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Toward a Theory for Deep Reinforcement Learning?
Is this the right timing?
> Q: why should | study deep RL theory

> before understanding deep learning

> before understanding out-of-domain generalization and uncertainty
guantification with neural nets?

> My (debatable) answers:

> Assuming computational oracle, deep RL theory may be easier than DL
theory

> Extrapolation to new domain in sequential setting may be easier than in
static setting

= online learning of neural nets is doable

= but out-of-domain generalization for neural nets is challenging and
requires assumptions on domain shift



State-of-the-art Analyses for RL (Until Recent 2-3 Months)

B-Rank | B-Complete | W-Rank | Bilinear Class (this work)

Tabular MDP

Reactive POMDP [Krishnamurthy et al., 2016]

Block MDP [Du et al., 2019a]

Flambe / Feature Selection [Agarwal et al., 2020b]

Reactive PSR [Littman and Sutton, 2002]

Linear Bellman Complete [Munos, 2005]

-
-

Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]

Linear Mixture Model [Modi et al., 2020b]

Linear Quadratic Regulator

Kermnelized Nonlinear Regulator [Kakade et al., 2020]

Q™ “irrelevant” State Aggregation [Li, 2009]

Linear (Q*/V* (this work)

RKHS Linear MDP (this work)

RKHS Linear Mixture MDP (this work)

Low Occupancy Complexity (this work)

(Q* State-action Aggregation [Dong et al., 2020]

R R e AN R I R TN AN ENENEN
3| X || 33| 33| X[ 3| S| N N[ Xx[ x| x|~
R R R R e N R R R I R IANENENANEN
R B R A A A A A A A AN AN A A AR

Deterministic linear * [Wen and Van Roy, 2013]

Linear Q* [Weisz et al., 2020] Sample efficiency is not possible

> Claim: none of these applies to even RL with general one-layer neural
net approximation for dynamics (more evidence later)

[Bilinear Classes: A Structural Framework for Provable Generalization in RL.
Du-Kakade-Lee-Lovett- Mahajan- Sun-Wang’21]



Neural Net Bandit: A Simplificatien With H = 1

» Reward function (60, a)
> 6 € 0: model parameter

> a € A: continuous action
» Ex1: linear bandit: n(8,a) = 0 'a
> Ex2: neural net bandit: n(8,a) = NNg(a)

> Realizable and deterministic reward setting:
> Ground-truth 8* € 0

> We observe the ground-truth reward n(6*, a;) after playing a;

» Goal: to find the best arm

a* = argmaxn(0*, a)
aeA



Even One-layer Neural Net Bandit 1s Statistically Hard!
» 0 and A are unit £,-balls in R?
n(8,a) =relu(@"a — 0.9)

a* = argmaxrelu(6*'a — 0.9) = 6~
llall2=1

n~,) 4 |
Random actions [

have zero rewards A
and no info about H’w

* aZ

{a:0*"a = 0.9} has
exp(—d) prob. mass

needle in a haystack!



Hard Instances Can Also Have Smooth and Non-Sparse Rewards

local maximum

\ / global maximum

® A
1 o
random actionscan ——>°¢ _ °
only help learn the | ~—
linear part 1

n(y.B)a)=y'a+cy-o(B"a—0.9)

> Extendable to RL with nonlinear family of dynamics and known reward



State-of-the-art Analyses for Rl

B-Rank

B-Complete | W-Rank

Bilinear Class (this work)

Tabular MDP

Reactive POMDP [Krishnamurthy et al., 2016]

Block MDP [Du et al., 2019a]

Flambe / Feature Selection [Agarwal et al., 2020b]

Reactive PSR [Littman and Sutton, 2002]

Linear Bellman Complete [Munos, 2005]

Linear MDPs [ Yang and Wang, 2019, Jin et al., 2020]

-
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Linear Mixture Model [Modi et al., 2020b]

Linear Quadratic Regulator

Kermnelized Nonlinear Regulator [Kakade et al., 2020]

Q™ “irrelevant” State Aggregation [Li, 2009]

Linear (Q*/V* (this work)

RKHS Linear MDP (this work)

RKHS Linear Mixture MDP (this work)

Low Occupancy Complexity (this work)

()" State-action Aggregation [Dong et al., 2020]

Deterministic linear * [Wen and Van Roy, 2013]
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Linear Q* [Weisz et al., 2020]

Sample efficiency is not possible

> Claim: none of these applies to even RL with general one-layer neural
net approximations for dynamics

> It’s just impossible!




What’s the Path Forward?

> Empirically deep RL still works well largely---it’s the limitation of theory

> Option 1: change / weaken the goal

> Option 2: restrict to realistic family of problem instances

> E.g., two-layer neural nets without bias (and sample complexity
depends on width) [Huang et al.’21]

» Option 3: combine option 1&27?



R Proposed Paradigm
(Analogous to Non-convex Optimization Literature)

Focus of this

1. Convergences to local maxima for general instances <& talk

2. Analysis of the quality of local maxima of the ground-truth n(6*,-)
> All local maxima are global or satisfactory enough?

¢

some concave
examples



Baselines for Converging to Local Maxima:
Lero-order Optimization for Bandit and Policy Gradient for Rl

> Letn™(a) = n(8%, a)

> Zero-order optimization: estimate gradient Vn*(a) from n*(a)
> Estimating Vn*(a) doesn’t help estimating Vn*(a’)
> at least O(d) sample complexity where d = action dimension

Q: can we leverage the model extrapolation to improve sample efficiency?

> Model-based methods are largely believed to be more sample-efficient
than model-free methods

> model = reward parameterization for bandit
> model = (dynamics model, reward) for RL



Main Results on Bandit

Theorem (informal): A model-based algorithm can converge to €-

approximate local maximum with O(R(0)/e*) samples, where R(0) is a
complexity measure of the model class {0:1(6,:),0 € 0}.

> complexity measure = sequential Rademacher complexity (which
appears to be similar to standard Rademacher complexity)



Does Classical Model-based UCB Converge to Local Max?

ag, 0y = argmax n(o,a)
aeA
0 fits past observations

_ » Easy tolearny
% i ‘ » UCB keeps optimistically
i : guessing (v, B:) = (v, B)
= \ and a = [ for some random [

n(y.B)a)=y'a+cy-o(B a—0.9)

> UCB fundamentally aims for global maximum and keeps exploring

> It also fails for deep RL empirically because the optimistic model
fantasizes too much (anecdotal, [Luo et al.’18])



Where Does UCB Analysis Break?

> virtual reward: n(0;,")
> real reward: n(0*,)

1. Exploration (virtual reward = optimal reward)
by def. of optimism, n(6;, a;) = n(0*,a*)

2. Extrapolation (i.e., virtual = real):

{=1(n(0t' a;) —n(6% at))z < \/w T

> e.g., Eluder dim

»1+2 > n(0%a;) =16 a) =n(0%,a")

> Step 2 fails for neural nets because
> dimgjyger(0) = exp(d)
> b.c. learning 8, suboptimally: we only know that 6, fits past data

[Russo-Van Roy’13, Eluder Dimension and the Sample Complexity of Optimistic Exploration ]



Our Idea: Re-Prioritizing the Two Steps

2. Extrapolation by an online learning (OL) algorithm

’11,:=1(77(0t' a;) —n(67, at))z < SRC7(0)
——

Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

> For finite hypothesis ©, SRC(0) = |/log|0| - T
> For neural nets:

SRC = poly(d) - VT vs. Eluder dim = exp(d)
> SRC can be dimension-free and only depend on the weight norm

» Source of gains: OL oracle chooses 6, better than UCB by stochastic
predictions that hedges risks



0L Oracle Extrapolates Better

loss = ¥ (#(6, a) — £(67, at))z

ground-truth n(6*,-) OL: B; = 0 (to hedge the risk)

loss = 0 at action a; = y;

] . ] ]
] lass ]

S S

UCB:
f¢ is random (to be optimistic)

loss >> 0 at action a; = 3¢



Our Idea: Re-Prioritizing the Two Steps

1. Exploration {virtualreward=-optimalreward} ?

2. Extrapolation by an online learning (OL)

’11,:=1(77(0t' a;) —n(67, at))z < SRC7(0)

~\ UCB will pick optimistic models
L. \“  but too optimistic

an arbitrary model that fits
past observation




Our Idea: Re-Prioritizing the Two Steps

1. Exploration {virtuatreward=-optimalreward}

Local, model-based exploration: virtual reward increases incrementally

2. Extrapolation by an online learning (OL)

{=1(n(0t' a;) —n(67, at))z < SRC7(0)

> Step 1: modify the loss to predict directional reward gradient
* 2 !/ * !/
(n(6,a) —n(6*,@))" + (Vn(6,a’) — Vn(6*,a"),u)?

> Step 2: take the best action according to the virtual reward

> accurate gradient estimation guarantees local first-order
improvements (exploration)

> Model-based learning of gradient is more sample-efficient than model-
free estimate



Our Idea: Re-Prioritizing the Two Steps

1. Exploration {virtuatreward=-optimalreward}
Local, model-based exploration: virtual reward increases incrementally

2. Extrapolation by an online learning (OL)

’11,:=1(77(8t' a;) —n(67, at))z < SRC7(0)

matching gradient




R Proposed Paradigm
(Analogous to Non-convex Optimization Literature)

Focus of this

1. Convergences to local maxima for general instances <& talk

2. Analysis of the quality of local maxima of the ground-truth n(6*,-)
> All local maxima are global or satisfactory enough?

¢

some concave
examples



Implications of the Theorem Where All Local Max are Global Max

» Linear bandit with structured model family: n(8,a) = 8'a
> 0 is finite: O(log |®]) sample complexity
= squareUCB [Foster-Rakhlin’21] depends on action dimension

> O contains s-sparse vectors or only has s-degree of freedom:
O (s logd) sample complexity

> Negative-weights neural net bandit: n(W, a) = w, o(W;a)
> assume 0(1) norms bounds on ||w,]|1, W11
» n(W,-) is concave in a --- all local max are global
> SRC < 0(\/7), sample complexity = 0(1)
> with general weights then can only find local max
= conjecture: with random weights local max perhaps are very good?

»>NB: recovering the neural nets parameters does NOT seem to be easy
(the learning loss is nonconvex)



R First-Cut Extension to Model-based RL

» Dynamics Ty and policy my,
> 1n(0,y) = total expected return of policy 1Ty, on dynamics Ty

> Goal: find local max of n(6*,")
Challenge:

How does learning dynamics help estimate the n(68*,-) and its gradient?

> A result for stochastic policies
706, %) = 10", W) S Egaer,m, [ITo (s, @) — To+ (s, )|I17]
IVn(8,¥) — Vn(0*, YNl S Esgnryumy, ITa (s, ) — To~ (s, A)1I?]
1V20(8,9) — VEn(0", Yl S Esa~ryumy[ITo(s, @) — To+ (s, a)lI*]
» With many assumptions:

= Value functions are Lipschitz/smooth in states and policy paramaters
= Vlogmy, is bounded in various ways

= Not vacuous: e.g., T(s,a) = NNy(s + a) and linear policy can work



Summary

> Global regret for nonlinear models is statistically intractable

> VIiOL converges to a local maximum with sample complexity that only
depends on the model class complexity

Open questions:

» Bandit with stochastic rewards

> Faster convergence rate / smaller regret
» Analyze Q-learning algorithms?

» Analyze more special instances with global convergence

Thank you!



