Offline Reinforcement Learning: Representations, Algorithms, and Applications

Sergey Levine UC Berkeley

Machine learning is automated decision-making

Typical supervised learning problems have assumptions that make them "easy":

- independent datapoints
- outputs don't influence future inputs
- Example: decisions made by a traffic prediction system might affect the route that people take, which changes traffic
- current actions influence future observations
- goal is to maximize some utility (reward)
- optimal actions are not provided

If ultimately ML is always about making a decision, why don't we treat every machine learning problem like a reinforcement learning problem?

So why aren't we all using RL?

Reinforcement learning is two different things:

Making RL look more like supervised learning

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

Off-policy RL

RL objective:
$$\max_{\pi} \sum_{t=1}^{T} E_{\mathbf{s}_{t},\mathbf{a}_{t}\sim\pi}[r(\mathbf{s}_{t},\mathbf{a}_{t})]$$
Q-function: $Q^{\pi}(\mathbf{s}_{t},\mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\mathbf{s}_{t'},\mathbf{a}_{t'}\sim\pi}[r(\mathbf{s}_{t'},\mathbf{a}_{t'})|\mathbf{s}_{t},\mathbf{a}_{t}]$

$$\pi(\mathbf{a}|\mathbf{s}) = 1 \text{ if } \mathbf{a} = \arg\max_{\mathbf{a}} Q^{\pi}(\mathbf{s},\mathbf{a})$$

$$Q^{\star}(\mathbf{s},\mathbf{a}) = r(\mathbf{s},\mathbf{a}) + \max_{\mathbf{a}'} Q^{\star}(\mathbf{s}',\mathbf{a}')$$
enforce this equation at all states!
$$\mininimize \sum_{i} (Q(\mathbf{s}_{i},\mathbf{a}_{i}) - [r(\mathbf{s}_{i},\mathbf{a}_{i}) + \max_{\mathbf{a}'} Q(\mathbf{s}'_{i},\mathbf{a}'_{i})])^{2}$$

$$\mininimize \sum_{i} (Q(\mathbf{s}_{i},\mathbf{a}_{i}) - y_{i})^{2}$$

T

Why offline RL suffers from distributional shift

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')$$

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{new}}[Q(\mathbf{s}', \mathbf{a}')]$$

$$y(\mathbf{s}, \mathbf{a})$$

what is the objective?

$$\min_{Q} E_{(\mathbf{s},\mathbf{a})\sim\pi_{\beta}(\mathbf{s},\mathbf{a})} \begin{bmatrix} (Q(\mathbf{s},\mathbf{a}) - y(\mathbf{s},\mathbf{a}))^2 \end{bmatrix} \\ \uparrow \\ \text{target value} \\ \text{behavior policy}$$

expect good accuracy when
$$\pi_{\beta}(\mathbf{a}|\mathbf{s}) = \pi_{\text{new}}(\mathbf{a}|\mathbf{s})$$

even worse: $\pi_{\text{new}} = \arg \max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]$

how often does *that* happen?

1000

750

500

250

-250

-500 -750 -1000

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS '19

Training the Q-function to avoid OOD errors

$$\hat{Q}^{\pi} = \arg\min_{Q} \max_{\mu} \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} [Q(\mathbf{s}, \mathbf{a})]$$
 term to push down big Q-values regular objective $-\left\{ +E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[(Q(\mathbf{s}, \mathbf{a}) - (r(\mathbf{s}, \mathbf{a}) + E_{\pi}[Q(\mathbf{s}', \mathbf{a}')]))^2 \right] \right\}$

can show that
$$\hat{Q}^{\pi} \leq Q^{\pi}$$
 for large enough α
true Q-function

Learning with Q-function lower bounds Conservative Q-learning (CQL)

A better bound: $\frac{a | ways}{p} p ushes Q-values down p ush \underline{up} on (\mathbf{s}, \mathbf{a}) samples in data$ $\hat{Q}^{\pi} = \arg \min_{Q} \max_{\mu} \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\mathbf{a} | \mathbf{s})} [Q(\mathbf{s}, \mathbf{a})] - \alpha E_{(\mathbf{s}, \mathbf{a}) \sim D} [Q(\mathbf{s}, \mathbf{a})]$ $+ E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[(Q(\mathbf{s}, \mathbf{a}) - (r(\mathbf{s}, \mathbf{a}) + E_{\pi}[Q(\mathbf{s}', \mathbf{a}')]))^2 \right]$

no longer guaranteed that $\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \leq Q^{\pi}(\mathbf{s}, \mathbf{a})$ for all (\mathbf{s}, \mathbf{a})

but guaranteed that $E_{\pi(\mathbf{a}|\mathbf{s})}[\hat{Q}^{\pi}(\mathbf{s},\mathbf{a})] \leq E_{\pi(\mathbf{a}|\mathbf{s})}[Q^{\pi}(\mathbf{s},\mathbf{a})]$ for all $\mathbf{s} \in D$

Aviral

Kumar

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

The hyperparameter problem

Offline RL: ???

Standard formulation:

off-policy evaluation + model selection

- + very widely studied
- introduces its own hyperparameters
- generally a very hard problem

Key observation: to tune hyperparameters, we don't need to evaluate **any** policy, only the policies produced by our specific offline RL method!

Can we leverage properties of a specific offline RL method (e.g., CQL) to develop a **workflow** that allows selecting hyperparameters **without** off-policy evaluation?

"Overfitting" vs. "underfitting"

Quantity	Supervised Learning	Conservative Offline RL	$\min_{\boldsymbol{\alpha}} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu} \right)$
Test error Train error	Loss \mathcal{L} evaluated on test data, \mathcal{D}_{test} Loss \mathcal{L} evaluated on train data, \mathcal{D}_{train}	Performance of policy, $J(\pi)$ Objective in Equations 2, 1	θ
Overfitting	$\mathcal{L}(\mathcal{D}_{train})$ low, $\mathcal{L}(\mathcal{D}_{val})$ high, \mathcal{D}_{val} is a validation set drawn i.i.d. as \mathcal{D}_{train}	Training objective in Equation 1 is ex- tremely low, low value of $J(\pi)$	(abstr
Underfitting	high value of train error $\mathcal{L}(\mathcal{D}_{train})$	Training objective in Equation 1 is ex- tremely high, low value of $J(\pi)$	

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. '21

so we get low
$$E_{(\mathbf{s},\mathbf{a})\sim D}[Q(\mathbf{s},\mathbf{a})]$$

If dataset Q-values drop, that means we have too much capacity!

We can fix this by **reducing** capacity or **increasing** regularization

Handling "Overfitting"

Overfitting

If dataset Q-values drop, that means we have too much capacity!

We can fix this by **reducing** capacity or **increasing** regularization

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. '21

Figure 8: Average Q-value and TD error on Sawyer tasks as model capacity increases. Q-values increase over training with lower capacity ruling out overfitting and increasing model capacity leads to a reduction in TD error indicating the presence of underfitting.

Gradient Steps

0K

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. '21

Gradient Steps

Does it work?

Real-World WidowX Pick and Place: Correcting Overfitting						
Method	Epoch 50	Epoch 75	Epoch 100	Epoch 200		
CQL	7/9	4/9	4/9	2/9		
CQL + VIB	3/9	8/9	7/9	7/9		

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. '21

Questions, open problems, opportunities

> We have a "workflow" that allows tuning (some) hyperparameters, but doesn't require OPE

- > It appears to work in practice, because we can get our robots to work
- > It's easier than OPE, because it leverages properties of the corresponding algorithm
- It's rather heuristic
- It's not guaranteed to work every time
- > Can we devise more formally justified, general, and effective workflows?

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

The fact that it's a neural network **matters**

Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. '21

Aviral

What's going on?

Implicit regularization:

$$\theta_{k+1} \leftarrow \theta_k - \eta \nabla_{\theta} L(\theta) + \eta \varepsilon_k, \ \varepsilon_k \sim \mathcal{N}(0, M)$$

Blanc et al. (2020); Damian et al. (2021)

if labels corrupted with $\mathcal{N}(0,1)$ noise

$$M = \sum_{i=1}^{|\mathcal{D}|} \nabla_{\theta} f_{\theta}(\mathbf{x}_{i}) \nabla_{\theta} f_{\theta}(\mathbf{x}_{i})^{\top}$$
$$R(\theta) = \eta \sum_{i=1}^{|\mathcal{D}|} ||\nabla_{\theta} f_{\theta}(\mathbf{x}_{i})||_{2}^{2}$$

when overparameterized, solution is stable only if

 $\nabla_{\theta} R(\theta^*) = 0$

Implicit regularization in reinforcement learning:

Main result: if we follow the TD pseudo-gradient

this is a good thing!

$$\begin{aligned} \theta_{k+1} &= \theta_k - \eta \left(\sum_i \nabla_{\theta} Q(\mathbf{s}_i, \mathbf{a}_i) \left(Q_{\theta}(\mathbf{s}_i, \mathbf{a}_i) - (r_i + \gamma Q_{\theta}(\mathbf{s}'_i, \mathbf{a}'_i)) \right) \right) + \eta \varepsilon_k, \quad \varepsilon_k \sim \mathcal{N}(0, M) \\ R_{\mathrm{TD}}(\theta) &= \eta \sum_{i=1}^{|\mathcal{D}|} \nabla_{\theta} Q_{\theta}(\mathbf{s}_i, \mathbf{a}_i)^\top \Sigma_M^* \nabla Q_{\theta}(\mathbf{s}_i, \mathbf{a}_i) - \eta \gamma \sum_{i=1}^{|\mathcal{D}|} \operatorname{trace} \left(\Sigma_M^* \nabla Q_{\theta}(\mathbf{s}_i, \mathbf{a}_i) \left[\left[\nabla Q_{\theta}(\mathbf{s}'_i, \mathbf{a}'_i)^\top \right] \right] \right) \\ & \text{make gradient inner products small (good)} & \text{make gradient inner products big (uh oh!)} \\ & \text{balances out if } (\mathbf{s}', \mathbf{a}') \in \mathcal{D} \\ & \text{runaway maximization if } (\mathbf{s}', \mathbf{a}') \notin \mathcal{D} \end{aligned}$$

Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. '21

Can we correct this problem?

$$R_{\mathrm{TD}}(\theta) = \eta \sum_{i=1}^{|\mathcal{D}|} \nabla Q_{\theta}(\mathbf{s}_{i}, \mathbf{a}_{i})^{\top} \Sigma_{M}^{*} \nabla Q_{\theta}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \eta \gamma \sum_{i=1}^{|\mathcal{D}|} \operatorname{trace} \left(\Sigma_{M}^{*} \nabla Q_{\theta}(\mathbf{s}_{i}, \mathbf{a}_{i}) \left[\left[\nabla Q_{\theta}(\mathbf{s}_{i}', \mathbf{a}_{i}')^{\top} \right] \right] \right)$$

what if we add explicit regularization to balance out the second term?

should be something like $E_{\mathcal{D}}[\nabla Q_{\theta}(\mathbf{s}_i, \mathbf{a}_i) \cdot \nabla Q_{\theta}(\mathbf{s}'_i, \mathbf{a}'_i)]$

works, but expensive

$$\mathbf{s} \rightarrow \mathbf{b} \phi(\mathbf{s}, \mathbf{a}) \cdot \mathbf{w} = Q(\mathbf{s}, \mathbf{a})$$

simple hack: at last layer, $\nabla_{\mathbf{w}}Q_{\theta}(\mathbf{s}, \mathbf{a}) = \phi(\mathbf{s}, \mathbf{a})$ $E_{\mathcal{D}}[\nabla_{\mathbf{w}}Q_{\theta}(\mathbf{s}_{i}, \mathbf{a}_{i}) \cdot \nabla_{\mathbf{w}}Q_{\theta}(\mathbf{s}'_{i}, \mathbf{a}'_{i})] = E_{\mathcal{D}}[\phi(\mathbf{s}_{i}, \mathbf{a}_{i}) \cdot \phi(\mathbf{s}'_{i}, \mathbf{a}'_{i})]$ cheap & easy

Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. '21

Does this help?

Figure 3: **Performance of DR3 + COG** on two manipulation tasks using only 5% and 25% of the data used by Singh et al. (2020) to make these more challenging. COG + DR3 outperforms COG in training and attains higher average and final performance.

Table 1: IQM normalized average performance (training stability) across 17 games, with 95% CIs in parenthesis, after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Individual performances reported in Tables F.4-F.10. DR3 improves the stability over both CQL and REM.

Data	CQL	CQL + DR3	REM	REM + DR3
1%	43.7 (39.6, 48.6)	56.9 (52.5, 61.2)	4.0 (3.3, 4.8)	16.5 (14.5, 18.6)
5%	78.1 (74.5, 82.4)	105.7 (101.9, 110.9)	25.9 (23.4, 28.8)	60.2 (55.8, 65.1)
10%	59.3 (56.4, 61.9)	65.8 (63.3, 68.3)	53.3 (51.4, 55.3)	73.8 (69.3, 78)

Figure 4: Normalized performance across 17 Atari games for REM + DR3 (top), CQL + DR3 (bottom). x-axis represents *gradient steps*; no new data is collected. While naïve REM suffers from a degradation in performance with more training, REM + DR3 not only remains generally stable with more training, but also attains higher final performance. CQL + DR3 attains higher performance than CQL. We report IQM with 95% stratified bootstrap CIs (Agarwal et al., 2021).

Kumar, Agrawal, Tucker, Ma, Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. '21

Conclusions & takeaways

- Offline RL with deep networks (i.e., with representation learning) is fundamentally different from "shallow" RL
- It's also fundamentally different from supervised learning!
- The "usual tricks" that work so well in supervised learning might not lead to great performance in RL directly
- Analyzing the effect of RL training on representations in deep nets is important!

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

Can we just avoid all OOD actions in the Q update?

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \underbrace{E_{\mathbf{a}' \sim \pi_{new}}[Q(\mathbf{s}', \mathbf{a}')]}_{V(\mathbf{s}')} \text{ just another neural network}$$

$$V \leftarrow \arg\min_{V} \frac{1}{N} \sum_{i=1}^{N} \ell(V(\mathbf{s}_{i}), Q(\mathbf{s}_{i}, \mathbf{a}_{i})) \text{ its action comes from } \pi_{\beta} \quad p(V(\mathbf{s})) \text{ its action best not from } \pi_{new}$$

$$e.g., \text{ MSE loss } (V(\mathbf{s}_{i}) - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \quad \text{this action comes from } \pi_{\beta} \quad p(V(\mathbf{s})) \quad \underbrace{E_{\mathbf{a} \sim \pi_{\beta}}[Q(\mathbf{s}, \mathbf{a})]}_{V(\mathbf{s}) \text{ value of best not from } \pi_{new}} \text{ distribution is induced by actions only}}$$

$$expectile: \ \ell_{2}^{\tau}(x) = \left\{ \begin{array}{cc} (1 - \tau)x^{2} & \text{if } x > 0 \\ \tau x^{2} & \text{else} \end{array} \right. \quad \text{out from } \pi_{new} \text{ distribution is induced by actions only}} \right\}$$

$$O(\mathbf{s}) = \{\mathbf{a}: \pi_{\beta}(\mathbf{a}|\mathbf{s}) \ge \epsilon\}$$

$$f(\mathbf{w} \text{ use } \ell_{2}^{\tau} \text{ for big } \tau$$

Kostrikov, Nair, Levine. Offline Reinforcement Learning with Implicit Q-Learning. '21

Implicit Q-learning (IQL)

Q-learning with implicit policy improvement

Now we can do value function updates without ever risking out-of-distribution actions!

Results

Chen et al. Decisio behavioral cloning best tra behavioral cloning				recent (2021) offline RL methods				
Dataset	BC	10%BC	DT	AWAC	Onestep RL	TD3+BC	CQL	IQL
halfcheetah-medium-v2	42.6	42.5	42.6	43.5	48.4	48.3	44.0	47.4
hopper-medium-v2	52.9	56.9	67.6	57.0	59.6	59.3	58.5	66.3
walker2d-medium-v2	75.3	75.0	74.0	72.4	81.8	83.7	72.5	78.3
halfcheetah-medium-replay-v2	36.6	40.6	36.6	40.5	38.1	44.6	45.5	44.2
hopper-medium-replay-v2	18.1	75.9	82.7	37.2	97.5	60.9	95.0	94.7
walker2d-medium-replay-v2	26.0	62.5	66.6	27.0	49.5	81.8	77.2	73.9
halfcheetah-medium-expert-v2	55.2	92.9	86.8	42.8	93.4	90.7	91.6	86.7
hopper-medium-expert-v2	52.5	110.9	107.6	55.8	103.3	98.0	105.4	91.5
walker2d-medium-expert-v2	107.5	109	108.1	74.5	113	110.1	108.8	109.6
locomotion-v2 total	466.7	666.2	672.6	450.7	684.6	677.4	698.5	692.4
antmaze-umaze-v0	54.6	62.8	59.2	56.7	64.3	78.6	74.0	87.5
antmaze-umaze-diverse-v0	45.6	50.2	53.0	49.3	60.7	71.4	84.0	62.2
antmaze-medium-play-v0	0.0	5.4	0.0	0.0	0.3	10.6	61.2	71.2
antmaze-medium-diverse-v0	0.0	9.8	0.0	0.7	0.0	3.0	53.7	70.0
antmaze-large-play-v0	0.0	0.0	0.0	0.0	0.0	0.2	15.8	39.6
antmaze-large-diverse-v0	0.0	6.0	0.0	1.0	0.0	0.0	14.9	47.5
antmaze-v0 total	100.2	134.2	112.2	107.7	125.3	163.8	303.6	378.0
total	566.9	800.4	784.8	558.4	809.9	841.2	1002.1	1070.4
kitchen-v0 total	154.5	-	-	-	-	-	144.6	159.8
adroit-v0 total	104.5	-	-	-	-	-	93.6	118.1
total+kitchen+adroit	825.9	-	-	-	-	-	1240.3	1348.3
runtime	10m	10m	960m	20m	$\approx 20m^*$	20m	80m	20m

most methods get similar results to good BC implementations

significant improvement from methods that properly handle compositionality

Finetuning Comparisons

finetunes well, but offline performance hampers final resul	e conser	mance, too vative for	generally best for finetuning		
Dataset	AWAC	CQL	IQL		
antmaze-umaze-v0	$56.7 \rightarrow 59.0$	$70.1 \rightarrow 99.4$	$86.7 \rightarrow 96.0$		
antmaze-umaze-diverse-v0	$49.3 \rightarrow 49.0$	$31.1 \rightarrow 99.4$	$75.0 \rightarrow 84.0$		
antmaze-medium-play-v0	$0.0 \rightarrow 0.0$	$23.0 \rightarrow 0.0$	$72.0 \rightarrow 95.0$		
antmaze-medium-diverse-v0	$0.7 \rightarrow 0.3$	$23.0 \rightarrow 32.3$	$68.3 \rightarrow 92.0$		
antmaze-large-play-v0	$0.0 \rightarrow 0.0$	$1.0 \rightarrow 0.0$	$25.5 \rightarrow 46.0$		
antmaze-large-diverse-v0	$1.0 \rightarrow 0.0$	$1.0 \rightarrow 0.0$	$42.6 \rightarrow 60.7$		
antmaze-v0 total	$107.7 \rightarrow 108.3$	$151.5 \rightarrow 231.1$	$370.1 \rightarrow 473.7$		
pen-binary-v0	$44.6 \rightarrow 70.3$	$31.2 \rightarrow 9.9$	$37.4 \rightarrow 60.7$		
door-binary-v0	$1.3 \rightarrow 30.1$	$0.2 \rightarrow 0.0$	$0.7 \rightarrow 32.3$		
relocate-binary-v0	$0.8 \rightarrow 2.7$	$0.1 \rightarrow 0.0$	$0.0 \rightarrow 31.0$		
hand-v0 total	$46.7 \rightarrow 103.1$	$31.5 \rightarrow 9.9$	$38.1 \rightarrow 124.0$		
total	$154.4 \rightarrow 211.4$	$182.8 \rightarrow 241.0$	$408.2 \rightarrow 597.7$		

graat offling

Option 1: avoid **ever** evaluating actions that are not in the dataset **Option 2:** train the Qfunction so that OOD actions never have high values

IQL (2021) **CQL** (2020)

- CQL has fewer hyperparameters, cleaner workflows with offline tuning
- CQL has better theoretical guarantees
- IQL performance is slightly better
- IQL finetuning is much better
- We still don't know which principles are going to be more effective in the long run

Offline RL challenges & methods

Workflows for offline RL

Offline RL and representations

Offline RL without *explicit* pessimism?

RAIL Robotic AI & Learning Lab

website: <u>http://rail.eecs.berkeley.edu</u> source code: <u>http://rail.eecs.berkeley.edu/code.html</u>