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Distribution 𝐷! ≔ CIFAR-10
Noisy dist: 𝐷" ≔ CIFAR-10, but

w.p. 𝑝, uniformly random label

For varying 𝑝 ∈ 0, 1 :
1. Interpolate N=50K iid samples from 𝐷"
2. Evaluate test error w.r.t. 𝐷!

“Benign overfitting”: Interpolating doesn’t hurt “too much”
…but it does hurt. Far from Bayes-optimal.

What happens as 𝑁 → ∞? (while still interpolating)

Teaser

(𝑝)



For good interpolating networks: “𝑝% noisy inputs → ≈ 𝑝% noisy outputs”

This project: Study consistency implications, in simplest-possible setting



Setup:
Distribution 𝑥, 𝑦 ∼ 𝐷
Models 𝑓:𝒳 → 𝒴
Loss ℒ:ℱ → ℝ

ex: ℒ# 𝑓 = 𝐸 $,& ∼# 𝑦 − 𝑓 𝑥
(

ex: ℒ# 𝑓 = 𝐸 $,& ∼#[ 𝕝 𝑦 ≠ 𝑓 𝑥 ]

Optimal loss:    ℒ#∗ ≔ inf
*
ℒ# 𝑓

Learning Method: 𝒜 = 𝐴+, 𝐴(, … , 𝐴,, …

𝐴,: 𝒳×𝒴 , → ℱ

Consistency
Def. Consistency:
A learning method𝒜 is consistent on 
distribution 𝐷 w.r.t. loss ℒ# if

ℒ# 𝐴, 𝐷, → ℒ#∗

That is, if the outputs of 𝐴, converges to the 
optimal loss as 𝑛 → ∞.

Q: Are modern learning methods consistent?



Want to define sequence 𝐴+, 𝐴(, … , 𝐴,, …
Roughly “train a neural network, of increasing size” 

Overparameterized Limit: (model >> data)

𝐴, ≔ “Train a neural network of size 𝑠 𝑛 ≫ 𝑛, until interpolation” 

Underparameterized Limit: (model << data)

𝐴, ≔ “Train a neural network of size 𝑠 𝑛 ≪ 𝑛, until convergence” 

The Two Limits  (DNNs)

Often consistent
(sometimes provably so)

Inconsistent in “almost all” 
settings (which ones?)



Setup:
Distribution 𝐷:
𝑥 ∼ 𝑁(0, 𝐼!)
𝑦 ∼ {±1} independent of 𝑥 (𝐸 𝑦 = 𝜇 = 0.2)
Regression: MSE loss, optimal function 𝑓∗ 𝑥 = 𝜇

“Solve it with deep learning”:
Train an interpolating MLP, with MSE loss, on samples 
from 𝐷.

Does it learn (close to) the constant function?

Claim: This will fail for “all reasonable hyperparameters”.
That is, “almost all” interpolating-DNN learning methods 
are inconsistent in this setting.



Setup:
Distribution 𝐷#:
𝑥 ∼ 𝑁(0, 𝐼!)
𝑦 ∼ {±1} independent of 𝑥 (Pr 𝑦 = 1 = 𝑝)
Classification: optimal function 𝑓∗ 𝑥 = 1

Train an interpolating MLP, with MSE loss, on samples from 𝐷.

(NB: 1-nearest-neighbors would do this)

Pr 𝑦 = 1

Pr
𝑠𝑖
𝑔𝑛
(𝑓

𝑥
)
=
1 Bayes



Benign Overfitting World Distributionally-Generalizing World



Regression:
Excess risk = bias2 + variance

Consistency requires bias→ 0, variance→ 0.
Which one fails?

Empirical evidence:
Neural-nets are asymptotically unbiased

𝐸*←.!(#!) 𝑓 𝑥 → 𝐸 𝑦 𝑥]

Problem is variance.
(1-nearest-neighbors would do this too)

Bias + Variance

E 𝑦

E
𝑓(
𝑥)



Observations:

1. Negative: “Almost all” interpolating methods are 
inconsistent, in “almost all” settings with non-zero 
Bayes risk.

(MLPs, ResNets, RBF kernels,…)

2. Positive: Interpolating methods appear 
asymptotically unbiased.

Status / Open Questions
Open Questions:

1. Is there a natural definition of “almost all”?
What does consistency depend on?
(we know consistent interpolating methods exist…)

2. What separates these settings from “benign 
overfitting” in theory? Which assumptions are 
“unrealistic”?

3. Can we prove the “asymptotic unbiasedness”?

4. Is the inconsistency for some “good reason”?
(cf Distributional Generalization)



Setup (regression):
𝑥 ∼ 𝑁(0, 𝐼1)
𝑦 ∼ 𝑁 𝜇, 𝜎( , independent of 𝑥

Draw 𝑛 train samples.
Train unregularized RBF kernel for regression,
with bandwidth 𝜏(𝑛).

Q: For what choices of bandwidth 𝝉 𝒏 is this 
consistent/inconsistent?

Theory Open Question



Differences between overparameterized & underparameterized regimes?

When do neural networks fail?

Common structure of interpolating methods, to explain:
(A) inconsistency (B) asymptotic unbiasedness

Overfitting is not benign in practice… so why is it benign in theory?
Which assumptions fail, and how should we adapt them?

Motivations
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