=P_{x}(Y)
$$

The graph induced by $\operatorname{do}(x)$ is $G_{\bar{x}}$, obtained by removing all edges from $\operatorname{Pa}(X)$ to X.

The do-calculus

Rules for manipulating interventional distributions.

The do-calculus

Rules for manipulating interventional distributions.
P is compatible with $G \Longrightarrow P_{x}$ is compatible with $G_{\bar{x}}$.

The do-calculus

Rules for manipulating interventional distributions.
P is compatible with $G \Longrightarrow P_{x}$ is compatible with $G_{\bar{x}}$.
We can use d-separation to reason about interventional distributions!

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

$$
P(y \mid \operatorname{do}(x), z, w)=P(y \mid \operatorname{do}(x), w)
$$

if $(Y \Perp Z \mid X, W)_{G_{\bar{X}}}$.

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

$$
P(y \mid \operatorname{do}(x), z, w)=P(y \mid \operatorname{do}(x), w)
$$

if $(Y \Perp Z \mid X, W)_{G_{\bar{x}}}$.

Proof.

$(Y \Perp Z \mid X, W)_{G_{\bar{x}}} \Longrightarrow(Y \Perp Z \mid X, W)_{P_{x}}$ since P_{X} is compatible with $G_{\bar{X}}$.

Rule 2: Action/observation exchange

Theorem (Action/observation exchange)
Let $X, Y, Z, W \subseteq V$ be disjoint. Then

$$
P(y \mid \operatorname{do}(x), \operatorname{do}(z), w)=P(y \mid \operatorname{do}(x), z, w)
$$

if $(Y \Perp Z \mid X, W)_{G_{\bar{X} \underline{Z}}}$.
Lemma
Let $H=G_{\bar{X} \underline{z}}$. Then

$$
(Y \Perp Z \mid X, W)_{H} \Longleftrightarrow(\hat{Z} \Perp Y \mid X, Z, W)_{\operatorname{Aug}(H, Z)}
$$

Rule 3: Insertion/deletion of actions

Theorem (Insertion/deletion of actions)

$$
\begin{array}{r}
P(y \mid \operatorname{do}(x), \operatorname{do}(z), W)=P(y \mid \operatorname{do}(x), w) \\
\text { if }(Y \Perp Z \mid X, W)_{G_{X Z(W)}} \text {, where } Z(W):=Z \backslash \operatorname{An}_{G_{\bar{x}}}(W) .
\end{array}
$$

Lemma

Any trail in $\operatorname{Aug}\left(G_{\bar{X}}, Z\right)$ that is active given X, W and uses only edges present in $G_{\overline{X Z(W)}}$ is also active in $G_{\overline{X Z(W)}}$ given X, W, where $Z(W)=Z \backslash \operatorname{An}_{G_{\bar{x}}}(W)$.

Table of Contents

Introduction
Bayesian Networks
Preliminaries
Bayesian Network basics
Markov equivalence of Bayesian Networks
d-Separation and Conditional Independence
The do-Calculus
The Shpitser-Pearl ID algorithm

Identifiability

Which causal effects can be determined from the observed variables only?

Identifiability

Which causal effects can be determined from the observed variables only?

Definition (Identifiability)

The causal effect of an intervention do (x) on a set of variables $Y \subseteq V($ for $Y \subseteq V \backslash X)$ is identifiable from P in a DAG G if $P_{x}(y)$ is uniquely computable from $P(V)$ in any causal model that induces G.

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for $P_{x}(Y)$ whenever it is identifiable from a graph G, and will return a witness to nonidentifiability whenever $P_{x}(Y)$ is not identifiable.

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for $P_{x}(Y)$ whenever it is identifiable from a graph G, and will return a witness to nonidentifiability whenever $P_{x}(Y)$ is not identifiable.

Every line of the algorithm is an application of a rule of the do-calculus!

The ID algorithm

function $\mathbf{I D}(\mathbf{y}, \mathbf{x}, P, G)$
1: if $\mathbf{x}=\varnothing$, return $\sum_{v \backslash y} P(\mathbf{v})$.
2: if $\mathbf{V} \neq \mathrm{An}(\mathbf{Y})_{G}$,
return $\operatorname{ID}\left(\mathbf{y}, \mathbf{x} \cap \operatorname{An}(\mathbf{Y})_{G}, P(\operatorname{An}(\mathbf{Y})), \operatorname{An}(\mathbf{Y})_{G}\right)$.
3: let $\mathbf{W}=(\mathbf{V} \backslash \mathbf{X}) \backslash \operatorname{An}(\mathbf{Y})_{G_{\mathbf{X}}}$.
if $\mathbf{W} \neq \varnothing$, return $\mathbf{I D}(\mathbf{y}, \mathbf{x} \cup \mathbf{w}, P, G)$.
4: if $C(G \backslash \mathbf{X})=\left\{S_{1}, \ldots, S_{k}\right\}$ (for $k \geq 2$), return $\sum_{v \backslash(y \cup x)} \prod_{i} \mathbf{I D}\left(s_{i}, \mathbf{v} \backslash s_{i}, P, G\right)$.
else if $C(G \backslash \mathbf{X})=\{S\}$,
5: if $C(G)=\{G\}$, throw $\operatorname{FAIL}(G, S)$.
6: if $S \in C(G)$, return $\sum_{s \backslash y} \prod_{v_{i} \in S} P\left(v_{i} \mid v_{\pi}^{(i-1)}\right)$.
7: if $\exists S^{\prime}, S \subseteq S^{\prime} \in C(G)$,
return
$\mathbf{I D}\left(\mathbf{y}, \mathbf{x} \cap S^{\prime}, \prod_{V_{i} \in S^{\prime}} P\left(V_{i} \mid V_{\pi}^{(i-1)} \cap S^{\prime}, v_{\pi}^{(i-1)} \backslash S^{\prime}, S^{\prime}\right)\right.$.

Two examples

Is $P_{x}\left(y_{1}, y_{2}\right)$ identifiable?

Two examples

Is $P_{x}\left(y_{1}, y_{2}\right)$ identifiable? How about now?

A positive example

$$
P_{x}\left(y_{1}, y_{2}\right)=\sum_{w_{2}}\left(\sum_{w_{1}} P\left(y_{1} \mid w_{1}, x\right) P\left(w_{1}\right)\right) P\left(y_{2} \mid w_{2}\right) P\left(w_{2}\right) .
$$

Hedges

Definition (C-component)

Let G be a semi-Markovian graph such that a subset of its bidirected edges form a spanning tree of V. Then G is a C-component (confounded component).

Definition (Decomposition into C-components)

Any graph can be uniquely partitioned into a collection of subgraphs $C(G)$, each of which is a maximal C-component. (If G is itself a C -component, the partition is trivial.)

Definition (C-forest)

Let Y be the set of all sinks in a semi-Markovian graph G. Then G is a Y-rooted C-forest if G is a C-component and all vertices have at most one child.

Hedges and identifiability

Definition (Hedge)

Let $X, Y \subseteq V$ in a graph G. Let F, F^{\prime} be R-rooted C-forests such that $F \cap X \neq \varnothing, F^{\prime} \cap X=\varnothing, F^{\prime} \subseteq F$, and $R \subseteq \operatorname{An}(Y)_{G_{\bar{X}}}$. Then $\left(F, F^{\prime}\right)$ form a hedge for $P_{x}(y)$ in G.

Theorem (Hedge Criterion for Identifiability)
$P_{x}(y)$ is identifiable if and only if there does not exists a hedge for $P_{x^{\prime}}\left(y^{\prime}\right)$ in G for any $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$.

Hedges

Hedges

Hedges

Hedges

Hedges

Non-identifiability in hedges

Non-identifiability in hedges

$\mathbf{M}^{1}:$		$\mathbf{M}^{2}:$	
U_{i}	$:=U n i f(\{0,1\})$	U_{i}	$:=U n i f(\{0,1\})$
Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$	Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$
X	$:=Z \oplus U_{1}$	X	$:=Z \oplus U_{1}$
W	$:=X \oplus U_{3}$	W	$:=X \oplus U_{3}$
Y	$:=W \oplus U_{4}$	Y	$:=0$

Non-identifiability in hedges
In M_{1} we also have $P^{1}(Y=0)=1$:

$$
\begin{aligned}
Y & =W \oplus U_{4} \\
& =\left(X \oplus U_{3}\right) \oplus U_{4} \\
& =\left(Z \oplus U_{1}\right) \oplus U_{3} \oplus U_{4} \\
& =\left(U_{1} \oplus U_{3} \oplus U_{4}\right) \oplus\left(U_{1} \oplus U_{3} \oplus U_{4}\right) \\
& =0
\end{aligned}
$$

$$
\text { so } P^{1}(V)=P^{2}(V)
$$

$$
\begin{array}{llll}
\mathbf{M}^{1}: & & \mathbf{M}^{2}: \\
U_{i} & :=U n i f(\{0,1\}) & U_{i} & :=U n i f(\{0,1\}) \\
Z & :=U_{1} \oplus U_{3} \oplus U_{4} & Z & :=U_{1} \oplus U_{3} \oplus U_{4} \\
X & :=Z \oplus U_{1} & X & :=Z \oplus U_{1} \\
W & :=X \oplus U_{3} & W & :=X \oplus U_{3} \\
Y & :=W \oplus U_{4} & Y & :=0
\end{array}
$$

Non-identifiability in hedges

What happens when we intervene on X ?

$$
\begin{array}{llll}
\mathbf{M}^{1}: & & \mathbf{M}^{2}: \\
U_{i} & :=U n i f(\{0,1\}) & U_{i} & :=U \operatorname{Unif}(\{0,1\}) \\
Z & :=U_{1} \oplus U_{3} \oplus U_{4} & Z & :=U_{1} \oplus U_{3} \oplus U_{4} \\
X & :=Z \oplus U_{1} & X & :=Z \oplus U_{1} \\
W & :=X \oplus U_{3} & W & :=X \oplus U_{3} \\
Y & :=W \oplus U_{4} & Y & :=0
\end{array}
$$

Non-identifiability in hedges

What happens when we intervene on X ?

$\mathbf{M}^{1}:$		$\mathbf{M}^{2}:$	
U_{i}	$:=U n i f(\{0,1\})$	U_{i}	$:=U n i f(\{0,1\})$
Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$	Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$
X	$:=x$	X	$:=x$
W	$:=X \oplus U_{3}$	W	$:=X \oplus U_{3}$
Y	$:=W \oplus U_{4}$	Y	$:=0$

Non-identifiability in hedges

Then $Y=x \oplus U_{3} \oplus U_{4}$. We have

$$
P_{x}^{1}(Y)>0, \quad P_{x}^{2}(Y=1)=0 .
$$

$\mathbf{M}^{1}:$		$\mathbf{M}^{2}:$	
U_{i}	$:=U n i f(\{0,1\})$	U_{i}	$:=U n i f(\{0,1\})$
Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$	Z	$:=U_{1} \oplus U_{3} \oplus U_{4}$
X	$:=X$	X	$:=x$
W	$:=X \oplus U_{3}$	W	$:=X \oplus U_{3}$
Y	$:=W \oplus U_{4}$	Y	$:=0$

Non-identifiability for the earlier example

Non-identifiability for the earlier example

In this example, $P_{x}\left(y_{1}, y_{2}\right)$ is unidentifiable because $\left\{W_{1}, W_{2}, Y_{1}, Y_{2}\right\}$ and $\left\{W_{1}, W_{2}, Y_{1}, Y_{2}, X\right\}$ form a hedge.

