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The main reference

GCT5 [M.]: Geometric Complexity Theory V: Equivalence
between black-box derandomization of polynomial identity
testing and derandomization of Noether’s Normalization
Lemma

Abstract: FOCS 2012.

Full version: Arxiv and the home page.
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The beginning of GCT

Theorem:[M., 1993] The MAXFLOW problem cannot be
solved in the PRAM model without bit operations in
polylog(N) time using poly(N) processors, where N denotes
the total bit-length of the input.
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polylog(N) time using poly(N) processors, where N denotes
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The only known non-trivial implication of the fundamental
uniform Boolean P 6= NC conjecture that can be proved
unconditionally in a model of computation in which the
determinant can be computed efficiently.

The GCT chasm I – p. 3



The beginning of GCT

Theorem:[M., 1993] The MAXFLOW problem cannot be
solved in the PRAM model without bit operations in
polylog(N) time using poly(N) processors, where N denotes
the total bit-length of the input.

The only known non-trivial implication of the fundamental
uniform Boolean P 6= NC conjecture that can be proved
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The proof is geometric and goes via upper bound
techniques [the flip].
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The beginning of GCT

Theorem:[M., 1993] The MAXFLOW problem cannot be
solved in the PRAM model without bit operations in
polylog(N) time using poly(N) processors, where N denotes
the total bit-length of the input.

The only known non-trivial implication of the fundamental
uniform Boolean P 6= NC conjecture that can be proved
unconditionally in a model of computation in which the
determinant can be computed efficiently.

The proof is geometric and goes via upper bound
techniques [the flip].

Why is improving on this lower bound so difficult? This talk.
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The permanent vs. determinant problem

Conjecture [Valiant 1979]: The permanent of an n× n

variable matrix X cannot be expressed as a symbolic
determinant of size m, i.e., as the determinant of an m×m

matrix whose entries are linear functions of the entries of X,
if m = poly(n).
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The permanent vs. determinant problem

Conjecture [Valiant 1979]: The permanent of an n× n

variable matrix X cannot be expressed as a symbolic
determinant of size m, i.e., as the determinant of an m×m

matrix whose entries are linear functions of the entries of X,
if m = poly(n).

Almost equivalently: VP 6= VNP.

Stronger conjecture:[GCT1: M., Sohoni; 2001] The
permanent of an n× n variable matrix X cannot be
approximated infinitesimally closely by symbolic
determinants of O(poly(n)) or even O(2nǫ

) size, for some
small enough constant ǫ > 0.
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The main result

Theorem [GCT5]: The stronger GCT1-conjecture implies
that the problem (NNL) of derandomizing Noether’s
Normalization Lemma for the orbit closure of the
determinant can be brought down from EXPSPACE, where it
currently is, to DET ⊆ P , up to quasi-prefix.

The GCT chasm I – p. 5



The main result

Theorem [GCT5]: The stronger GCT1-conjecture implies
that the problem (NNL) of derandomizing Noether’s
Normalization Lemma for the orbit closure of the
determinant can be brought down from EXPSPACE, where it
currently is, to DET ⊆ P , up to quasi-prefix.

Where NNL currently is.

The GCT Chasm

DET

EXPSPACE
NNL 

EXP

PSPACE

P

 Where NNL should be.
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What if the GCT chasm cannot be crossed?

Theorem:
Suppose NNL is not in SUBEXP.
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What if the GCT chasm cannot be crossed?

Theorem:
Suppose NNL is not in SUBEXP.

Then assuming GRH and robustness of Valiant’s conjecture
(i.e., (V NP 6= V P ) =⇒ (V NP 6⊆ V P )):
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What if the GCT chasm cannot be crossed?

Theorem:
Suppose NNL is not in SUBEXP.

Then assuming GRH and robustness of Valiant’s conjecture
(i.e., (V NP 6= V P ) =⇒ (V NP 6⊆ V P )):

(1) NP ⊆ P/poly.
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What if the GCT chasm cannot be crossed?

Theorem:
Suppose NNL is not in SUBEXP.

Then assuming GRH and robustness of Valiant’s conjecture
(i.e., (V NP 6= V P ) =⇒ (V NP 6⊆ V P )):

(1) NP ⊆ P/poly.

(2) The polynomial hierarchy collapses to the second level.
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What if the GCT chasm cannot be crossed?

Theorem:
Suppose NNL is not in SUBEXP.

Then assuming GRH and robustness of Valiant’s conjecture
(i.e., (V NP 6= V P ) =⇒ (V NP 6⊆ V P )):

(1) NP ⊆ P/poly.

(2) The polynomial hierarchy collapses to the second level.

[Under stronger assumptions, P 6= BPP .]
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Outline of the talk
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(1) Reformulation in terms of the orbit closures.
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(1) Reformulation in terms of the orbit closures.

(2) The complexity theoretic and representation theoretic
evidence for why the orbit closure of the determinant
contains points that do not have small circuits.
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(3) The problem (NNL) of derandomizing Nother’s
Normalization Lemma for the orbit closure.
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Outline of the talk

(1) Reformulation in terms of the orbit closures.

(2) The complexity theoretic and representation theoretic
evidence for why the orbit closure of the determinant
contains points that do not have small circuits.

(3) The problem (NNL) of derandomizing Nother’s
Normalization Lemma for the orbit closure.

(4) Why its current complexity is so high (EXPSPACE).

(5) Why stengthened perm vs. det brings it to (quasi)-DET.

(6) Evidence for it may not be possible to cross the chasm.

The GCT chasm I – p. 7



The orbit closures

Let V = Cm[Y ] be the space of homogeneous polynomials of
degree m in the entries of a variable m×m matrix Y with the
action of G = GLm2(C) that maps f(Y ) ∈ V to f(σ−1Y ) for any
σ ∈ G (thinking of Y as an m2-vector).
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Let V = Cm[Y ] be the space of homogeneous polynomials of
degree m in the entries of a variable m×m matrix Y with the
action of G = GLm2(C) that maps f(Y ) ∈ V to f(σ−1Y ) for any
σ ∈ G (thinking of Y as an m2-vector).

Let P (V ) be the projective space associated with V , and let
g = det(Y ) ∈ P (V ). Define the orbit closure of the
determinant as ∆[det,m] = Gg ⊆ P (V ).
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The orbit closures

Let V = Cm[Y ] be the space of homogeneous polynomials of
degree m in the entries of a variable m×m matrix Y with the
action of G = GLm2(C) that maps f(Y ) ∈ V to f(σ−1Y ) for any
σ ∈ G (thinking of Y as an m2-vector).

Let P (V ) be the projective space associated with V , and let
g = det(Y ) ∈ P (V ). Define the orbit closure of the
determinant as ∆[det,m] = Gg ⊆ P (V ).

Let X be the lower-right n× n sub-matrix of Y , and z any
element of Y outside X. Let f(Y ) = zm−nperm(X) ∈ P (V ),
and define the orbit closure of the permanent as
∆[perm, n,m] = Gf ⊆ P (V ).
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The reformulation in terms of orbit closures

The stronger permanent vs. determinant conjecture is now
equivalent to:

Conjecture [GCT1]: ∆[perm, n,m] 6⊆ ∆[det,m] if m = poly(n),
or more generally, O(2nǫ

), for a small enough ǫ > 0.

The GCT chasm I – p. 9



The reformulation in terms of orbit closures

The stronger permanent vs. determinant conjecture is now
equivalent to:

Conjecture [GCT1]: ∆[perm, n,m] 6⊆ ∆[det,m] if m = poly(n),
or more generally, O(2nǫ

), for a small enough ǫ > 0.

The main difference between the original Valiant’s
conjecture and this conjecture: The original conjecture is a
statement about the constructible set Mm2(C) · det(Y ) ⊆ V ,
whereas this conjecture is a statement about the variety
which is its closure.
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The reformulation in terms of orbit closures

The stronger permanent vs. determinant conjecture is now
equivalent to:

Conjecture [GCT1]: ∆[perm, n,m] 6⊆ ∆[det,m] if m = poly(n),
or more generally, O(2nǫ

), for a small enough ǫ > 0.

The main difference between the original Valiant’s
conjecture and this conjecture: The original conjecture is a
statement about the constructible set Mm2(C) · det(Y ) ⊆ V ,
whereas this conjecture is a statement about the variety
which is its closure.

The basic principle of algebraic geometry: The difficulty of a
constructible set is controlled by what lies on its border.
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What lies on the border of G · det(Y )?

Defn: A family of points {pm}, pm ∈ ∆[det,m], is called a
family of bad exterior points if {pm} 6∈ V P (i.e., pm cannot be
computed by a small circuit over C).
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What lies on the border of G · det(Y )?

Defn: A family of points {pm}, pm ∈ ∆[det,m], is called a
family of bad exterior points if {pm} 6∈ V P (i.e., pm cannot be
computed by a small circuit over C).

Fact: Assuming GCT1-conjecture, such a family is
VNP-intermediate. If there did not exist VNP-intermediate
polynomials, such bad exterior points could not exist. But
VNP-intermediate polynomials exist [Bürgisser] (failure of
dichotomy).
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VNP-intermediate. If there did not exist VNP-intermediate
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VNP-intermediate polynomials exist [Bürgisser] (failure of
dichotomy).

Conjecture: ∆[det,m] has bad exterior points.

The GCT chasm I – p. 10



What lies on the border of G · det(Y )?

Defn: A family of points {pm}, pm ∈ ∆[det,m], is called a
family of bad exterior points if {pm} 6∈ V P (i.e., pm cannot be
computed by a small circuit over C).

Fact: Assuming GCT1-conjecture, such a family is
VNP-intermediate. If there did not exist VNP-intermediate
polynomials, such bad exterior points could not exist. But
VNP-intermediate polynomials exist [Bürgisser] (failure of
dichotomy).

Conjecture: ∆[det,m] has bad exterior points.

Next: The complexity-theoretic evidence and natural
(constructive) candidates from representation theory.
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Newton degeneration

Given any symbolic matrix Z of size m = poly(n) over the
variables z1, . . . , zn, let Newton(Z) be the Newton polytope of
det(Z) =

∑
α cαz

α. Given any face F ⊆ Newton(Z), let
detF (Z) =

∑
α∈F cαz

α. Call it the Newton degeneration of
det(Z) associated with the face F .
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Fact: detF (Z) ∈ ∆[det,m] for any F and Z as above.
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α. Given any face F ⊆ Newton(Z), let
detF (Z) =

∑
α∈F cαz

α. Call it the Newton degeneration of
det(Z) associated with the face F .

Fact: detF (Z) ∈ ∆[det,m] for any F and Z as above.

(1) Qiao: Every Newton degeneration of the Tutte
polynomial associated with the Edmonds perfect matching
polytope of any non-bipartite graph has a small circuit.
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Newton degeneration

Given any symbolic matrix Z of size m = poly(n) over the
variables z1, . . . , zn, let Newton(Z) be the Newton polytope of
det(Z) =

∑
α cαz

α. Given any face F ⊆ Newton(Z), let
detF (Z) =

∑
α∈F cαz

α. Call it the Newton degeneration of
det(Z) associated with the face F .

Fact: detF (Z) ∈ ∆[det,m] for any F and Z as above.

(1) Qiao: Every Newton degeneration of the Tutte
polynomial associated with the Edmonds perfect matching
polytope of any non-bipartite graph has a small circuit.
(1) Fournier, Malod: The problem of deciding if xα occurs in
det(Z), given Z and α, is hard (C=P -complete).
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Newton degeneration

Given any symbolic matrix Z of size m = poly(n) over the
variables z1, . . . , zn, let Newton(Z) be the Newton polytope of
det(Z) =

∑
α cαz

α. Given any face F ⊆ Newton(Z), let
detF (Z) =

∑
α∈F cαz

α. Call it the Newton degeneration of
det(Z) associated with the face F .

Fact: detF (Z) ∈ ∆[det,m] for any F and Z as above.

(1) Qiao: Every Newton degeneration of the Tutte
polynomial associated with the Edmonds perfect matching
polytope of any non-bipartite graph has a small circuit.
(1) Fournier, Malod: The problem of deciding if xα occurs in
det(Z), given Z and α, is hard (C=P -complete).
(2) Qiao: The membership problem for Newton(Z) is P -hard.
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Newton degeneration of VP

Given any family {det(Zn)} ∈ V Ps and any sequence
{Fn ⊆ Newton(Zn)}, the family {detFn

(Zn)} is called a Newton
degeneration of {det(Zn)}. Let Newton(V Ps) ⊆ V Ps ∩ V NP be
the set of all Newton degenerations of the elements in V Ps.
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{Fn ⊆ Newton(Zn)}, the family {detFn

(Zn)} is called a Newton
degeneration of {det(Zn)}. Let Newton(V Ps) ⊆ V Ps ∩ V NP be
the set of all Newton degenerations of the elements in V Ps.

Conjecture: Newton(V Ps) 6⊆ V P . Implies existence of bad
exterior points, and is supported by complexity theory
(Edmonds, Qiao, Fournier, Malod).
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representation theory of quivers (Drozd (tame-wild
dichotomy); Gabriel; Schofield; Derksen-Weyman).
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Given any family {det(Zn)} ∈ V Ps and any sequence
{Fn ⊆ Newton(Zn)}, the family {detFn

(Zn)} is called a Newton
degeneration of {det(Zn)}. Let Newton(V Ps) ⊆ V Ps ∩ V NP be
the set of all Newton degenerations of the elements in V Ps.

Conjecture: Newton(V Ps) 6⊆ V P . Implies existence of bad
exterior points, and is supported by complexity theory
(Edmonds, Qiao, Fournier, Malod). Also supported by
representation theory of quivers (Drozd (tame-wild
dichotomy); Gabriel; Schofield; Derksen-Weyman).

To each quiver Q without oriented cycles, one can associate
using the representation theory of quivers a subclass
V Ps[Q] ⊆ V Ps.
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Newton degeneration of VP

Given any family {det(Zn)} ∈ V Ps and any sequence
{Fn ⊆ Newton(Zn)}, the family {detFn

(Zn)} is called a Newton
degeneration of {det(Zn)}. Let Newton(V Ps) ⊆ V Ps ∩ V NP be
the set of all Newton degenerations of the elements in V Ps.

Conjecture: Newton(V Ps) 6⊆ V P . Implies existence of bad
exterior points, and is supported by complexity theory
(Edmonds, Qiao, Fournier, Malod). Also supported by
representation theory of quivers (Drozd (tame-wild
dichotomy); Gabriel; Schofield; Derksen-Weyman).

To each quiver Q without oriented cycles, one can associate
using the representation theory of quivers a subclass
V Ps[Q] ⊆ V Ps. Conjecturally Newton(V Ps[Q]) 6⊆ V P , Q wild.

The GCT chasm I – p. 12



Tame vs. wild quivers

(1) Q is → (tame): V Ps[Q] consists of the single family
{det(Xn)}, where Xn is an n× n variable matrix.
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Tame vs. wild quivers

(1) Q is → (tame): V Ps[Q] consists of the single family
{det(Xn)}, where Xn is an n× n variable matrix.

(2) Q is →̂ (tame symmetric): V Ps[Q] consists of the single
family {det(Xn)}, where Xn is a 2n× 2n variable
skew-symmetric matrix. This quiver corresponds to
Edmonds’ P -theory, and Newton(V Ps[Q]) ⊆ V P [Qiao].
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Tame vs. wild quivers

(1) Q is → (tame): V Ps[Q] consists of the single family
{det(Xn)}, where Xn is an n× n variable matrix.

(2) Q is →̂ (tame symmetric): V Ps[Q] consists of the single
family {det(Xn)}, where Xn is a 2n× 2n variable
skew-symmetric matrix. This quiver corresponds to
Edmonds’ P -theory, and Newton(V Ps[Q]) ⊆ V P [Qiao].

(3) Q is −→
=⇒ (wild): V Ps[Q] consists of the families {det(Zn)},

where Zn is a d× d block matrix, with d = p(n) (a fixed
polynomial), and its (i, j)-th block is the symbolic sum
x1

ijZ1 + x2

ijZ2 + x3

ijZ3, where Z1, Z2 and Z3 are n× n variable
matrices, and xk

ij ’s are variables. Newton(V Ps[Q]) ⊆ V Ps, and
conjecturally it is not in V P .
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Noether’s Normalization Lemma [Hilbert]

Lemma [NNL]: Given any projective variety X ⊆ P (Ck) of
dimension n, there exists a homogeneous linear map
ψ : C

k → C
m, m = poly(n), that induces a regular (well

defined) map on X, called a normalizing map.
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Noether’s Normalization Lemma [Hilbert]

Lemma [NNL]: Given any projective variety X ⊆ P (Ck) of
dimension n, there exists a homogeneous linear map
ψ : C

k → C
m, m = poly(n), that induces a regular (well

defined) map on X, called a normalizing map.

Any random ψ has this property for m ≥ n+ 1. But
deterministic construction of ψ (the problem NNL) is hard.
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Lemma [NNL]: Given any projective variety X ⊆ P (Ck) of
dimension n, there exists a homogeneous linear map
ψ : C

k → C
m, m = poly(n), that induces a regular (well

defined) map on X, called a normalizing map.

Any random ψ has this property for m ≥ n+ 1. But
deterministic construction of ψ (the problem NNL) is hard.

If we use the standard representations of ψ and X, then the
specification of ψ itself requires exponential space in n.
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Noether’s Normalization Lemma [Hilbert]

Lemma [NNL]: Given any projective variety X ⊆ P (Ck) of
dimension n, there exists a homogeneous linear map
ψ : C

k → C
m, m = poly(n), that induces a regular (well

defined) map on X, called a normalizing map.

Any random ψ has this property for m ≥ n+ 1. But
deterministic construction of ψ (the problem NNL) is hard.

If we use the standard representations of ψ and X, then the
specification of ψ itself requires exponential space in n. So
we only consider the case when X is an explicit variety,
such as ∆[det,m], that has a specification of bit-length
polynomial in its dimension (a circuit for the determinant).
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The problem NNL for ∆[det,m]

Let X = ∆[det,m] ⊆ P (V ), V = Cm[Y ].
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The problem NNL for ∆[det,m]

Let X = ∆[det,m] ⊆ P (V ), V = Cm[Y ].

Given an m×m matrix B, let ψB : V → C denote the linear
evaluation map that maps f(Y ) ∈ V to f(B). Given a set
B = {B1, . . . , Bl} of m×m matrices, let ψB : V → C

l denote the
map (ψB1

, . . . , ψBl
).
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Let X = ∆[det,m] ⊆ P (V ), V = Cm[Y ].

Given an m×m matrix B, let ψB : V → C denote the linear
evaluation map that maps f(Y ) ∈ V to f(B). Given a set
B = {B1, . . . , Bl} of m×m matrices, let ψB : V → C

l denote the
map (ψB1

, . . . , ψBl
).

Lemma: There exists a small set B of integer matrices of
poly(m) total bit-size such that ψB : V → C

l induces a regular
(normalizing) map on ∆[det,m] ⊆ P (V ).
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The problem NNL for ∆[det,m]

Let X = ∆[det,m] ⊆ P (V ), V = Cm[Y ].

Given an m×m matrix B, let ψB : V → C denote the linear
evaluation map that maps f(Y ) ∈ V to f(B). Given a set
B = {B1, . . . , Bl} of m×m matrices, let ψB : V → C

l denote the
map (ψB1

, . . . , ψBl
).

Lemma: There exists a small set B of integer matrices of
poly(m) total bit-size such that ψB : V → C

l induces a regular
(normalizing) map on ∆[det,m] ⊆ P (V ).

The problem NNL: Given m (specified in unary), construct a
small set B such that ψB is a normalizing map on ∆[det,m].
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The current complexity of NNL

Theorem: NNL is in EXPSPACE (Gröbner basis theory).
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Theorem: NNL is in EXPSPACE (Gröbner basis theory).

The space complexity is exponential because the dimension
of the ambient space P (V ) containing ∆[det,m] is
exponential in m.
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The current complexity of NNL

Theorem: NNL is in EXPSPACE (Gröbner basis theory).

The space complexity is exponential because the dimension
of the ambient space P (V ) containing ∆[det,m] is
exponential in m.

If we could prove that every point in ∆[det,m] has a small
circuit over C then it would follow from the existing
techniques (Heintz and Schnorr, Koiran,...) that NNL is in
PSPACE.
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The current complexity of NNL

Theorem: NNL is in EXPSPACE (Gröbner basis theory).

The space complexity is exponential because the dimension
of the ambient space P (V ) containing ∆[det,m] is
exponential in m.

If we could prove that every point in ∆[det,m] has a small
circuit over C then it would follow from the existing
techniques (Heintz and Schnorr, Koiran,...) that NNL is in
PSPACE.

The main obstacle to the existing techniques: the existence
of bad exterior (including wild) points in ∆[det,m].
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The main results

Theorem: The stronger GCT1-conjecture implies that NNL
for ∆[det,m] is in quasi-DET ⊆ quasi-P.
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The main results

Theorem: The stronger GCT1-conjecture implies that NNL
for ∆[det,m] is in quasi-DET ⊆ quasi-P.

Equivalence Theorem: There exists an exponential time
computable multilinear polynomial in n variables which
cannot be approximated infinitesimally closely by symbolic
determinants of size m = O(2nǫ

) iff (ignoring a quasi-prefix)
NNL for ∆[det,m] is in P .
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The main results

Theorem: The stronger GCT1-conjecture implies that NNL
for ∆[det,m] is in quasi-DET ⊆ quasi-P.

Equivalence Theorem: There exists an exponential time
computable multilinear polynomial in n variables which
cannot be approximated infinitesimally closely by symbolic
determinants of size m = O(2nǫ

) iff (ignoring a quasi-prefix)
NNL for ∆[det,m] is in P .

Theorem [Shallow circuits]: If there exists an exponential
time computable multilinear polynomial in n variables that
cannot be approximated infinitesimally closely by depth
three (or depth four homogeneous) circuits of size O(2n1/2+ǫ

),
for some ǫ > 0, then NNL for ∆[det,m] is in quasi-DET.
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Basic proof idea

Step 1: Polynomial time Monte-Carlo algorithm: Hilbert et al.
+ Heintz and Schnorr.
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Step 1: Polynomial time Monte-Carlo algorithm: Hilbert et al.
+ Heintz and Schnorr.

Step 2: Derandomize this algorithm using the
GCT1-conjecture in conjunction with:

(a) the Hardness vs. randomness principle:
Nisan-Wigderson and Kabanets-Impagliazzo, and

(b) efficient factorization of Multi-variate polynomials:
Kaltofen. This lies at the heart of the proof.
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Basic proof idea

Step 1: Polynomial time Monte-Carlo algorithm: Hilbert et al.
+ Heintz and Schnorr.

Step 2: Derandomize this algorithm using the
GCT1-conjecture in conjunction with:

(a) the Hardness vs. randomness principle:
Nisan-Wigderson and Kabanets-Impagliazzo, and

(b) efficient factorization of Multi-variate polynomials:
Kaltofen. This lies at the heart of the proof.

All this works only in the models in which the determinant
and multi-variate factorization can be computed efficiently.
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The GCT chasm

PSPACE

???

The GCT Chasm

DET

EXPSPACE
NNL 

Obstacles: (1) The failure of dichotomy.

(2) Newton(VP_s) is contained 
in the closure of VP_s.

is contained in the closure
(3) Newton(VP_s[Q]), Q wild,

of VP_s.

EXP

P
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Can the chasm be crossed? (contd.)

All the evidence supports that: (1) Newton(V Ps) 6⊆ V P (or
even its subexponential analogue), as conjectured, and (2)
the size of the circuit may not be beaten by the
derandomization procedures. Hence, NNL for ∆[det,m] may
not be in SUBEXP.
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All the evidence supports that: (1) Newton(V Ps) 6⊆ V P (or
even its subexponential analogue), as conjectured, and (2)
the size of the circuit may not be beaten by the
derandomization procedures. Hence, NNL for ∆[det,m] may
not be in SUBEXP.

Theorem [Recall] Then, assuming GRH and robustness of
Valiant’s conjecture, NP ⊆ P/poly and hence the polynomial
hierarchy collapses to the second level.
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Can the chasm be crossed? (contd.)

All the evidence supports that: (1) Newton(V Ps) 6⊆ V P (or
even its subexponential analogue), as conjectured, and (2)
the size of the circuit may not be beaten by the
derandomization procedures. Hence, NNL for ∆[det,m] may
not be in SUBEXP.

Theorem [Recall] Then, assuming GRH and robustness of
Valiant’s conjecture, NP ⊆ P/poly and hence the polynomial
hierarchy collapses to the second level.

Can NNL be derandomized for intemediate explicit varieties?

Yes, with implications in Klein’s Erlangen program.
Tomorrow.
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