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Machine learning is automated decision-making

Typical supervised learning problems have assumptions
that make them “easy”:
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» current actions influence future observations
» goal is to maximize some utility (reward)
» optimal actions are not provided

If ultimately ML is always about making a decision,
why don’t we treat every machine learning
problem like a reinforcement learning problem?



So why aren’t we all using RL?

Reinforcement learning is two different things:

1. Framework for learning-based decision making 2. Active, online learning algorithms for control
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almost all real-world learning problems
make it very difficult to do this
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Making RL look more like supervised learning
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Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without explicit pessimism?
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Off-policy RL

T
RL objective: max Z Es, a,~x|T(s¢t, at)]
T
t=1
action: a T
a ~ m(als) Q-function: Q™ (s¢,a;) = Z Es,, a, ~x|T(S¢r, a1 )|st, a¢
X v
| @e
o m(als) =1 if a=argmax Q" (s,a)
] a
AE. Q*(s,a) = r(s,a) + max Q*(s',a')
state: s a’
reward: r(s,a) \
This talk focuses entirely on enforce this equation at all states!

approximate dynamic programming
methods, but there are other
methods too! minimize ), (Q(ss,a;) — yi)?

minimize »_;(Q(si, a;) — [r(si, a;) + maxa Q(s], a;)])?




Why offline RL suffers from distributional shift

/ !
Q(S? a) — T(S9 a) + Ea”\'ﬂ-new [Q(S’7 a,)]
\ Y )
y(s, a)

expect good accuracy when mg(als) = mpew(als)

eVeN WoTse: Myew = arg MaXy Far(als)[@(S, )]

what is the objective?

min E s a)~rg(s,a) [(Q(S, a) — y(s, a))Q}

Q
/ \
target value

behavior policy

how often does that happen?
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Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19
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Training the Q-function to avoid OOD errors

HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
1000 30
. } — n=1000 I | — n=1000 : y A
There are many other waysto | L

address OOD actions, but thisisthe |

one I’'m going to focus on (mostly) |
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Q” — arg mén ml?x ozESND,aNM(MS) (Q(s,a)] } term to push down big Q-values

regular objective { +E(s,a,s’)wD [(Q(Sa a) o (T(Sa a) + Eﬂ' [Q(Slv a,)]))2

can show that Q™ < Q™ for large enough «

true Q-function



Learning with Q-function lower bounds
Conservative Q-learning (CQL)

A better bound: always pushes Q-values down  push up on (s, a) samples in data

) ! !

Q" = arg mén ml?x Es D a~p(als)[@(s,a)] —aE (s a)~p[Q(s, a)]

+ B asen |(Q(s,2) = (1(s,a) + B [Q(s', )]

no longer guaranteed that Q™ (s,a) < Q™ (s,a) for all (s, a)

but guaranteed that Ew(a|s)[QA“(s, a)| < Erals)|Q™ (s,a)] for all s € D
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Workflows for offline RL
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The hyperparameter problem
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T

adjust hyperparameters

model size
regularization

learning rates
pessimism parameters

Supervised learning: train/val split
Offline RL: ?7??

Standard formulation:

off-policy evaluation + model selection

- introduces its own hyperparameters

- generally a very hard problem

Key observation: to tune hyperparameters, we don’t need to
evaluate any policy, only the policies produced by our specific
offline RL method!

Can we leverage properties of a specific offline RL method
(e.g., CQL) to develop a workflow that allows selecting
hyperparameters without off-policy evaluation?
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“Overtitting” vs. “

underfitting”

Quantity  Supervised Learning

Conservative Offline RL

n‘gin « (ESND.awu(- s) {QB(S: a)] - Es.aw'D [(29(53)]) + %]Es.a.s'w'D {(QB(Sa a) - BHQ(S: a))2:

Loss L evaluated on test data, D,
Loss L evaluated on train data, Dy,

Test error
Train error

Performance of policy, -I(W]'/' (conservative Q-learning)
Objective in Equations 2, 1

Overfitting  £(Dyin) low, L(Dyq) high, D,y is
a validation set drawn 1.1.d. as Dypin
Underfitting high value of train error £(D\4in )

7 = argmax Jp(w)—aD(m, m3)
Training objective in Equation 1 is ex- "
tremely low, low value of .J ()
Training objective in Equation 1 is ex-
tremely high, low value of J ()

(abstract model of a conservative offline RL method)

Overfitting Underfitting
4 | — Policy return 5 4 — Policy return

g : Dataset Q-value o TD error/ CQL regularizer
< | c ... Optimal retumn
: ©
G I F ...................................
€ : =
3 =
5 | Z
o 1 E

| .

! # Training steps # Training stap;
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Handling “Overfitting”

Return / Q-value

-

if overfitting, these become very low
note that p ~

Overfitting Why? l

— Policy return
Dataset Q-value

~

Q" = arg mcgn mgx aFs D a~p(als)[Q(S,a)] —@E(s a)~D [Q(s,a)]

s [(Q(5.3) - (r(s.) + E[Q(s" )]

~ | |

# Trainingr steps
therefore this becomes very low! so this becomes very low!

so we get low Eg a).p[Q(s,a)]

If dataset Q-values drop, that means we have too much capacity!

We can fix this by reducing capacity or increasing regularization

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. ‘21



Handling “Overfitting”

Overfitting If dataset Q-values drop, that means we have too much capacity!
t I — Policy return
3 [\~ Dataset Q-value We can fix this by reducing capacity or increasing regularization
2 |
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Handling “Underfitting”

o

Return / Train Error

if underfitting, this is too big (so we get overestimation)

Why? \
— Policy return _ A . | }
B?}t;r-.r;rﬁ?n: regularizer QT = arg mén mﬁxx aFBgp a~p(als)|Q(s,a)] —aL s a)~D [Q(s, a)

Underfitting

+E(s,a,5')~D (Q(s,a) — (r(s,a) + E-[Q(s, al)]))ﬂ

\ l
* 1

# Training steps .. .
or this is too big
Avg Q-value vs Architecture 2 Error vs Architecture
14 Pot : CQL + ResNet
Pot: COL

— Pot : CQL + ResNet
== Pot: CQL
Drawer - COQL 4+ ResNet

s

Drawer : COL + ResNet
Drawer: CCQL

=

Metric 4.2 (Underfitting). Compute the values of the training TD error, Ltp(0) and COL
regularizer, R(0) for the current run and another identical run with increased model capacity.
If the training errors reduce with increasing model capacity, the original run was underfitting.

10 Drawer: COL
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Figure 8: Average Q-value and TD error on Sawyer
tasks as model capacity increases. Q-values increase
over training with lower capacity ruling out overfitting
and increasing model capacity leads to a reduction 1n

TD error indicating the presence of underfitting.
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Does it work?

Real-World WidowX Pick and Place: Correcting Overfitting
Method Epoch 50 | Epoch 75 | Epoch 100 | Epoch 200 . . ‘
CQL 79 419 4/9 2/9 Ave Q-value vs Architecture D Error vs Architecture
CQL + VIB 3/9 8/9 7/9 7/9 ) i e o e —— Pot : CQL + ResNet
g ]_? [’\.ll: (I{EJ E l,|_|_]:‘\- === J1|:-|: I:‘(EJ. r
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Kumar®*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. ‘21
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Questions, open problems, opportunities

Overfitting Underfitting
'y . PO"C}" return & —_ Pﬂ“ﬂy return
Dataset Q-value TD error/ CQL regularizer

Optimal return

# Training steps / # Training star!;

» We have a “workflow” that allows tuning (some) hyperparameters, but doesn’t require OPE
» It appears to work in practice, because we can get our robots to work

» It's easier than OPE, because it leverages properties of the corresponding algorithm

» It's rather heuristic

» It's not guaranteed to work every time

» Can we devise more formally justified, general, and effective workflows?

Return / Q-value
Return / Train Error

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. ‘21
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The fact that it’s a neural network matters

L 4_:|ot EE arise . . Laree f d d m Large feature dot products arise when Q-learning
out-of-sample actions are used in TD-learning rge feature dot products eventually backs up unseen actions, despite no divergence
& & ¥
compared to SARSA, despite similar Q-values correlate with divergent Q-values fo clvergence
SARSA = DOQN = Supervised
= Qut-of-sample (TD-leaming) In-sample (SARSA) |
Breakout - Astarix 600 Breakout

10

o

=&
=

“high dot product” (feature alignment) problem

2 10° «  Conclusion: if we back up out-of-sample actions (even "
0 mzr if they are not out of distribution!) we get this strange J

200

01

High dot products
Dot-product similarity

%radie:bgpda[:ségtsg_siﬁo %radie,ﬁ Updates (x 62.5k) ] Gradient |Indates (x B 5k} Frviend oventsialle [ uraalenlupca(:es{xﬁz.EzkEj:U %radienlUpLzUtes [xﬁz.szlgo
Breakout The longer we train, the worse it gets P prealout
g i:fs' 5.”‘_“ I I I e
8 2 That’s a big problem, because with deep learning, we ¢
9 5 - . . oy 2
5 £ ° want to train for a long time with lots of data! )
-E <! | = o] 0 100 200 0 100 200
0 200 400 600 O 200 400 600 I 0 500 H Gradient Updates (x 62.5k) Gradient Updates (x 62.5k)
2
. 7NT ” _ / !
high dot product = “aligned Esas)~D [(Q(s, a) — (r(s,a) + Er,[Q(s',a’)])) ]
features at consecutive steps
/ / !/ !/
Q(s',a’) where (s',a") € D “SARSA”
/
S — ;7 «— S
. ! / / !/ A «“ ”
a/'DGb(S’a) ¢(s’, &) —_— Q)(s’,a') where s’ € D,a’ ~ mg(a’ls’) “TD
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Blanc et al. (2020); Damian et al. (2021)
W h at’ S g0| N g on P, if labels corrupted with A(0,1) noise
M = 120 Vo fo(xi) Ve fo(xi)T

D ¢
R(6) = n .7 Vo fo(x)|3
when overparameterized, solution is stable only if

VoR(0%) = 0

Implicit regularization:

Ori1 < 0 —nVoL(0) + neg, e ~N(0, M)

Implicit regularization in reinforcement learning: this is a good thing!

Main result: if we follow the TD pseudo-gradient

Or+1 =0 —1n (Z VoQ(si, a;) (Qo(si, ai) — (ri+7Qa(s;, ai)))) +nek, ex ~N(0, M)

D] D|
Rro(0) =n ) VQo(si,a;) 3, VQo(si,a;)—ny > _ trace (S3,VQo(si,a:) [[VQo(s),a))T]])
i=1 \ Y : i=1 ‘ v ’
make gradient inner products small (good) make gradient inner products big (uh oh!)

balances out if (s’,a’) € D

runaway maximization if (s’,a’) ¢ D
21
Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. 21



Can we correct this problem?

1D D]
Rrp(0) =1y VQo(si,a:) " £3,/VQo(si,a)—ny Y trace (B3,VQo(si, a:) [[VQo (s}, a}) ']])
=1

'i‘,:_]_ 1=
what if we add explicit regularization to balance out the second term?

should be something like Ep[VQy(s;,a;) - VQq(s., a})] works, but expensive

S
a: D o(s,a) -w = Q(s,a)
simple hack: at last layer, Vs Qg(s,a) = ¢(s, a)

Ep[VwQo(si,a;) - VwQo(s],a))] = Ep[d(ss, a;) - ¢(s], aj)]

\ J
|

cheap & easy

22
Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. 21



Table 1: IQM normalized average performance (training stability) across 17 games, with 95% Cls in parenthe-

D t h " h ‘ ? sis, after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Individual
O e S I S e p M performances reported in Tables F.4-F.10. DR3 improves the stability over both CQL and REM.

Close-Open-Grasp (23%) Close-Crpen-Grasp (3%

L — cog Lo — ©0G
COG + DR3

COG + DR3
LA

'.‘mﬁﬂ.ﬁp
N

Data CQL CQL + DR3 REM REM + DR3

1% 43.7 (39.6. 48.6) 56.9 (52.5.61.2) 4.0 (3.3,4.8) 16.5 (14.5, 18.6)

5% 78.1 (74.5,82.4)  105.7 (101.9,1109) 259 (23.4,288)  60.2 (55.8, 65.1)

10%  59.3 (56.4,61.9) 65.8 (63.3,68.3) 53.3(514,55.3) 73.8 (69.3,78)

0a b 1% Uniform Replay 5% Uniform Replay 10% Initial Replay
@,
518.0% 75% 90%
1 B12.0% 0% 60%
00M  0IM 02M oM M oM 0N 09N 03M 04M £ y
Crushient Stegs [ 1K) Gradient Steps (x1k] .l‘§ 6.0% 25% 30% X _:_ EEE + DR3
= 0.0%
Pick-Place-Open-Grasp (25%) Pick-Place-Open-Grasp (5%) g “v” B 0% S — 0% S
— C0G - ::'tr;c ons Gradient Steps (x 62.5K) Gradient Steps (x 62.5K) Gradient Steps (x 62.5K)
EE COG + DR3 6iq 3+ -]
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= i ] z s N 8
cha E 4 - Pl .kr'[;llf @ 120% Rogaty o 2t
£ 0 g A 1"'1,."' W W ..J.q. B ST 809 .
7 . 7 121 r"'- ' 40% —s— COL +DR3
B +— CQOL
LR i 0%
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ooM  0IM 02M 0 0SM (AL 006 0IM 09N 08M 0d4M Gradient Steps (x 62.5K) Gradient Steps (x 62.5K) Gradient Steps (x 62.5K)

Circhient Steps | = 1k) Grasdient Steps (=1k)

Figure 3: Performance of DR3 + COG on
two manipulation tasks using only 5% and
25% of the data used by Singh et al. (2020)
to make these more challenging. COG +
DR3 outperforms COG in training and at-
tains higher average and final performance.

Figure 4: Normalized performance across 17 Atari games
for REM + DR3 (top), CQL + DR3 (bottom). x-axis rep-
resents gradient steps; no new data is collected. While naive
REM suffers from a degradation in performance with more
training, REM + DR3 not only remains generally stable with
more training, but also attains higher final performance. CQL
+ DR3 attains higher performance than CQL. We report IQM
with 95% stratified bootstrap Cls (Agarwal et al., 2021).

Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. 21
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Conclusions & takeaways

» Offline RL with deep networks (i.e., with
representation learning) is fundamentally
different from “shallow” RL

» It's also fundamentally different from
supervised learning!

» The “usual tricks” that work so well in
supervised learning might not lead to

great performance in RL directly

» Analyzing the effect of RL training on

representations in deep nets is important!

Large feature dot products arise when
out-of-sample actions are used in TD-learning
compared to SARSA, despite similar Q-values

Large feature dot products eventually
correlate with divergent Q-values

High dot products

Similar Q-values

= Qut-of-sample (TD-leaming) In-sample (SARSA)
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Can we just avoid all OOD actions in the Q update?

Q(s,a) «+ r(s,a) + Eafwﬁnew Q(s',a )] ’\‘/
V(' ) just another neural network j

N

V ¢+ argmin — Zf ), Q(ss,a;))

i=1 I \ MSE gives us this

_ _ v Earr,[Q(s,a)]  value of best
e.g., MSE loss (V (s;) — Q(s;, ai))Q this action comes from g p(V(s)) policy supported

not from mew ‘ by data

distribution is induced

_ 2 i
expectile: /3 (x) = { f(;j? T)z ;flsa;> 0 by actions only

— V' (s)

could another loss give us this? /
3 V(s) < ma S, a

(s) = max Q(s.a)

(Us) ={a:m(als) > €}

if we use (5 for big 7

v

Kostrikov, Nair, Levine. Offline Reinforcement Learning with Implicit Q-Learning. ‘21



Implicit Q-learning (1QL)

Q-learning with implicit policy improvement

Q(s,a) < 7(s,a) + V(s') V¢ arg min % > 05(V(s), Qlsi, ay))

Vv < :
(s) alengg;)Q(s a)

Q(s) = {a: ms(als) > )

if we use /3 for big 7

1=1

Q(s,a) < r(s,a) + max Q(s',a’)

a’'eQ(s’)
E “implicit” policy

Wnew(a|s) — 5(3- — arg max Q(Sa a))
acl(s)

Now we can do value function updates without ever risking out-of-distribution actions!

Kostrikov, Nair, Levine. Offline Reinforcement Learning with Implicit Q-Learning. ‘21
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Results

Chen et al. Decision Transformers

behavioral cloning best trajectories 1 recent (2021)

offline RL methods

behavioral cloning \ \
N\ [ \
Dataset BC  10%BC DT AWAC  OnestepRL  TD3+BC CQL QL
hallcheetah-medium-v2 126 125 126 435 184 183 .0 174
hopper-medium-v2 529 56.9 67.6 57.0 50.6 503 58.5 66.3
walker2d-medium-v2 75.3 75.0 74.0 72.4 81.8 83.7 72.5 78.3
halfcheetah-medium-replay-v2 36.6 40.6 16.6 40.5 38.1 446 455 442
hopper-medium-replay-v2 18.1 759 82.7 37.2 97.5 60.9 95.0 94.7
walker2d-medium-replay-v2 26.0 62.5 66.6 27.0 49.5 BL.B 77.2 73.9
halfcheetah-medium-expert-v2 55.2 92.9 86.8 42.8 93.4 90.7 91.6 86.7
hopper-medium-expert-v2 52.5 1109 107.6 55.8 103.3 98.0 105.4 91.5 ..
walker2d-medium-expert-v2 107.5 109 108.1 74.5 113 110.1 108.8 109.6 most methods get simi lar
locomotion-v2 total 466.7 666.2  672.6 450.7 684.6 677.4 (98.5 692.4 results to good BC
antmaze-umaze-vi 4.6 62.8 50.2 S6.7 64.3 8.6 4.0 875 ) )
antmaze-umaze-diverse-v0 456 502 53.0 493 60.7 71.4 84.0 62.2 implementations
antmaze-medium-play-v() 0.0 5.4 0.0 0.0 03 10.6 61.2 71.2
antmaze-mediom-diverse-v() 0.0 0.8 0.0 0.7 0.0 3.0 537 T0.0
antmaze-large-play-v0 0.0 0.0 0.0 0.0 0.0 0.2 15.8 306 . ep .
antmaze-large-diverse-v0 0.0 6.0 0.0 1.0 0.0 0.0 14.9 47.5 significant improvement
antmaze-vi total 100.2 1342 1122 107.7 125.3 1638 036 378.0 from methods that properly
total 566.9 800.4  784.8 558.4 809.9 841.2 1002.1  1070.4 h . .
andle compositionalit
Kitchen-v0 total 154.5 - - - - - 144.6 159.8 P y
adroit-v0 total 104.5 - - - - - 93.6 118.1
total+Hkitchen+adron 2259 - - - - - 12403 1348.3
runtime 10m 10m O60m 20m == 20m~ 20m 80m 20m
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Finetuning Comparisons

- I but | great offline Option 1: avoid ever Option 2: train the Q-
I;T’, unes \:cve » DULIOW performance, too evaluating actions that function so that OOD actions
ortline pe; ormance conservative for generally best are not in the dataset never have high values
hampers final results\ finetuning for finetuning |QL (2021) CQL (2020)
Dataset AWAC CQL IQL
antmaze-umaze-v() 56.7 — 59.0 70.1 — 994 86.7 — 96.0
antmaze-umaze-diverse-v() 493 —49.0 31.1 — 994 75.0 — 84.0
antmaze-medium-play-v( 0.0 —00 230 — 00 720 — 95.0 > cat has fewe.r hype.rpararr.leters’ cleaner
antmaze-medium-diverse-v0 || 0.7 — 0.3 230 —323 | 683 —92.0 workflows with offline tuning
antmaze-large-play-v0 0.0 —0.0 1.0 — 0.0 255 —46.0 :
antmaze-large-diverse-v() 1.0 — 0.0 1.0 — 0.0 426 — 60.7 > CQL has better th.eor.etlcal guarantees
antmaze-v0 total [07.7 — 1083 | 151.5 —231.1 | 370.1 — 473.7 » 1QL performance is slightly better
pen-binary-v() 46 — 703 312 — 99 374 — 607 : : :
door-binary-v0 13 =301 | 02 —00 |07 —323 > 1QL finetuning is much better
relocate-binary-v0 0.8 —27 0.1 —00 0.0 —31.0 » We still don’t know which principles are
hand-v0 total 46.7 — 103.1 315 —99 38.1 — 1240 going to be more effective in the Iong run
total [ 1544 = 211.4 | 182.8 —241.0 | 4082 — 597.7

29
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Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations
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