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The main reference

GCT5 [M.]: Geometric Complexity Theory V: Equivalence
between black-box derandomization of polynomial identity
testing and derandomization of Noether’s Normalization
Lemma

Abstract: FOCS 2012.

Full version: Arxiv and the home page.
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Summary of yesterday’s tutorial

Negative conclusion (yesterday) If NNL is not in SUBEXP
then under reasonable assumptions V P = V NP ,
NP ⊆ P/poly, and so on.

The positive view of GCT: The GCT chasm is not an
evidence against these conjectures bur rather a measure of
their difficulty.

Positive conclusion: Under reasonable assumptions
(including the robustness thesis), any proof of the
V P 6= V NP conjecture would need to produce a hitting set
B = {B1, . . . , Bl} (a set of matrices) against the polynomials
with exponential circuit size in the orbit closure ∆[det,m] in
sub-exponential time.
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Intermediate questions: today

Question: To begin with, can we derandomize Noether’s
Normalization Lemma for some intermediate explicit
varieties in which the border issues do not arise?
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Question: To begin with, can we derandomize Noether’s
Normalization Lemma for some intermediate explicit
varieties in which the border issues do not arise?

Yes (up to a quasi-prefix). This talk.

More basic question: Can the foundational Equivalence
Problem of invariant theory (cf. Klein’s Erlangen program)
be solved explicitly?
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Intermediate questions: today

Question: To begin with, can we derandomize Noether’s
Normalization Lemma for some intermediate explicit
varieties in which the border issues do not arise?

Yes (up to a quasi-prefix). This talk.

More basic question: Can the foundational Equivalence
Problem of invariant theory (cf. Klein’s Erlangen program)
be solved explicitly?

Yes, in some fundamental special cases, including the one
that was the focus of Hilbert’s paper. This talk.
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The Equivalence Problem

Let V be an n-dimensional representation of G = SLm(C).
Let v = (v1, . . . , vn) be the coordinate functions of V .
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The Equivalence Problem

Let V be an n-dimensional representation of G = SLm(C).
Let v = (v1, . . . , vn) be the coordinate functions of V .

Call a polynomial f(v) ∈ C[V ] invariant if f(σ−1v) = f(v) for all
σ ∈ G. Let C[V ]G ⊆ C[V ] denote the sub-ring of invariants.
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Call a polynomial f(v) ∈ C[V ] invariant if f(σ−1v) = f(v) for all
σ ∈ G. Let C[V ]G ⊆ C[V ] denote the sub-ring of invariants.

Call two points v, w ∈ V equivalent if for every invariant
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Let V be an n-dimensional representation of G = SLm(C).
Let v = (v1, . . . , vn) be the coordinate functions of V .

Call a polynomial f(v) ∈ C[V ] invariant if f(σ−1v) = f(v) for all
σ ∈ G. Let C[V ]G ⊆ C[V ] denote the sub-ring of invariants.

Call two points v, w ∈ V equivalent if for every invariant
f ∈ C[V ], f(v) = f(w), which is so iff Gv ∩ Gw 6= ∅.

The Problem EQUIVALENCE: Given V and G, and two
(rational) points v and w, decide if they are equivalent.
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The Equivalence Problem

Let V be an n-dimensional representation of G = SLm(C).
Let v = (v1, . . . , vn) be the coordinate functions of V .

Call a polynomial f(v) ∈ C[V ] invariant if f(σ−1v) = f(v) for all
σ ∈ G. Let C[V ]G ⊆ C[V ] denote the sub-ring of invariants.

Call two points v, w ∈ V equivalent if for every invariant
f ∈ C[V ], f(v) = f(w), which is so iff Gv ∩ Gw 6= ∅.

The Problem EQUIVALENCE: Given V and G, and two
(rational) points v and w, decide if they are equivalent.

The basic problem in Klein’s Erlangen program.
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The history of EQUIVALENCE

(1) Hilbert [1890]: C[V ]G is finitely generated
(non-constructive proof). This implies that EQUIVALENCE
has a finite (non-uniform) circuit. “Mythology” [Gordon].
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(non-constructive proof). This implies that EQUIVALENCE
has a finite (non-uniform) circuit. “Mythology” [Gordon].

(2) Hilbert [1893]: An algorithm for constructing a finite set of
generators for C[V ]G. This implies that EQUIVALENCE is
decidable. This was not known before Hilbert even for m = 3.
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(2) Hilbert [1893]: An algorithm for constructing a finite set of
generators for C[V ]G. This implies that EQUIVALENCE is
decidable. This was not known before Hilbert even for m = 3.

(3) Popov [1982]: Explicit upper bound on the running time
of Hilbert’s algorithm.
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The history of EQUIVALENCE

(1) Hilbert [1890]: C[V ]G is finitely generated
(non-constructive proof). This implies that EQUIVALENCE
has a finite (non-uniform) circuit. “Mythology” [Gordon].

(2) Hilbert [1893]: An algorithm for constructing a finite set of
generators for C[V ]G. This implies that EQUIVALENCE is
decidable. This was not known before Hilbert even for m = 3.

(3) Popov [1982]: Explicit upper bound on the running time
of Hilbert’s algorithm.

(4) Derksen[2001]: EQUIVALENCE is in PSPACE. The
bound is the same even for constant m.
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EQUIVALENCE is in DET for constant m

Theorem [GCT5]: EQUIVALENCE is in DET ⊆ NC ⊆ P if m

is constant.
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EQUIVALENCE is in DET for constant m

Theorem [GCT5]: EQUIVALENCE is in DET ⊆ NC ⊆ P if m

is constant.
History: m is constant

GCT5[2012]: Belongs to DET. 

Derksen[2001]; Grobner basis theory [Mayr et al. 2011]: Belongs to  PSPACE

Popov[1982]: An explicit upper bound on the time

Hilbert[1893]: Decidable, without an explicit upper bound on the time

Hilbert[1890]: Finite non−uniform algorithm [Mythology: Gordon]
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Towards a high-level picture of the proof

Let V be an n-dimensional representation of G = SLm(C),
and R = C[V ]G the ring of invariants. Let v = (v1, . . . , vn) be
the coordinate functions of V . Let f1, . . . , fl ∈ R be a finite set
of generators of R (which exists by Hilbert).
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Towards a high-level picture of the proof

Let V be an n-dimensional representation of G = SLm(C),
and R = C[V ]G the ring of invariants. Let v = (v1, . . . , vn) be
the coordinate functions of V . Let f1, . . . , fl ∈ R be a finite set
of generators of R (which exists by Hilbert).

Defn [GCT5]: We say that an explicit FFT (First
Fundamental Theorem) holds for R if there exists a
poly(n,m)-time computable circuit C (with rational constants)
over the variables v and an auxiliary set x = (x1, . . . , xl),
l = poly(n), of variables such that the polynomial C(v, x)

computed by this circuit can be expressed as
C(v, x) =

∑
α fα(v)xα, where fα(v)’s generate the ring R.
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Towards a high-level picture of the proof

Let V be an n-dimensional representation of G = SLm(C),
and R = C[V ]G the ring of invariants. Let v = (v1, . . . , vn) be
the coordinate functions of V . Let f1, . . . , fl ∈ R be a finite set
of generators of R (which exists by Hilbert).

Defn [GCT5]: We say that an explicit FFT (First
Fundamental Theorem) holds for R if there exists a
poly(n,m)-time computable circuit C (with rational constants)
over the variables v and an auxiliary set x = (x1, . . . , xl),
l = poly(n), of variables such that the polynomial C(v, x)

computed by this circuit can be expressed as
C(v, x) =

∑
α fα(v)xα, where fα(v)’s generate the ring R.

The number of fα’s can be exponential.
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Example 1: The ring of vector invariants

Let V = (Cm)⊕r, with the left action of G = SLm(C). Let Z be
a variable m × r matrix whose entries are coordinates of V .
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Example 1: The ring of vector invariants

Let V = (Cm)⊕r, with the left action of G = SLm(C). Let Z be
a variable m × r matrix whose entries are coordinates of V .

First Fundamental Theorem (Weyl): The ring C[V ]G is
generated by the principle m × m minors of Z.
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Example 1: The ring of vector invariants

Let V = (Cm)⊕r, with the left action of G = SLm(C). Let Z be
a variable m × r matrix whose entries are coordinates of V .

First Fundamental Theorem (Weyl): The ring C[V ]G is
generated by the principle m × m minors of Z.

Let Z1, . . . , Zr denote the columns of Z. Let x = {xij},
1 ≤ i ≤ m, 1 ≤ j ≤ r, be a set of auxiliary variables. Let
F (Z, x) = det([

∑
j x1,jZj , . . . ,

∑
j xm,jZj ]).
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Example 1: The ring of vector invariants

Let V = (Cm)⊕r, with the left action of G = SLm(C). Let Z be
a variable m × r matrix whose entries are coordinates of V .

First Fundamental Theorem (Weyl): The ring C[V ]G is
generated by the principle m × m minors of Z.

Let Z1, . . . , Zr denote the columns of Z. Let x = {xij},
1 ≤ i ≤ m, 1 ≤ j ≤ r, be a set of auxiliary variables. Let
F (Z, x) = det([

∑
j x1,jZj , . . . ,

∑
j xm,jZj ]).

Then the coefficients of F (Z, x), considered as a polynomial
in x, generate the ring C[V ]G. Furthermore, the polynomial
F (Z, x) has a small poly(m, r)-time computable circuit.
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Example 2: The ring of matrix invariants

Let V = Mm(C)r, with the adjoint action of G = SLm(C). Let
U = (U1, . . . , Ur) be a tuple of m × m variable matrices whose
entries are coordinate functions of V .
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Example 2: The ring of matrix invariants

Let V = Mm(C)r, with the adjoint action of G = SLm(C). Let
U = (U1, . . . , Ur) be a tuple of m × m variable matrices whose
entries are coordinate functions of V .

First Fundamental Theorem [Procesi-Razmyslov]: The ring
C[V ]G is generated by traces of the form trace(Ui1 · · ·Uil),
l ≤ m2, i1, . . . , il ∈ [r].
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Example 2: The ring of matrix invariants

Let V = Mm(C)r, with the adjoint action of G = SLm(C). Let
U = (U1, . . . , Ur) be a tuple of m × m variable matrices whose
entries are coordinate functions of V .

First Fundamental Theorem [Procesi-Razmyslov]: The ring
C[V ]G is generated by traces of the form trace(Ui1 · · ·Uil),
l ≤ m2, i1, . . . , il ∈ [r].

Let y = (y1, . . . , yl) be a set of auxiliary variables. Let
Fl(U, y) = trace(

∏l
j=1

(
∑r

i=1
yi
jUi)). It follows that the

coefficients of Fl(U, y)’s, 1 ≤ l ≤ m2, considered as
polynomials in y, generate C[V ]G. Furthermore, Fl(U, y)’s
have small poly(m, r)-time computable circuits.
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Example 2: The ring of matrix invariants

Let V = Mm(C)r, with the adjoint action of G = SLm(C). Let
U = (U1, . . . , Ur) be a tuple of m × m variable matrices whose
entries are coordinate functions of V .

First Fundamental Theorem [Procesi-Razmyslov]: The ring
C[V ]G is generated by traces of the form trace(Ui1 · · ·Uil),
l ≤ m2, i1, . . . , il ∈ [r].

Let y = (y1, . . . , yl) be a set of auxiliary variables. Let
Fl(U, y) = trace(

∏l
j=1

(
∑r

i=1
yi
jUi)). It follows that the

coefficients of Fl(U, y)’s, 1 ≤ l ≤ m2, considered as
polynomials in y, generate C[V ]G. Furthermore, Fl(U, y)’s
have small poly(m, r)-time computable circuits. Such circuits
are called ROABP’s [FS2012].
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Explicit FFT for constant m

Let V be any n-dimensional representation of G = SLm(C), m

constant, with coordinate functions v = (v1, . . . , vn).

The GCT chasm II – p. 11



Explicit FFT for constant m

Let V be any n-dimensional representation of G = SLm(C), m

constant, with coordinate functions v = (v1, . . . , vn).

Call a circuit C(x), x = (x1, . . . , xl), a diagonal depth three
circuit if it computes a polynomial of the form

∑s
i=1

li(x)di,
where li(x) are linear functions in x.
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Explicit FFT for constant m

Let V be any n-dimensional representation of G = SLm(C), m

constant, with coordinate functions v = (v1, . . . , vn).

Call a circuit C(x), x = (x1, . . . , xl), a diagonal depth three
circuit if it computes a polynomial of the form

∑s
i=1

li(x)di,
where li(x) are linear functions in x.

Theorem [GCT5]: Explicit FFT holds for C[V ]G if m is
constant.
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Explicit FFT for constant m

Let V be any n-dimensional representation of G = SLm(C), m

constant, with coordinate functions v = (v1, . . . , vn).

Call a circuit C(x), x = (x1, . . . , xl), a diagonal depth three
circuit if it computes a polynomial of the form

∑s
i=1

li(x)di,
where li(x) are linear functions in x.

Theorem [GCT5]: Explicit FFT holds for C[V ]G if m is
constant.

More strongly, one can compute in poly(n,m) time a diagonal
depth three circuit C(v, x) (considered as a polynomial in x

with coefficients in C[V ]), such that the coefficients of C(v, x),
considered as a polynomial in x as above, generate C[V ]G.
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Proof ingredients

Geometric invariant theory: Cayley; Hilbert; Mumford;
Popov; Derksen.
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Algebraic complexity theory: Strassen; Valiant et al.;
Csanky; Malod, Portier; ..
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Proof ingredients

Geometric invariant theory: Cayley; Hilbert; Mumford;
Popov; Derksen.

Standard monomial theory: Doubillet, Rota, Stein; ...

Algebraic complexity theory: Strassen; Valiant et al.;
Csanky; Malod, Portier; ..

Basic proof idea: Efficient implementation of the Raynold’s
operator (in the form of Cayley’s Ω-process) and efficient
implementation of standard monomial theory via algebraic
complexity theory.
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The high level proof

Theorem [recall]: EQUIVALENCE is in DET if m is constant
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The high level proof

Theorem [recall]: EQUIVALENCE is in DET if m is constant

(1): By the explicit FFT for constant m, we can compute fast
(using a DET-algorithm) a diagonal depth three circuit C(v, x)

such that the coefficients of C(v, x), considered as a
polynomial in x over the ring C[V ], generate C[V ]G.
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The high level proof

Theorem [recall]: EQUIVALENCE is in DET if m is constant

(1): By the explicit FFT for constant m, we can compute fast
(using a DET-algorithm) a diagonal depth three circuit C(v, x)

such that the coefficients of C(v, x), considered as a
polynomial in x over the ring C[V ], generate C[V ]G.

(2): [The basic connection between EQUIVALENCE and
Polynomial Identity Testing (PIT)]: This implies that, given
two points a, b ∈ V , a and b are equivalent iff C(a, x) − C(b, x)

is identically zero as a polynomial.
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The high level proof

Theorem [recall]: EQUIVALENCE is in DET if m is constant

(1): By the explicit FFT for constant m, we can compute fast
(using a DET-algorithm) a diagonal depth three circuit C(v, x)

such that the coefficients of C(v, x), considered as a
polynomial in x over the ring C[V ], generate C[V ]G.

(2): [The basic connection between EQUIVALENCE and
Polynomial Identity Testing (PIT)]: This implies that, given
two points a, b ∈ V , a and b are equivalent iff C(a, x) − C(b, x)

is identically zero as a polynomial.

(3): Polynomial identity testing (white-box) for diagonal depth
three circuits is in DET : Arvind, Joglekar, Srinivasan [2009].
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The problem NNL for invariant rings

Let V be an n-dimensional representation of G = SLm(C).
Let R = C[V ]G be the invariant ring.
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The problem NNL for invariant rings

Let V be an n-dimensional representation of G = SLm(C).
Let R = C[V ]G be the invariant ring.

Noether’s Normalization Lemma: There exists a small
homogeneous S ⊆ R of poly(n) cardinality such that R is
integral over the subring generated by S. (A random small S

works).
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Noether’s Normalization Lemma: There exists a small
homogeneous S ⊆ R of poly(n) cardinality such that R is
integral over the subring generated by S. (A random small S

works).

The problem NNL for R: Construct such a small S, given V

and G in the standard specification.
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The problem NNL for invariant rings

Let V be an n-dimensional representation of G = SLm(C).
Let R = C[V ]G be the invariant ring.

Noether’s Normalization Lemma: There exists a small
homogeneous S ⊆ R of poly(n) cardinality such that R is
integral over the subring generated by S. (A random small S

works).

The problem NNL for R: Construct such a small S, given V

and G in the standard specification.

We say that NNL for R is derandomized if such a small S

can be constructed explicitly (in poly(n,m) time) given V and
G in the standard representation.
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The significance of derandomizing NNL: I

The wild problem of representation theory: Classify G-orbits
in V “explicitly”.
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The wild problem of representation theory: Classify G-orbits
in V “explicitly”.

Given v ∈ V , let [v] denote the class of points equivalent to v.
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The significance of derandomizing NNL: I

The wild problem of representation theory: Classify G-orbits
in V “explicitly”.

Given v ∈ V , let [v] denote the class of points equivalent to v.

Coarser Moduli problem [cf. Mumford] (cf. Klein’s program):
Classify the equivalence classes [v] “explicitly”.
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The significance of derandomizing NNL: I

The wild problem of representation theory: Classify G-orbits
in V “explicitly”.

Given v ∈ V , let [v] denote the class of points equivalent to v.

Coarser Moduli problem [cf. Mumford] (cf. Klein’s program):
Classify the equivalence classes [v] “explicitly”.

Derandomization of NNL implies an explicit solution to this
problem.
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The significance of derandomizing NNL: I

The wild problem of representation theory: Classify G-orbits
in V “explicitly”.

Given v ∈ V , let [v] denote the class of points equivalent to v.

Coarser Moduli problem [cf. Mumford] (cf. Klein’s program):
Classify the equivalence classes [v] “explicitly”.

Derandomization of NNL implies an explicit solution to this
problem.

How?: Next.
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The significance of derandomizing NNL: II

Suppose NNL for R = C[V ]G can be derandomized.
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The significance of derandomizing NNL: II

Suppose NNL for R = C[V ]G can be derandomized.

Let S = {s1, . . . , sl} ⊆ R, l = poly(m,n), be an explicit small
poly(n,m)-time computable subset such that R is integral
over the subring generated by S.
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The significance of derandomizing NNL: II

Suppose NNL for R = C[V ]G can be derandomized.

Let S = {s1, . . . , sl} ⊆ R, l = poly(m,n), be an explicit small
poly(n,m)-time computable subset such that R is integral
over the subring generated by S.

We assume that each element si of S is represented by a
circuit (with rational constants) over the coordinates
v = (v1, . . . , vn) of V .

The GCT chasm II – p. 16



The significance of derandomizing NNL: II

Suppose NNL for R = C[V ]G can be derandomized.

Let S = {s1, . . . , sl} ⊆ R, l = poly(m,n), be an explicit small
poly(n,m)-time computable subset such that R is integral
over the subring generated by S.

We assume that each element si of S is represented by a
circuit (with rational constants) over the coordinates
v = (v1, . . . , vn) of V .

Let πS : V → C
l denote the map v → (s1(v), . . . , sl(v)).
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The significance of derandomizing NNL: II

Suppose NNL for R = C[V ]G can be derandomized.

Let S = {s1, . . . , sl} ⊆ R, l = poly(m,n), be an explicit small
poly(n,m)-time computable subset such that R is integral
over the subring generated by S.

We assume that each element si of S is represented by a
circuit (with rational constants) over the coordinates
v = (v1, . . . , vn) of V .

Let πS : V → C
l denote the map v → (s1(v), . . . , sl(v)).

If S is explicit, then the map πS is also explicit (i.e., can be
computed in polynomial time on rational v’s).
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The significance of derandomizing NNL: III

FACT: (1): The image of πS : V → C
l is a closed subvariety of

C
l.
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The significance of derandomizing NNL: III

FACT: (1): The image of πS : V → C
l is a closed subvariety of

C
l.

(2): The points of V/G[S] := Image(πS) are in one-to-one
correspondence with the equivalences classes [v].
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The significance of derandomizing NNL: III

FACT: (1): The image of πS : V → C
l is a closed subvariety of

C
l.

(2): The points of V/G[S] := Image(πS) are in one-to-one
correspondence with the equivalences classes [v].

(3): This implies explicit classification (parametrization) of
[v]’s because the map πS is polynomial-time-computable on
rational points.
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The significance of derandomizing NNL: III

FACT: (1): The image of πS : V → C
l is a closed subvariety of

C
l.

(2): The points of V/G[S] := Image(πS) are in one-to-one
correspondence with the equivalences classes [v].

(3): This implies explicit classification (parametrization) of
[v]’s because the map πS is polynomial-time-computable on
rational points.

In contrast, the Hilbert-Mumford map πV/G : V → C
k given by

v → (f1(v), . . . , fk(v)), where F = {f1, . . . , fk} is a generating
set of C[V ]G, is not explicit.
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The NNL for V/G for constant m

Theorem 2 [GCT5]: The NNL for V/G is in quasi-DET if m is
constant.
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The NNL for V/G for constant m

Theorem 2 [GCT5]: The NNL for V/G is in quasi-DET if m is
constant.

Follows from geometric invariant theory, explicit FFT for
constant m (the earlier theorem), and quasi-black-box
derandomization of PIT for diagonal depth three circuits
[Shpilka-Volkovitch 2009; Agrawal-Saha-Saxena 2012].
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The ring of matrix invariants

Let V = Mm(C)r with the adjoint action of G = SLm(C).
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The ring of matrix invariants

Let V = Mm(C)r with the adjoint action of G = SLm(C).

Theorem1 [GCT5] The NNL for V/G can be derandomized if
Symbolic Determinant Identity Testing has black-box
derandomization.
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The ring of matrix invariants

Let V = Mm(C)r with the adjoint action of G = SLm(C).

Theorem1 [GCT5] The NNL for V/G can be derandomized if
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The ring of matrix invariants

Let V = Mm(C)r with the adjoint action of G = SLm(C).

Theorem1 [GCT5] The NNL for V/G can be derandomized if
Symbolic Determinant Identity Testing has black-box
derandomization.

Theorem2 [Forbes and Shpilka 2012] PIT for ROABP has
black-box derandomization.

Variant of Theorem 1 for ROABP’s, in conjunction with
Theorem 2, implies:

Theorem: NNL for V/G can be quasi-derandomized
unconditionally.
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Consequence in the context of wild problems

Theorem: The equivalence classes [v], v ∈ Mm(C), can be
parametrized quasi-explicitly.
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Consequence in the context of wild problems

Theorem: The equivalence classes [v], v ∈ Mm(C), can be
parametrized quasi-explicitly.

In contrast, classifying the G-orbits Gv’s, G = SLm(C), is the
wild problem of representation theory.

Conjecture [GCT5]: Explicit FFT holds for arbitrary V/G, and
NNL can also be derandomized for any V/G.

The fundamental difference between V/G and ∆[det,m]:
∆[det,m] has conjecturally bad exterior points. In contrast, by
Hilbert-Mumford, the map πV/G : V → V/G is surjective. So
provably it has no exterior points.
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The GCT program

GCT6: An approach to cross the GCT chasm via a series of
intermediate upper bound problems in algebraic geometry
and representation theory, such as:
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and representation theory, such as:

The KRONECKER problem: Given three partitions α, β, λ

decide if the Kronecker coefficient kλ
α,β is non-zero.

Conjecture [GCT6]: KRONECKER is in P, if α, β and λ are
given in binary, and in DET if they are given in unary.
Furthermore, kλ

α,β has a positive (#P -) formula.
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The GCT program

GCT6: An approach to cross the GCT chasm via a series of
intermediate upper bound problems in algebraic geometry
and representation theory, such as:

The KRONECKER problem: Given three partitions α, β, λ

decide if the Kronecker coefficient kλ
α,β is non-zero.

Conjecture [GCT6]: KRONECKER is in P, if α, β and λ are
given in binary, and in DET if they are given in unary.
Furthermore, kλ

α,β has a positive (#P -) formula.

The next session on Kronecker coefficients and positivity.
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Thank you.
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