An Introduction to Causal Graphical Models

Spencer Gordon

Simons Institute Causality Bootcamp

Handout available at https://tinyurl.com/causalitybootcamp

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

• "Smoking causes lung cancer."

• "Smoking causes lung cancer." Not always.

"Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.

- "Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.
- We will start with probabilistic causal models.

- "Smoking causes lung cancer." Not always. We use probabilities to capture uncertainty/indeterminacy.
- We will start with probabilistic causal models.
- We will (mostly) work with causal Bayesian networks.

A tuple $M = \langle U, V, F, P(U) \rangle$ where

1. U is a set of background random variables, which can't be observed or manipulated.

A tuple $M = \langle U, V, F, P(U) \rangle$ where

- 1. U is a set of background random variables, which can't be observed or manipulated.
- 2. $V = \{X_1, \dots, X_n\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.

A tuple $M = \langle U, V, F, P(U) \rangle$ where

- 1. U is a set of background random variables, which can't be observed or manipulated.
- 2. $V = \{X_1, ..., X_n\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
- 3. *F* is set of functions $\{f_i\}$ such that each f_i maps from a subset of $U \cup \{X_1, \ldots, X_{i-1}\}$ to X_i .

A tuple $M = \langle U, V, F, P(U) \rangle$ where

- 1. U is a set of background random variables, which can't be observed or manipulated.
- 2. $V = \{X_1, ..., X_n\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
- 3. *F* is set of functions $\{f_i\}$ such that each f_i maps from a subset of $U \cup \{X_1, \ldots, X_{i-1}\}$ to X_i .
- 4. P(U) is a joint distribution over U.

A tuple $M = \langle U, V, F, P(U) \rangle$ where

- 1. U is a set of background random variables, which can't be observed or manipulated.
- 2. $V = \{X_1, ..., X_n\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
- 3. *F* is set of functions $\{f_i\}$ such that each f_i maps from a subset of $U \cup \{X_1, \ldots, X_{i-1}\}$ to X_i .
- 4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V, P(V).

A tuple $M = \langle U, V, F, P(U) \rangle$ where

- 1. U is a set of background random variables, which can't be observed or manipulated.
- 2. $V = \{X_1, \dots, X_n\}$ is set of observable variables. Each is a function of some subset of $U \cup V$.
- 3. *F* is set of functions $\{f_i\}$ such that each f_i maps from a subset of $U \cup \{X_1, \ldots, X_{i-1}\}$ to X_i .
- 4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V, P(V).

$$P(v) = \sum_{u \in D_U} \prod_{i=1}^n P(x_i \mid \text{parents}(x_i)) P(u)$$

•
$$U = \{U_1, \ldots, U_5\}.$$

•
$$U = \{U_1, \dots, U_5\}.$$

• $V = \{X_1, \dots, X_5\}.$

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- *F* is given below:

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- *F* is given below:
- *U_i* are independent.

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- *F* is given below:
- \Box U_i are independent.
- $U_1 \sim \text{Unif}(\{\text{Wi, Sp, Su, Fa}\})$

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- *F* is given below:
- *U_i* are independent.
- $U_1 \sim \text{Unif}(\{\text{Wi, Sp, Su, Fa}\})$
- $supp(U_i) = \{-1, 0, 1\}$ for i = 2, 3, 4, 5.

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- F is given below:
- *U_i* are independent.
- $U_1 \sim \text{Unif}(\{\text{Wi, Sp, Su, Fa}\})$
- $supp(U_i) = \{-1, 0, 1\}$ for i = 2, 3, 4, 5.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi},\mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq (X_3 \in \{\mathsf{Su},\mathsf{Sp}\} \lor U_3 = 1) \land (U_2 > -1) \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

- $U = \{U_1, \ldots, U_5\}.$
- $V = \{X_1, \ldots, X_5\}.$
- F is given below:
- *U_i* are independent.

•
$$U_1 \sim \text{Unif}(\{\text{Wi, Sp, Su, Fa}\})$$

• $supp(U_i) = \{-1, 0, 1\}$ for i = 2, 3, 4, 5.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi},\mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq (X_3 \in \{\mathsf{Su},\mathsf{Sp}\} \lor U_3 = 1) \land (U_2 > -1) \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

Is there any better way to understand this?

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \to Y$ if f_Y depends on X.

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \to Y$ if f_Y depends on X.

We will only be interested in models that induce acyclic graphs!

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \to Y$ if f_Y depends on X.

- We will only be interested in models that induce acyclic graphs!
- What about confounders?

Each model induces a graph.

The graph has a vertex for each $X \in V$, an edge $X \to Y$ if f_Y depends on X.

- We will only be interested in models that induce acyclic graphs!
- What about confounders? If f_X , f_Y depend on a common U, we represent this with

Factorization

With no confounders the P(V) induced by P(U) factors according to G:

$$P(X_1, X_2, X_3, X_4, X_5) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1)P(X_4 \mid X_2, X_3)P(X_5 \mid X_4)$$

Interventions correspond to changing the mechanism determining some X_i

$$\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi},\mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq (X_3 \in \{\mathsf{Su},\mathsf{Sp}\} \lor U_3 = 1) \land (U_2 > -1) \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$$

Interventions correspond to changing the mechanism determining some X_i , e.g., turning the sprinkler off.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi}, \mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq (X_3 \in \{\mathsf{Su}, \mathsf{Sp}\} \lor U_3 = 1) \land (U_2 > -1) \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

Interventions correspond to changing the mechanism determining some X_i , e.g., turning the sprinkler off.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi}, \mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq \mathsf{OFF} \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

Interventions correspond to changing the mechanism determining some X_i , e.g., turning the sprinkler off.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi}, \mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq \mathsf{OFF} \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

The induced graph and P(V) change as well.

Interventions correspond to changing the mechanism determining some X_i , e.g., turning the sprinkler off.

 $\begin{array}{rll} \mathsf{SEASON}: & X_1 \coloneqq U_1 \\ & \mathsf{RAIN}: & X_2 \coloneqq (X_1 \in \{\mathsf{Wi}, \mathsf{Fa}\} \lor U_2 = 1) \land (U_2 > -1) \\ & \mathsf{SPRINKLER}: & X_3 \coloneqq \mathsf{OFF} \\ & \mathsf{WET}: & X_4 \coloneqq (X_2 \lor X_3 \lor U_4 = 1) \land (U_4 > -1) \\ & \mathsf{SLIPPERY}: & X_5 \coloneqq (X_4 \lor U_5 = 1) \land (U_5 > -1) \end{array}$

The induced graph and P(V) change as well.

We write $P_x(V)$ for the distribution obtained by intervening to set X := x.

Let v be an assignment to V such that $X_3 = OFF$. Then

$$P_{X_3 = \mathsf{OFF}}(v) = P(x_1)P(x_2 \mid x_1)P(x_4 \mid x_2, X_3 = \mathsf{OFF})P(x_5 \mid x_4)$$

۱

Let v be an assignment to V such that $X_3 = OFF$. Then

$$P_{X_3=\mathsf{OFF}}(v)$$

= $P(x_1)P(x_2 \mid x_1)P(x_4 \mid x_2, X_3 = \mathsf{OFF})P(x_5 \mid x_4)$
We can compute this from $P(V)$ alone. We don't need $P(U)$.
Consider a model that induces this graph:

Consider a model that induces this graph:

Consider a model that induces this graph:

Then

$$P_{X}(Y) = \sum_{u} P(u)P(Y \mid X = x, u)$$

Consider a model that induces this graph:

Then

$$P_{X}(Y) = \sum_{u} P(u)P(Y \mid X = x, u)$$

since the model after intervention induces the modified graph above.

Consider a model that induces this graph:

Then

$$P_{X}(Y) = \sum_{u} P(u)P(Y \mid X = x, u)$$

since the model after intervention induces the modified graph above.

We can't compute $P_X(Y)$ with knowledge only of P(V).

Consider a slightly different example:

Consider a slightly different example:

Can we compute $P_x(y)$ without knowing P(U)?

Consider a slightly different example:

Can we compute $P_x(y)$ without knowing P(U)?

$$P_{x}(y) = \sum_{z} P_{x}(z)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)\sum_{x'} P(y \mid z, x')P(x')$$

Consider a slightly different example:

Can we compute $P_x(y)$ without knowing P(U)?

$$P_{x}(y) = \sum_{z} P_{x}(z)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)\sum_{x'} P(y \mid z, x')P(x')$$

Here P(V) uniquely determines $P_x(y)$ in any causal model that induces G.

Consider a slightly different example:

Can we compute $P_x(y)$ without knowing P(U)?

$$P_{x}(y) = \sum_{z} P_{x}(z)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)P_{x}(y \mid z)$$
$$= \sum_{z} P(z \mid x)\sum_{x'} P(y \mid z, x')P(x')$$

Here P(V) uniquely determines $P_x(y)$ in any causal model that induces G. In this case we say that $P_x(y)$ is identifiable.

The Shpitser-Pearl ID algorithm takes a graph G induced by a causal model, a distribution P(V) for that model, and a target intervention $X, Y \subseteq V$, and returns

- a formula for $P_x(y)$ if it is identifiable from P(V), or
- a proof that $P_x(y)$ is not identifable.

The Shpitser-Pearl ID algorithm takes a graph G induced by a causal model, a distribution P(V) for that model, and a target intervention $X, Y \subseteq V$, and returns

- a formula for $P_x(y)$ if it is identifiable from P(V), or
- a proof that $P_x(y)$ is not identifable.

The agenda

Understand the relationship between DAGs and distributions.

▶ When do *G*₁ and *G*₂ correspond to the same set of possible distributions?

▶ What conditional independencies are implied by a graph *G*?

- Understand the do-calculus, rules for manipulating interventional distributions.
- Understand the Shpitser-Pearl ID algorithm.

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Probability review

• X and Y are independent conditioned on Z if $\forall x \in D_X, y \in D_Y, z \in D_Z$,

$$P(x \mid y, z) = P(x \mid z) \quad \text{if } P(y, z) > 0.$$

Alternatively,

$$P(x, y \mid z) = P(x \mid z)P(y \mid z).$$

We write:

 $(X \perp Y \mid Z)_P$

$A \rightarrow B \rightarrow E \rightarrow F \rightarrow G$ (written $A \rightsquigarrow G$)

Directed pathsTrails

$D \leftarrow B \rightarrow E \rightarrow F \leftarrow C$ (written $D \circ C$)

- Directed paths
- Trails
- Parents, Pa(X).

$$\mathsf{Pa}(F) = \{C, E\}$$

- Directed paths
- Trails
- Parents, Pa(X).
- Ancestors, An(X).

$$\mathsf{An}(F) = \{A, B, C, E, F\}$$

- Directed paths
- Trails
- Parents, Pa(X).
- Ancestors, An(X).
- Children, Ch(X).

$$\mathsf{Ch}(B) = \{D, E\}$$

- Directed paths
- Trails
- Parents, Pa(X).
- Ancestors, An(X).
- Children, Ch(X).
- Descendants, De(X).

$$\mathsf{De}(B) = \{B, D, E, F, G\}$$

- Directed paths
- Trails
- Parents, Pa(X).
- Ancestors, An(X).
- Children, Ch(X).
- Descendants, De(X).
- Upwards-closed set

$\{A, B, C, D\}$

- Directed paths
- Trails
- Parents, Pa(X).
- Ancestors, An(X).
- Children, Ch(X).
- Descendants, De(X).
- Upwards-closed set
- Induced subgraph, G[V']

$G[\{B, C, D, F, G\}]$

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid pa(X)).$$

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

We write $\mathcal{P}(G)$ for all distributions compatible with G.

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation If S is upwards-closed and P is compatible with G, 1. $P(S) = \sum_{v \setminus s} \prod_{X \in V} P(X \mid Pa(X))$

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation If S is upwards-closed and P is compatible with G, 1. $P(S) = \prod_{X \in S} P(X | Pa(X))$ is compatible with G[S].

A DAG G = (V, E) along with a distribution P(V) factoring as

$$P(V) = \prod_{X \in V} P(X \mid \mathsf{pa}(X)).$$

We say that P is compatible with, or Markov relative to G.

We write $\mathcal{P}(G)$ for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,

1. $P(S) = \prod_{X \in S} P(X | Pa(X))$ is compatible with G[S].

2. $P(V \setminus S \mid S)$ is compatible with $G[V \setminus S]$.

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_1, \ldots, X_n , each X_i is independent of its predecessors given its parents.

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_1, \ldots, X_n , each X_i is independent of its predecessors given its parents.

Proof.

On board...

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_1, \ldots, X_n , each X_i is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with $G \Leftrightarrow$ each *X* is independent of its nondescendants given its parents.

Ordered Markov Condition

P is compatible with $G \Leftrightarrow$ in any topological ordering X_1, \ldots, X_n , each X_i is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with $G \Leftrightarrow$ each *X* is independent of its nondescendants given its parents.

Proof.

On board. . .

Conditioning on common ancestors

Lemma

Fix any G and disjoint X, Y, $Z \subseteq V$. If $An(X) \cap An(Y) \subseteq Z$ and $An(Z) \subseteq Z$, then

$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

in any distribution P compatible with G.
Conditioning on common ancestors

Lemma

Fix any G and disjoint X, Y, $Z \subseteq V$. If $An(X) \cap An(Y) \subseteq Z$ and $An(Z) \subseteq Z$, then

$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

in any distribution P compatible with G.

Proof.

On board...

(A⊥F | C, E)_P.
 (B⊥G | F)_P.

What conditional independencies hold in any P compatible with G?

(A⊥F | C, E)_P.
(B⊥G | F)_P.
(B⊥F | E)_P?

Let $\mathcal{I}_{\text{prob}}(P) := \{ (X, Y, Z) : (X \bot Y \mid Z)_P \}.$

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

• $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

• Does $\{B\}$ block $D \leftarrow B \rightarrow E$?

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

• Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

Does {B} block D ← B → E? Yes!
Does {E} block B → E → F?

A trail in G is blocked by a set Z if it contains three consecutive vertices such that

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

Does {B} block D ← B → E? Yes!
 Does {E} block B → E → F? Yes!

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \rightarrow E \rightarrow F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$.

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \to E \to F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$. Yes!

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \to E \to F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \to E \to C \to F$?

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \to E \to F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \to E \to C \to F$? **No!**

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \to E \to F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \to E \to C \to F$? **No!**
- Does $\{G\}$ block $B \to E \leftarrow C$?

- $A \rightarrow B \rightarrow C$ is a chain or $A \leftarrow B \rightarrow C$ is a fork and $B \in Z$, or
- $A \rightarrow B \leftarrow C$ is a collider and no descendant of B is in Z.

- Does $\{B\}$ block $D \leftarrow B \rightarrow E$? **Yes!**
- Does $\{E\}$ block $B \to E \to F$? **Yes!**
- Does \varnothing block $B \to E \leftarrow C$. Yes!
- Does $\{E\}$ block $B \to E \to C \to F$? **No!**
- Does $\{G\}$ block $B \rightarrow E \leftarrow C$? **No!**

d-Separation

Let X, Y, $Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

 $(X \perp Y \mid Z)_G.$

d-Separation

Let X, Y, $Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

 $(X \bot\!\!\!\perp Y \mid Z)_G.$

If there is a trail from a vertex in X to a vertex in Y that is not blocked, we say that X and Y are d-connected given Z.

d-Separation

Let $X, Y, Z \subseteq V$ be disjoint. Then X is d-separated from Y by Z if every trail between any vertex in X and any vertex Y in G is blocked. We write

 $(X \bot\!\!\!\perp Y \mid Z)_G.$

If there is a trail from a vertex in X to a vertex in Y that is not blocked, we say that X and Y are d-connected given Z.

Any trail that is not blocked is an active trail.

What d-separations hold in G?

What d-separations hold in G?

What d-separations hold in G?

(A⊥F | C, E)_G. (B⊥G | F)_G.

What d-separations hold in G?

(A⊥F | C, E)_G.
 (B⊥G | F)_G.
 (B⊥F | E)_G?

What d-separations hold in G?

(A⊥F | C, E)_G.
 (B⊥G | F)_G.
 (B⊥F | E)_G? No!

What d-separations hold in G?

Let $\mathcal{I}_{d-sep}(G) \coloneqq \{ (X, Y, Z) : (X \bot Y \mid Z)_G \}.$

Theorem

$(X \perp Y \mid Z)_G \implies (X \perp Y \mid Z)_P$ in every distribution P compatible with G.

Theorem

$(X \perp Y \mid Z)_G \implies (X \perp Y \mid Z)_P$ in every distribution P compatible with G.

We'll prove this later.

Theorem

 $(X \perp Y \mid Z)_G \implies (X \perp Y \mid Z)_P$ in every distribution P compatible with G.

We'll prove this later.

Theorem

If $\neg (X \bot Y | Z)_G$, then there exists a distribution P compatible with G in which $\neg (X \bot Y | Z)_P$.

Theorem

 $(X \perp Y \mid Z)_G \implies (X \perp Y \mid Z)_P$ in every distribution P compatible with G.

We'll prove this later.

Theorem

If $\neg (X \bot Y | Z)_G$, then there exists a distribution P compatible with G in which $\neg (X \bot Y | Z)_P$.

We'll prove this later.

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Which graphs have the same d-separations?

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

• The skeleton of a graph *G* is an undirected graph with the same adjacencies as in *G*.
Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph *G* is an undirected graph with the same adjacencies as in *G*.
- An immorality is a collider X → Y ← Z in which X and Z are not adjacent.

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph *G* is an undirected graph with the same adjacencies as in *G*.
- An immorality is a collider X → Y ← Z in which X and Z are not adjacent.
- Flipping these edges doesn't change d-separations.

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

 G_1 and G_2 have the same d-separations if and only if they have the same skeleton and the same immoralities.

- The skeleton of a graph *G* is an undirected graph with the same adjacencies as in *G*.
- An immorality is a collider X → Y ← Z in which X and Z are not adjacent.
- Flipping these edges doesn't change d-separations.

Proving Markov equivalence

We need a preliminary lemma

Lemma

If X_i and X_j are not adjacent in G, then $(X_i \perp X_j \mid Pa_i, Pa_j)_G$.

Proving Markov equivalence

We need a preliminary lemma

Lemma

If X_i and X_j are not adjacent in G, then $(X_i \perp X_j \mid Pa_i, Pa_j)_G$.

Proof.

On board...

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Proof.

On board. . .

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Proof.

On board. . .

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Proof.

On board...

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Proof.

On board...

Lemma

 $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2) \implies G_1 \text{ and } G_2 \text{ have the same skeleton}$ and immoralities.

Proof.

On board. . .

An active trail is tight if...

Proposition

If X and Y are d-connected by Z, there is a tight active trail witnessing the connection.

Tight active trails, continued

Lemma

Let $T = (X = X_1 \multimap \cdots \multimap X_k = Y)$ be a tight active trail with observation set Z. Then for i = 2, ..., k - 1, if X_{i-1} is adjacent to X_{i+1} , then $X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$ and at least one of X_{i-1} or X_{i+1} is a collider in T.

Corollary

If X_i is a collider in T, then $X_{i-1} \to X_i \leftarrow X_{i+1}$ is an immorality in G.

Lemma

If G_1 and G_2 with common vertex set V have the same skeleton and immoralities then $\mathcal{I}_{d-sep}(G_1) = \mathcal{I}_{d-sep}(G_2)$.

Proof.

On board...

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

d-Separation and conditional independence

Theorem

- Completeness If ¬(X⊥Y | Z)_G then there exists a distribution P compatible with G such that ¬(X⊥Y | Z)_P.
- Soundness If $(X \perp Y \mid Z)_G$ then $(X \perp Y \mid Z)_P$ in any distribution P compatible with G.

Proof.

On board. . .

Completeness of d-separation

Lemma

If $\neg (X \perp Y \mid Z)_G$ then there exists a distribution *P* compatible with *G* such that $\neg (X \perp Y \mid Z)_P$.

Proof.

Let $T = (X = V_1 \multimap \cdots \multimap V_k = Y)$ be an active path given Z.

Continued on board. . .

Lemma

If $(X \perp Y \mid Z)_G$ then $(X \perp Y \mid Z)_P$ in any distribution P compatible with G.

Lemma

If $(X \perp Y \mid Z)_G$ then $(X \perp Y \mid Z)_P$ in any distribution P compatible with G.

Proof.

Let $(X \perp Y \mid Z)_G$. Let Z_1, \dots, Z_k be a topological order of Z. Define $Z(j) \coloneqq \{Z_1, \dots, Z_j\}$.

Continued. . .

Lemma

If $(X \perp Y \mid Z)_G$ then $(X \perp Y \mid Z)_P$ in any distribution P compatible with G.

Proof.

Let $(X \perp Y \mid Z)_G$. Let Z_1, \dots, Z_k be a topological order of Z. Define $Z(j) \coloneqq \{Z_1, \dots, Z_j\}$.

Continued. . .

We complete a DAG G by picking a topological order and adding all edges consistent with the order.

We'll define a sequence of graphs: G_0, G_1, \ldots, G_k .

• $G_0 := G$ with the subgraph G[Z] completed.

- $G_0 := G$ with the subgraph G[Z] completed.
- **G**_j is obtained from G_{j-1} by

We'll define a sequence of graphs: G_0, G_1, \ldots, G_k .

•
$$G_0 \coloneqq G$$
 with the subgraph $G[Z]$ completed.

•
$$G_j$$
 is obtained from G_{j-1} by

1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;

- $G_0 := G$ with the subgraph G[Z] completed.
- **G**_j is obtained from G_{j-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ;

- $G_0 \coloneqq G$ with the subgraph G[Z] completed.
- **G**_j is obtained from G_{j-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

- $G_0 \coloneqq G$ with the subgraph G[Z] completed.
- **G**_j is obtained from G_{j-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

- $G_0 := G$ with the subgraph G[Z] completed.
- G_i is obtained from G_{i-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

- $G_0 := G$ with the subgraph G[Z] completed.
- G_i is obtained from G_{i-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

- $G_0 := G$ with the subgraph G[Z] completed.
- G_i is obtained from G_{i-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

We'll define a sequence of graphs: G_0, G_1, \ldots, G_k .

- $G_0 \coloneqq G$ with the subgraph G[Z] completed.
- G_j is obtained from G_{j-1} by
 - 1. completing $G_{j-1}[A_j]$ where $A_j := \operatorname{An}_{G_{j-1}}[Z_j] \setminus Z(j-1)$;
 - 2. reversing the edges in A_j ; then
 - 3. completing $G_j[A_j \cup Z(j-1)]$.

G2

Proposition

In G_j : 1. Z(j) is upwards-closed.

Proposition

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.

Proposition

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.
- 3. G_j is acyclic.

Proposition

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.
- 3. G_j is acyclic.

4.
$$G_j[A_j \cup Z(j-1)]$$
 is complete.

Proposition

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.
- 3. G_j is acyclic.
- 4. $G_j[A_j \cup Z(j-1)]$ is complete.
- 5. $(X \perp Y \mid Z)_{G_j} \iff (X \perp Y \mid Z)_G.$
Soundness of d-separation

Proposition

In G_j:

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.
- 3. G_j is acyclic.
- 4. $G_j[A_j \cup Z(j-1)]$ is complete.
- 5. $(X \bot\!\!\!\perp Y \mid Z)_{G_j} \iff (X \bot\!\!\!\perp Y \mid Z)_G.$
- 6. *P* is compatible with G_i .

Soundness of d-separation

Proposition

In G_j:

- 1. Z(j) is upwards-closed.
- 2. $A_j \cup Z(j-1)$ is upwards-closed.
- 3. G_j is acyclic.
- 4. $G_j[A_j \cup Z(j-1)]$ is complete.
- 5. $(X \bot\!\!\!\perp Y \mid Z)_{G_j} \iff (X \bot\!\!\!\perp Y \mid Z)_G.$
- 6. *P* is compatible with G_j .

Now we can finish the proof!

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$P(x, y) = \sum_{u} P(x \mid u) P(y \mid x, u) P(u)$$

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

$$P_x(y) = \sum_u P(y \mid x, u) P(u)$$

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

We write do(x) for the intervention X := x and define

$$P(Y \mid do(x)) \coloneqq P_x(Y).$$

Recall: We model interventions in a causal model by swapping the mechanism used to set X with a constant function of our choice.

We write do(x) for the intervention $X \coloneqq x$ and define

$$P(Y \mid \mathsf{do}(x)) \coloneqq P_x(Y).$$

The graph induced by do(x) is $G_{\overline{x}}$, obtained by removing all edges from Pa(X) to X.

Rules for manipulating interventional distributions.

Rules for manipulating interventional distributions.

P is compatible with $G \implies P_x$ is compatible with $G_{\overline{x}}$.

Rules for manipulating interventional distributions.

P is compatible with $G \implies P_x$ is compatible with $G_{\overline{x}}$.

We can use d-separation to reason about interventional distributions!

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

$$P(y \mid do(x), z, w) = P(y \mid do(x), w)$$

 $if(Y \bot Z \mid X, W)_{G_{\overline{X}}}.$

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

$$P(y \mid do(x), z, w) = P(y \mid do(x), w)$$

if $(Y \perp Z \mid X, W)_{G_{\overline{X}}}$.

Proof.

 $(Y \perp Z \mid X, W)_{G_{\overline{X}}} \implies (Y \perp Z \mid X, W)_{P_{X}}$ since P_{X} is compatible with $G_{\overline{X}}$.

Rule 2: Action/observation exchange

Theorem (Action/observation exchange) Let X, Y, Z, W \subseteq V be disjoint. Then $P(y \mid do(x), do(z), w) = P(y \mid do(x), z, w)$ if $(Y \perp Z \mid X, W)_{G_{\overline{X}Z}}$.

Lemma

Let $H = G_{\overline{X}\underline{Z}}$. Then $(Y \perp Z \mid X, W)_H \iff (\hat{Z} \perp Y \mid X, Z, W)_{Aug(H,Z)}.$ Rule 3: Insertion/deletion of actions

Theorem (Insertion/deletion of actions)

$$P(y \mid do(x), do(z), W) = P(y \mid do(x), w)$$

if $(Y \perp Z \mid X, W)_{G_{\overline{XZ(W)}}}$, where $Z(W) \coloneqq Z \setminus \operatorname{An}_{G_{\overline{X}}}(W)$.

Lemma

Any trail in $\operatorname{Aug}(G_{\overline{X}}, Z)$ that is active given X, W and uses only edges present in $G_{\overline{XZ(W)}}$ is also active in $G_{\overline{XZ(W)}}$ given X, W, where $Z(W) = Z \setminus \operatorname{An}_{G_{\overline{X}}}(W)$.

Table of Contents

Introduction

Bayesian Networks Preliminaries Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

Identifiability

Which causal effects can be determined from the observed variables only?

Identifiability

Which causal effects can be determined from the observed variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables $Y \subseteq V$ (for $Y \subseteq V \setminus X$) is *identifiable* from P in a DAG G if $P_x(y)$ is uniquely computable from P(V) in any causal model that induces G.

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm **ID** will return an expression for $P_x(Y)$ whenever it is identifiable from a graph G, and will return a witness to nonidentifiability whenever $P_x(Y)$ is not identifiable.

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm **ID** will return an expression for $P_x(Y)$ whenever it is identifiable from a graph G, and will return a witness to nonidentifiability whenever $P_x(Y)$ is not identifiable.

Every line of the algorithm is an application of a rule of the do-calculus!

The ID algorithm

function ID(y, x, P, G)1: if $\mathbf{x} = \emptyset$, return $\sum_{\mathbf{v} \setminus \mathbf{v}} P(\mathbf{v})$. 2: if $\mathbf{V} \neq An(\mathbf{Y})_{G}$, return $ID(\mathbf{y}, \mathbf{x} \cap An(\mathbf{Y})_G, P(An(\mathbf{Y})), An(\mathbf{Y})_G)$. 3: let $\mathbf{W} = (\mathbf{V} \setminus \mathbf{X}) \setminus An(\mathbf{Y})_{G_{\nabla}}$. if $\mathbf{W} \neq \emptyset$, return $\mathbf{ID}(\mathbf{y}, \mathbf{x} \cup \mathbf{w}, P, G)$. 4: if $C(G \setminus \mathbf{X}) = \{S_1, \dots, S_k\}$ (for $k \ge 2$), return $\sum_{\mathbf{v} \setminus (\mathbf{v} \cup \mathbf{x})} \prod_i \mathbf{ID}(s_i, \mathbf{v} \setminus s_i, P, G).$ else if $C(G \setminus \mathbf{X}) = \{S\}$, 5: if $C(G) = \{G\}$, throw **FAIL**(G, S). 6: if $S \in C(G)$, return $\sum_{s \setminus v} \prod_{v_i \in S} P(v_i \mid v_{\pi}^{(i-1)})$. 7: if $\exists S', S \subseteq S' \in C(G)$, return $\mathsf{ID}(\mathbf{y}, \mathbf{x} \cap S', \prod_{V_i \in S'} P(V_i \mid V_{\pi}^{(i-1)} \cap S', v_{\pi}^{(i-1)} \setminus S', S').$

Two examples

Is $P_x(y_1, y_2)$ identifiable?

Two examples

Is $P_x(y_1, y_2)$ identifiable? How about now?

A positive example

$$P_{x}(y_{1}, y_{2}) = \sum_{w_{2}} \left(\sum_{w_{1}} P(y_{1}|w_{1}, x) P(w_{1}) \right) P(y_{2}|w_{2}) P(w_{2}).$$

Definition (C-component)

Let G be a semi-Markovian graph such that a subset of its bidirected edges form a spanning tree of V. Then G is a *C*-component (confounded component).

Definition (Decomposition into C-components)

Any graph can be uniquely partitioned into a collection of subgraphs C(G), each of which is a maximal C-component. (If G is itself a C-component, the partition is trivial.)

Definition (C-forest)

Let Y be the set of all sinks in a semi-Markovian graph G. Then G is a Y-rooted C-forest if G is a C-component and all vertices have at most one child.

Hedges and identifiability

Definition (Hedge)

Let $X, Y \subseteq V$ in a graph G. Let F, F' be R-rooted C-forests such that $F \cap X \neq \emptyset$, $F' \cap X = \emptyset$, $F' \subseteq F$, and $R \subseteq \operatorname{An}(Y)_{G_{\overline{X}}}$. Then (F, F') form a *hedge* for $P_x(y)$ in G.

Theorem (Hedge Criterion for Identifiability)

 $P_x(y)$ is identifiable if and only if there does not exists a hedge for $P_{x'}(y')$ in G for any $X' \subseteq X$, $Y' \subseteq Y$.

Non-identifiability in hedges

Non-identifiability in hedges

$$:= \text{Unif}(\{0, 1\})$$
$$:= U_1 \oplus U_3 \oplus U_4$$
$$:= Z \oplus U_1$$
$$:= X \oplus U_3$$
$$:= 0$$

Non-identifiability in hedges In M_1 we also have $P^1(Y = 0) = 1$:

$$Y = W \oplus U_4$$

= $(X \oplus U_3) \oplus U_4$
= $(Z \oplus U_1) \oplus U_3 \oplus U_4$
= $(U_1 \oplus U_3 \oplus U_4) \oplus (U_1 \oplus U_3 \oplus U_4)$
= 0

so
$$P^1(V) = P^2(V)$$
.

$$\begin{array}{l} \mathsf{I}^2:\\ i & \coloneqq \mathsf{Unif}(\{0,1\})\\ & \coloneqq U_1 \oplus U_3 \oplus U_4\\ & \coloneqq Z \oplus U_1\\ \ell & \coloneqq X \oplus U_3\\ & \vdots = 0 \end{array}$$

Non-identifiability in hedges

What happens when we intervene on X?

$$:= \mathsf{Unif}(\{0, 1\}) := U_1 \oplus U_3 \oplus U_4 := Z \oplus U_1 := X \oplus U_3 := 0$$

Non-identifiability in hedges

What happens when we intervene on X?

 $\coloneqq \mathsf{Unif}(\{0,1\}) \\ \coloneqq U_1 \oplus U_3 \oplus U_4$
Non-identifiability in hedges

 U_1

Non-identifiability for the earlier example

Non-identifiability for the earlier example

In this example, $P_x(y_1, y_2)$ is unidentifiable because $\{W_1, W_2, Y_1, Y_2\}$ and $\{W_1, W_2, Y_1, Y_2, X\}$ form a hedge.