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The 𝐏 ≠ 𝐍𝐏 Conjecture and Cryptography

𝐏 = 𝐍𝐏 𝐏 ≠ 𝐍𝐏

Any problem in 𝐍𝐏
can be solved efficiently.

Any public-key cryptosystem

can be broken.

There might be a secure cryptosystem (?)

There is a problem in 𝐍𝐏 that

can’t be solved efficiently.

or

Bitcoin loses its value.

Automated theorem proving

can be done efficiently.

Using a public-key cryptosystem,

Bitcoin prevents those who do not own a secret key

from spending a coin.



Algorithmica

Impagliazzo’s Five Possible Worlds

P = NP

Heuristica

Pessiland

Minicrypt

Cryptomania

P ≠ NP

[Impagliazzo ’95] classified five possible worlds

consistent with our current knowledge.



Algorithmica

P = NP

Heuristica

Pessiland

Minicrypt

Cryptomania

P ≠ NP

Any problem in 𝐍𝐏 can be solved efficiently.

Automated theorem proving is possible.

Impossible to construct a secure cryptosystem.

Impagliazzo’s Five Possible Worlds

[Impagliazzo ’95] classified five possible worlds

consistent with our current knowledge.



Algorithmica

P = NP

Heuristica

Pessiland

Minicrypt

Cryptomania

Impagliazzo’s Five Possible Worlds

P ≠ NP

DistNP ⊈ AvgP

∃ secret-key crypto.

∃ public-key crypto.

(“P ≠ NP on average”)

& ∄ public-key crypto.

∄ secret-key crypto.&

DistNP ⊆ AvgP&
(“P = NP on average”)

There is an intractable problem in 𝐍𝐏, but

it is possible to construct a public-key cryptosystem.

The “worst” possible world  (a pessimistic world)
Impossible to construct a secret-key cryptosystem.

𝐍𝐏 can’t be solved efficiently (on average).

Impossible to construct a public-key cryptosystem.

Possible to construct a secret-key cryptosystem.

A world where heuristics are efficient
There are efficient heuristics that solve 𝐍𝐏 on average.

Impossible to construct a cryptosystem.

[Impagliazzo ’95] classified five possible worlds

consistent with our current knowledge.



[Impagliazzo ’95] classified five possible worlds

consistent with our current knowledge.

Algorithmica

P = NP

Heuristica

Pessiland

Minicrypt

Cryptomania

Impagliazzo’s Five Possible Worlds

P ≠ NP

DistNP ⊈ AvgP

∃ secret-key crypto.

∃ public-key crypto.

(“P ≠ NP on average”)

& ∄ public-key crypto.

∄ secret-key crypto.&

DistNP ⊆ AvgP&
(“P = NP on average”)

is to decide which world corresponds to our world.
(In particular, we would like to resolve the conjecture that our world is Cryptomania.)

The Ultimate Goal of Complexity Theory



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

P ≠ NP

DistNP ⊈ AvgP

?

?

?

?

∃ public-key crypto.

?

: Known facts

: Open questions

∃ secret-key crypto.

Known Facts and Open Questions

(“P ≠ NP on average”)



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Toward Public-key Crypto.

?

?

?

?

?

: Known facts

: Open questions

Proving one implication

⟺
Excluding one world

Proving the four implications

⟺
Our world is Cryptomania!

Important Open Question

P ≠ NP (Can we exclude Algorithmica?)

Important Open Question

Can we exclude Heuristica?

Important Open Question

Can we exclude Pessiland?

Important Open Question

Can we exclude Minicrypt?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Limits of Current Proof Techniques

?

?

?

?

: Barrier results

Several types of proof techniques are

insufficient to resolve the open question.

Relativization barrier

Algebrization barrier

Natural proof barrier

[Baker-Gill-Solovay’75]

[Aaronson-Wigderson’09]

[Razborov-Rudich’97]

Locality barrier [Chen-H.-Oliveira-Pich-Rajgopal-Santhanam (ITCS’20)]

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

?

: Known facts

: Open questions



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Limits of Current Proof Techniques

?

?

?

?

: Barrier results

Several types of proof techniques are

insufficient to resolve the open question.

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

?

: Known facts

: Open questions

Relativization barrier

Limits of

black-box reductions

“Impossibility” of

hardness amplification

[Impagliazzo (2011)]

[Feigenbaum & Fortnow (1993)]

[Bogdanov & Trevisan (2006)]

[Viola (2005)]



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

A New Paradigm: Meta-Complexity

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

?

: Known facts

: Open questionsThe complexity of problems

asking for complexity

MINKT (Minimum Time-Bounded Kolmogorov Complexity Problem)

The problem of computing the minimum program to compute 𝑥 efficiently

MINKT



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Overcoming Limits of Black-box Reductions

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)
GapMINKT ∉ P

Worst- and average-case complexities of 
MINKT are equivalent.

Theorem [H. (FOCS 2018)]

(MINKT,𝒰) ∉ AvgP

➢ Limits: NP/poly ∩ coNP/poly

Limits of

black-box reductions [Bogdanov & Trevisan (2006)]

➢ Conjecture [Rudich’97]: GapMINKT ∉ coNP/poly

➢ This is the first result that goes beyond the limits!



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

A Long-Standing Open Question

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

UP ⊈ DTIME 2𝑜(𝑛)
?

A long-standing open question

on worst- versus average-case

𝐔𝐏 ⊆ NP
A class that contains

integer factorization

UP is exponentially hard

in the worst case
𝐍𝐏 is hard on average

Limits of

black-box reductions
“Impossibility” of 

hardness amplification
Relativization barrier (?)

[Viola (2005)][Bogdanov & Trevisan (2006)]



Limits of

black-box reductions
“Impossibility” of 

hardness amplification
Relativization barrier (?)

[Bogdanov & Trevisan (2006)]
Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Overcoming two barriers simultaneously

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

UP ⊈ DTIME 2𝑜(𝑛)

If UP is exponentially hard

in the worst case, then

NP is hard on average.

Theorem [H. STOC 2021]

FOCS’18, ITCS’20, CCC’20,

STOC’20, FOCS’20 + 𝛼

Proof Techniques: Meta-complexity

[Viola (2005)]



Limits of

black-box reductions
“Impossibility” of 

hardness amplification
Relativization barrier (?)

[Bogdanov & Trevisan (2006)]
Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

Overcoming two barriers simultaneously

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

UP ⊈ DTIME 2𝑂(𝑛/ log 𝑛)

If UP is exponentially hard

in the worst case, then

NP is hard on average.

Theorem [H. STOC 2021]

FOCS’18, ITCS’20, CCC’20,

STOC’20, FOCS’20 + 𝛼

Proof Techniques: Meta-complexity

[Viola (2005)]



Limits of

black-box reductions
“Impossibility” of 

hardness amplification
Relativization barrier (?)

[Bogdanov & Trevisan (2006)]
Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

A New Relativization Barrier

?

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

UP ⊈ DTIME 2𝑂(𝑛/ log 𝑛)

If UP is exponentially hard

in the worst case, then

NP is hard on average.

Theorem [H. STOC 2021]

FOCS’18, ITCS’20, CCC’20,

STOC’20, FOCS’20 + 𝛼

Proof Techniques: Meta-complexity

[Viola (2005)]

UP ⊈ DTIME 2𝑜 𝑛/ log 𝑛

Relativization barrier [H. & Nanashima (FOCS’21)]



Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

“Fine-Grained” Five Worlds [Chen-H.-Vafa (ITCS’22)]

?

?

?

P ≠ NP

DistNP ⊈ AvgP

∃ public-key crypto.

∃ secret-key crypto.

(“P ≠ NP on average”)

Fine-grained Algorithmica

Fine-grained Heuristica

Fine-grained Pessiland

Fine-grained Minicrypt

Fine-grained Cryptomania

?

?

?

?

∃ fine-grained public-key crypto.

∃ fine-grained secret-key crypto.

NTIME(𝑛) ⊈ DTIME ෩O 𝑛

NTIME 𝑛 × {𝒰′} ⊈ AvgDTIME(෩O 𝑛 )

UP ⊈ DTIME 2𝑂(𝑛/ log 𝑛)

UP ⊈ DTIME 2𝑂( 𝑛 log 𝑛)

[H. (STOC’21)]

[Chen-H.-Vafa (ITCS’22)]

Poly.-time

adversary
෨𝑂 𝑛 log 𝑛 -time

adversary

(NP is slightly hard on average.)
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Complexity Classes

P

NPcoNP

PH

PSPACE

𝐏 :  polynomial time

𝐔𝐏 :  unambiguous polynomial-time

𝐍𝐏 : non-deterministic polynomial-time

𝐏𝐇 :  polynomial(-time) hierarchy

𝐏𝐒𝐏𝐀𝐂𝐄 :  polynomial space

UPcoUP
(solvable by a non-deterministic polynomial-time machine

with at most one accepting path for each input.)

UP ≠ P ⟺ There is a one-to-one one-way function that is hard to invert in the worst case.

[Ko’85, Grollmann & Selman‘88]



(Black-Box) Reductions

reduction 𝑅(⋅)

query

answer oracle 𝐴

∀𝐿 ∈ SZK, there is a reduction 𝑅(⋅) such that for any oracle 𝐴 that solves some 𝐿′, 𝒟 ∈ DistNP,

• SZK ≠ P ⟹ DistNP ⊈ AvgP

These are proved by black-box reductions:

[Ostrovsky’91,Hastad-Impagliazzo-Levin-Luby’99,...,H.’18]

• NP ⊈ DTIME 2𝑂 𝑛 ⟹ DistNP ⊈ AvgP [Ben-David, Chor, Goldreich & Luby ‘92]

No efficiency 

requirement

Theorems:

• GapSVP ∉ BPP ⟹ DistNP ⊈ HeurBPP [Ajtai’96,…]

𝑅𝐴 𝑥 outputs the correct answer 𝐿(𝑥) for every input 𝑥.

A “non-black-box” reduction ⟺ The reduction might fail if the oracle is inefficient.



Limits of Black-Box Reductions

P

NPcoNP

Theorem [Feigenbaum & Fortnow’93, Bogdanov & Trevisan’06]

There is no nonadaptive black-box reduction

from 𝐿 to DistNP, for any 𝐿 ∉ NP/poly ∩ coNP/poly.

NP/poly ∩ coNP/poly

➢ We need to use either non-black-box or adaptive reductions! GapMINKT

We exploit the efficiency of an oracle using “meta-complexity”.

➢ Nonadaptive black-box reductions are too strong to be useful for

worst-case-to-average-case connections outside coNP/poly.
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Our Results

Main Theorems [H. STOC’21]

(1) UP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgP

(2) PH ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistPH ⊈ AvgP

➢AvgPP ⊆ AvgP : the class of (𝐿, 𝒟) solvable by average-case 

polynomial-time algorithms whose running time can be “estimated.”

➢𝑛 denotes the length of inputs (encoded as binary strings).

(3) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgPP
P-computable

average-case 

polynomial-time



Our Results

Main Theorems ([H. STOC’21], a stronger version)

(1) NTIMEsv 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ coNP × {𝒰, 𝒯} ⊈ Avg1−𝑛−𝑐
1 P

(2) PHTIME 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ PH× {𝒰,𝒯} ⊈ Avg1−𝑛−𝑐
1 P

(3) NTIME 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹NP × {𝒰,𝒯} ⊈ AvgPP

For every constant 𝛿 > 0 and 𝑐 ∈ ℕ,

The hard distribution is

the uniform distribution 𝒰
or the tally distribution 𝒯.

One-sided-error heuristics

with success probability 𝑛−𝑐.
(Refutation)

2𝑛
1−𝛿

-time version of NP

Inverting a size-verifiable one-

way function in the worst-case

𝒯 ≔ 𝒯𝑛 𝑛∈ℕ; 𝒯𝑛 is the singleton distribution on 1𝑛.



Time-Bounded Kolmogorov Complexity

K𝑡 𝑥 ≔ (the length of a shortest program that prints 𝑥 in 𝑡 steps)

➢ 𝑡-time-bounded Kolmogorov complexity of 𝑥

K𝑡 00…0 = log 𝑛 + 𝑂 1 for 𝑡 ≫ 𝑛.

𝑛 times

Examples

K𝑡 𝑥 ≤ 𝑛 + 𝑂(1) for 𝑡 ≫ 𝑛 and for every 𝑥 ∈ 0,1 𝑛.

K∞ 𝑥 ≥ 𝑛 − 2 with probability ≥
3

4
over a random 𝑥 ∼ 0,1 𝑛.

← print “0” × 𝑛

← print “𝑥”

← a simple counting argument



Meta-Complexity − Complexity of Complexity

➢Examples of meta-computational problems: MCSP,MKTP,MINKT,…

MINKT [Ko’91] = “Compute the time-bounded Kolmogorov complexity”

K𝑡 𝑥 ≔ (the length of a shortest program that prints 𝑥 in 𝑡 steps)

• 𝑡-time-bounded Kolmogorov complexity of 𝑥

• MINKT = 𝑥, 1𝑡, 1𝑠 K𝑡 𝑥 ≤ 𝑠 .

• GapMINKT = (ΠYes, ΠNo)

ΠYes = 𝑥, 1𝑡, 1𝑠 K𝑡 𝑥 ≤ 𝑠 .

ΠNo = 𝑥, 1𝑡, 1𝑠 K𝑝(|𝑥|+𝑡) 𝑥 > 𝑠 + log 𝑝 𝑥 + 𝑡 .

An “𝑂(log𝑛)-additive approximation” version

𝑝: some polynomial



Meta-Complexity − Complexity of Complexity

➢Examples of meta-computational problems: MCSP,MKTP,MINKT,…

MINKT𝐴 [Ko’91] 

K𝑡,𝐴 𝑥 ≔ (the length of a shortest program𝑀𝐴 that prints 𝑥 in 𝑡 steps)

• 𝐴-oracle 𝑡-time-bounded Kolmogorov complexity of 𝑥

• MINKT𝐴 = 𝑥, 1𝑡, 1𝑠 K𝑡,𝐴 𝑥 ≤ 𝑠 .

Remark: In general, we may have 𝐴 ≰𝑚
𝑝
MINKT𝐴.

It is easy to see MINKT𝐴 ∈ NP𝐴.

= “Compute the 𝐴-oracle time-bounded Kolmogorov complexity”

Open:  NP ≤ MINKT?  NP ≤ MINKTPH?



Average-Case Complexity = Meta-Complexity

DistPH ⊆ AvgP GapMINKTPH ∈ P⟺

Theorem [H. (FOCS’20)]
For every 𝐴 ∈ PH,

GapMINKT𝐴 ∈ P

➢ GapMINKT𝐴: an 𝑂(log 𝑛)-additive approximation version of MINKT𝐴.

DistPH ⊆ Avg1−1/poly(𝑛)
1 P

DistPH ⊆ AvgP

Gap KPH vs K ∈ P

GapMINKTPH ∈ P

o
b

v
io

u
s

average-case hardness

amplification for PH

Corollary

Average-Case Complexity Worst-Case Meta-Complexitry

➢ Corollary: A new technique of analyzing average-case complexity by meta-complexity.

[H. FOCS’18, CCC’20]

[H. ITCS’20, STOC’20]

Easier to analyze

worst-case complexity!



Theorem [H. STOC’21]

(2’)  NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]



Universal Heuristic Scheme ― A key notion in this work

➢A universal heuristic scheme is “universal” in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP ⊆ AvgP.
For every 𝐿: 0,1 ∗ → 0,1 , the following are equivalent.

1. There is a universal heuristic scheme for 𝐿.
2. 𝐿 × PSamp ⊆ AvgPP.

P-computable 

average-case 

poly-time



The Definition of Universal Heuristic Scheme

➢Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran’06]

cd𝑡 𝑥 ≔ K𝑡 𝑥 − K∞(𝑥)

➢ 𝑡, 𝑠 -Time-Bounded Computational Depth

cd𝑡,𝑠 𝑥 ≔ K𝑡 𝑥 − K𝑠(𝑥)

➢An algorithm 𝐴 is called a universal heuristic scheme for 𝐿 if

1. 𝐴 𝑥, 𝑡 = 𝐿(𝑥) and

2. 𝐴(𝑥, 𝑡) halts in time 2𝑂 cd𝑡,𝑝 𝑡 𝑥 +log 𝑡 .

for some polynomial 𝑝, for every 𝑥 ∈ 0,1 ∗ and every 𝑡 ≥ 𝑝( 𝑥 ),



Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Easy to prove

(Next slide)

Theorem [H. STOC’21]

(2’)  NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP



Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme 𝐴 for 𝐿, then

𝐿 ∈ DTIME 2𝑂 𝑛/ log 𝑛 .

Proof Idea:  Find a parameter 𝑡 so that the input 𝑥 is “computationally shallow” (i.e., cd𝑡,𝑝 t 𝑥 = 𝑂(𝑛/ log 𝑛)).

Proof:  Consider the following telescoping sum for a parameter 𝐼 = 𝜖 log 𝑛 (𝜖 > 0, constant):

cd𝑡,𝑝 𝑡 𝑥 + cd𝑝 𝑡 ,𝑝∘𝑝 𝑡 𝑥 + ⋯+ cd𝑝
𝐼−1 𝑡 ,𝑝𝐼 𝑡 𝑥 = K𝑡 𝑥 − K𝑝

𝐼 𝑡 𝑥 ≤ 𝑛 + 𝑂(1)

⟹ for some 𝑖 ∈ 1, 2, … , 𝐼 , we have cd𝑝
𝑖−1 𝑡 ,𝑝𝑖 𝑡 𝑥 ≤

𝑛+𝑂 1

𝐼
= 𝑂

𝑛

log 𝑛
.Algorithm 𝐵: 

Run 𝐴 𝑥, 𝑡 , 𝐴 𝑥, 𝑝 𝑡 , 𝐴 𝑥, 𝑝2 𝑡 , … , 𝐴 𝑥, 𝑝𝐼−1 𝑡 in parallel.

Take the first one that halts, and output what it outputs.

Correctness:  𝐵 𝑥 = 𝐿(𝑥) for every input 𝑥.

The running time of 𝐵 ≲ min
𝑖

2𝑂 cd𝑝
𝑖−1 𝑡 ,𝑝𝑖 𝑡 𝑥 +log 𝑝𝑖(𝑡) ≤ 2𝑂 𝑛/ log 𝑛

（𝑝𝐼 𝑡 ≲ 𝑛𝑐
𝐼
≤ 2𝑂(𝑛/ log 𝑛) for 𝐼 = 𝜖 log 𝑛）

A universal heuristic scheme 𝐴 for 𝐿: ∃ 𝑝 𝑡 = 𝑡𝑂 1 ,

1. 𝐴 𝑥, 𝑡 = 𝐿(𝑥)

2. 𝐴 𝑥, 𝑡 runs in time 2𝑂 cd𝑡,𝑝 𝑡 𝑥 +log 𝑡 .



NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Let 𝑝(𝑛) be the 

runtime of AvgP.

The algorithm runs 

in time

2
𝑂 cd𝑡,𝑝

′ 𝑡 𝑥
.

➢ The reduction is non-black-box because we exploit the efficiency of AvgP.

I.e., the proof is not subject to the barrier of [Bogdanov & Trevisan’06].

How we overcame limits of black-box reductions



Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

• Direct product generator [H. STOC’20]

• Weak symmetry of information [H. STOC’21]

Theorem [H. STOC’21]

(2’)  NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

Direct product generator



𝑘-Wise Direct Product Generator [H. STOC’20]

DP𝑘 𝑥; 𝑧1, … , 𝑧𝑘 = 𝑧1, … , 𝑧𝑘 , ⟨𝑧1, 𝑥⟩, … , ⟨𝑧𝑘 , 𝑥⟩

DP𝑘: 0,1
𝑛 × 0,1 𝑛 𝑘 → 0,1 𝑛𝑘+𝑘

A pseudorandom generator

construction based on

a “hard” truth table 𝑥
that extends seed 𝑧 by 𝑘 bits.

A Reconstruction Property of DP𝑘:

For every oracle 𝐷: 0,1 𝑛𝑘+𝑘 → {0,1} and every 𝑥 ∈ 0,1 𝑛, 

if K𝑡,𝐷 𝑥 ≥ 𝑘 + 𝑂 log 𝑛 , then DP𝑘(𝑥; −) is pseudorandom against 𝐷; that is,

Pr
𝑧∼ 0,1 𝑛𝑘

𝐷 𝐃𝐏𝒌 𝒙; 𝒛 = 1 ≈ Pr
𝑤∼ 0,1 𝑛𝑘+𝑘

𝐷 𝒘 = 1 .

The Key Point: (The advice complexity of DP𝑘) = 𝑘 + 𝑂(log 𝑛)

(under DistNP ⊆ AvgP or a derandomization assumption)

This is nearly optimal [Trevisan & Vadhan ‘07].

⟨𝑧𝑖 , 𝑥⟩: the inner product between 𝑧𝑖 and 𝑥 modulo 2.



Claim: DistNP ⊆ AvgP ⟹ GapMINKT ∈ P

➢ Consider the following distributional problem MINKT,𝒰′ ∈ DistNP:

Given 𝑥 ∼ 0,1 𝑛 as input, decide whether K𝑡 𝑥 < 𝑛 − 2 or not.

➢ Let 𝐴 be an errorless heuristic algorithm that solves MINKT,𝒰′ with probability ≥ 1 − 𝑜(1).

➢ A randomized algorithm 𝐵 for solving GapMINKT:

𝐵 𝑥, 1𝑠 ≔ 1 ⟺ 𝐴 DP𝑘 𝑥; 𝑧 ∈ 1, ⊥ for a random 𝑧 ∼ 0,1 𝑛𝑘+𝑘 and 𝑘 ≔ 𝑠 + 𝑂 log 𝑛 .

➢ For simplicity, 𝑡 ≔ 𝑛2.

(YES case) K𝑡 𝑥 ≤ 𝑠 ⟹ K2𝑡 DP𝑘 𝑥; 𝑧 ≤ K𝑡 𝑥 + 𝑧 + 𝑂 1 ≤ 𝑠 + 𝑛𝑘 + 𝑂(1) ≪ 𝑘 + 𝑛𝑘 − 2.

⟹ 𝐴 DP𝑘 𝑥; 𝑧 ∈ {1, ⊥} with probability 1

K𝑡
′
𝑥 ≫ 𝑠 + 𝑂 log 𝑛 = 𝑘 ⟹ Pr

𝑧
𝐴 DP𝑘(𝑥; 𝑧) ∈ {1, ⊥} ≈ Pr

𝑤
𝐴 𝑤 ∈ 1, ⊥ ≤

1

4
+ 𝑜(1)

This is a non-black-box reduction: 𝑡′ ≈ the running time of 𝐴 = poly 𝑡, 𝑛 .

K𝑡 𝑥 < 𝑛 − 2 ⟹ 𝐴 𝑥 ∈ {1, ⊥}

𝐴(𝑥) outputs the correct answer or ⊥ (“time out”).

Pr
𝑥∼ 0,1 𝑛

𝐴 𝑥 =⊥ ≤ 𝑜(1)

(No case)

GapMINKT is a meta-computational problem!



Summary and Open Questions

➢ Meta-complexity is a powerful tool to analyze average-case complexity.

➢ A lot of interesting questions remain open:

• Non-relativizing proof techniques in this context?

• NP-hardness of GapMINKT

• Can we prove NP ⊈ DTIME 2𝑜 𝑛 ⟹ DistNP ⊈ AvgP?

• Does the exponential-time hypothesis (ETH) imply DistPH ⊈ AvgP?

• Can we prove PH ⊈ io-DTIME 2𝑜 𝑛 ⟹DistPH ⊈ io-AvgP?

Viola’s barrier comes into play in this setting!

• Especially because it allows us to overcome the limits of black-box reductions


