Analyzing Average-Case Complexity by Meta-Complexity

Shuichi Hirahara
National Institute of Informatics, Tokyo, Japan
NII
Inter-University Research Institute Corporation / Research Organization of Information and Systems
National Institute of Informatics

Outline

1. Toward Excluding Heuristica

2. Limits of Black-Box Reductions
3. Our Results, Meta-Complexity, and Proof Techniques

The $\mathbf{P} \neq \mathbf{N P}$ Conjecture and Cryptography

$$
\mathbf{P}=\mathbf{N} \mathbf{P} \quad \text { or } \quad \mathbf{P} \neq \mathbf{N} \mathbf{P}
$$

(-) Any problem in NP can be solved efficiently.Automated theorem proving can be done efficiently.
;- Any public-key cryptosystem can be broken.

Bitcoin loses its value.
(:) There is a problem in NP that can't be solved efficiently.
-) There might be a secure cryptosystem (?)

Using a public-key cryptosystem, Bitcoin prevents those who do not own a secret key from spending a coin.

Impagliazzo's Five Possible Worlds

[Impagliazzo '95] classified five possible worlds consistent with our current knowledge.

Algorithmica

$$
P=N P
$$

Impagliazzo's Five Possible Worlds

[Impagliazzo '95] classified five possible worlds consistent with our current knowledge.

$P \neq N P$

() Any problem in NP can be solved efficiently.

Automated theorem proving is possible.
Impossible to construct a secure cryptosystem.

Algorithmica

$$
P=N P
$$

Impagliazzo's Five Possible Worlds

Cryptomania
[Impagliazzo '95] classified five possible worlds consistent with our current knowledge.

Algorithmica

$$
P=N P
$$

Impagliazzo's Five Possible Worlds

The Ultimate Goal of Complexity Theory

is to decide which world corresponds to our world.
(In particular, we would like to resolve the conjecture that our world is Cryptomania.)

$$
P \neq N P \quad \& \quad \text { DistNP } \subseteq \operatorname{Avg} P
$$

Algorithmica

$$
P=N P
$$

Known Facts and Open Questions

Cryptomania
\exists public-key crypto.
Minicrypt $\sqrt{\text { lil? }}$
\exists secret-key crypto.

Pessiland

DistNP \ddagger AvgP
("P $=$ NP on average")

Heuristica

Algorithmica

Toward Public-key Crypto.

Cryptomania
\exists public-key crypto.

Important Open Question
Can we exclude Pessiland?
DistNP \ddagger AvgP
("P $\neq \mathrm{NP}$ on average")
Heuristica

$$
P \neq N P
$$

Algorithmica

Important Open Question

$\mathrm{P} \neq \mathrm{NP}$ (Can we exclude Algorithmica?)

Proving the four implications
Our world is Cryptomania!

Proving one implication \Leftrightarrow
Excluding one world

Limits of Current Proof Techniques

Cryptomania
\exists public-key crypto.

\mathbb{B} : Barrier results
Several types of proof techniques are insufficient to resolve the open question.

DistNP \ddagger AvgP
("P $=\mathrm{NP}$ on average")

Limits of Current Proof Techniques

Cryptomania
\exists public-key crypto.

\mathbb{B} : Barrier results
Several types of proof techniques are insufficient to resolve the open question.
\exists secret-key crypto.

Algorithmica

A New Paradigm: Meta-Complexity

Cryptomania
\exists public-key crypto

The complexity of problems asking for complexity

\exists secret-key crypto.

Pessiland

DistNP \ddagger AvgP
("P = NP on average")

Heuristica

Algorithmica

MINKT (Minimum Time-Bounded Kolmogorov Complexity Problem) The problem of computing the minimum program to compute x efficiently

MINKT

Overcoming Limits of Black-box Reductions

Cryptomania

\exists public-key crypto.

\exists secret-key crypto

Pessiland

Theorem [H. (FOCS 2018)]
Worst- and average-case complexities of MINKT are equivalent.

DistNP \ddagger AvgP
(" $\mathrm{P} \neq \mathrm{NP}$ on average")

Heuristica

Algorithmica
$>$ Limits: NP/poly \cap coNP/poly
$>$ Conjecture [Rudich'97]: GapMINKT \notin coNP/poly
$>$ This is the first result that goes beyond the limits!

A Long-Standing Open Question

Cryptomania

\exists public-key crypto.
Minicrypt

NP is hard on average

A long-standing open question on worst- versus average-cas

UP is exponentially hard in the worst case

DistNP \ddagger AvgP
(" $\mathrm{P} \neq \mathrm{NP}$ on average")

Overcoming two barriers simultaneously

Cryptomania

Overcoming two barriers simultaneously

Cryptomania

A New Relativization Barrier

Cryptomania

\exists public-key crypto.

"Fine-Grained" Five Worlds [Chen-H.-Vafa (ITCS'22)]

Cryptomania \quad| Poly.-time |
| :--- |
| adversary |

Outline

1. Toward Excluding Heuristica
2. Limits of Black-Box Reductions
3. Our Results, Meta-Complexity, and Proof Techniques

Complexity Classes

PSPACE : polynomial space

PH : polynomial(-time) hierarchy

NP : non-deterministic polynomial-time
UP : unambiguous polynomial-time
(solvable by a non-deterministic polynomial-time machine with at most one accepting path for each input.)

P: polynomial time
[Ko'85, Grollmann \& Selman'88]
$\mathrm{UP} \neq \mathrm{P} \Leftrightarrow$ There is a one-to-one one-way function that is hard to invert in the worst case.

(Black-Box) Reductions

These are proved by black-box reductions:

$\forall L \in S Z K$, there is a reduction $R^{(\cdot)}$ such that for any oracle A that solves some $\left(L^{\prime}, \mathcal{D}\right) \in \operatorname{DistNP}$, $R^{A}(x)$ outputs the correct answer $L(x)$ for every input x.

A "non-black-box" reduction \Leftrightarrow The reduction might fail if the oracle is inefficient.

Limits of Black-Box Reductions

Theorem [Feigenbaum \& Fortnow'93, Bogdanov \& Trevisan'06]

There is no nonadaptive black-box reduction from L to DistNP, for any $L \notin \mathrm{NP} /$ poly \cap coNP/poly.
> Nonadaptive black-box reductions are too strong to be useful for worst-case-to-average-case connections outside coNP/poly.
$>$ We need to use either non-black-box or adaptive reductions! We exploit the efficiency of an oracle using "meta-complexity".

Outline

1. Toward Excluding Heuristica
2. Limits of Black-Box Reductions
3. Our Results, Meta-Complexity, and Proof Techniques

Our Results

Main Theorems [H. STOC'21]

(1) UP $\ddagger \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \quad \Rightarrow \quad$ DistNP $\nsubseteq \operatorname{Avg} \mathrm{P}$
(2) $\mathrm{PH} \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \quad \Rightarrow \quad$ DistPH $\nsubseteq \operatorname{Avg} \mathrm{P}$
(3) NP $\nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \quad$ DistNP $\nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$
$>n$ denotes the length of inputs (encoded as binary strings).
$>\operatorname{Avg}_{\mathrm{P}} \mathrm{P}(\subseteq \operatorname{AvgP})$: the class of (L, \mathcal{D}) solvable by average-case polynomial-time algorithms whose running time can be "estimated."

Our Results

Inverting a size-verifiable oneway function in the worst-case

The hard distribution is the uniform distribution U or the tally distribution \mathcal{T}.
(1) $\operatorname{NTIME}_{\text {sv }}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \operatorname{coNP} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{1-n^{-c}}^{1} \mathrm{P}$
(2) $\operatorname{PHTIME}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \operatorname{PH} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{1-n^{-c}}^{1} \mathrm{P}$
(3) $\operatorname{NTIME}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \mathrm{NP} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$
$2^{n^{1-\delta}}$-time version of NP with success probability n^{-c}. (Refutation)

[^0]
Time-Bounded Kolmogorov Complexity

$>t$-time-bounded Kolmogorov complexity of x $\mathrm{K}^{t}(x):=$ (the length of a shortest program that prints x in t steps)

Examples

$\mathrm{K}^{t}(x) \leq n+O(1) \quad$ for $t \gg n$ and for every $x \in\{0,1\}^{n} . \quad \leftarrow$ print "x" $\mathrm{K}^{\infty}(x) \geq n-2 \quad$ with probability $\geq \frac{3}{4}$ over a random $x \sim\{0,1\}^{n}$.

Meta-Complexity - Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

MINKT [Ko'91] = "Compute the time-bounded Kolmogorov complexity"

- t-time-bounded Kolmogorov complexity of x
$\mathrm{K}^{t}(x):=$ (the length of a shortest program that prints x in t steps)
- $\operatorname{MINKT}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t}(x) \leq s\right\}$.
- GapMINKT $=\left(\Pi_{\mathrm{Yes}}, \Pi_{\mathrm{No}}\right) \quad$ An " $O(\log n)$-additive approximation" version

$$
\begin{aligned}
& \Pi_{\mathrm{Yes}}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t}(x) \leq s\right\} . \quad \text { p: some polynomial } \\
& \Pi_{\mathrm{No}}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{p(|x|+t)}(x)>s+\log p(|x|+t)\right\} .
\end{aligned}
$$

Meta-Complexity - Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

$$
\text { MINKT }^{A}\left[\mathrm{Ko'}^{\prime} 91\right]=\text { "Compute the } A \text {-oracle time-bounded Kolmogorov complexity" }
$$

- A-oracle t-time-bounded Kolmogorov complexity of x $\mathrm{K}^{t, A}(x):=\left(\right.$ the length of a shortest program M^{A} that prints x in t steps)
- $\operatorname{MINKT}^{A}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t, A}(x) \leq s\right\}$.

Remark: In general, we may have $A \Phi_{m}^{p}$ MINKT A.
It is easy to see MINKT ${ }^{A} \in \mathrm{NP}^{A}$.
Open: $\mathrm{NP} \leq$ MINKT? $\mathrm{NP} \leq \mathrm{MINKT}^{\mathrm{PH}}$?

Average-Case Complexity $=$ Meta-Complexity

Theorem [H. (FOCS'20)]

DistPH $\subseteq \operatorname{AvgP} \quad \Leftrightarrow \quad$ GapMINKT ${ }^{\text {PH }} \in P$

$>$ GapMINKT A : an $O(\log n)$-additive approximation version of MINKT ${ }^{A}$.
$>$ Corollary: A new technique of analyzing average-case complexity by meta-complexity.

Theorem [H. STOC'21]

$$
\text { (2') NP } \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow \text { DistPH } \nsubseteq \operatorname{AvgP}
$$

Universal Heuristic Scheme - A key notion in this work

$>$ A universal heuristic scheme is "universal" in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP \subseteq AvgP.

For every $L:\{0,1\}^{*} \rightarrow\{0,1\}$, the following are equivalent.

1. There is a universal heuristic scheme for L.
2. $\{L\} \times \mathrm{PSamp} \subseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$.
```
P-computable
average-case
    poly-time
```


The Definition of Universal Heuristic Scheme

$>$ Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

$$
\operatorname{cd}^{t}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{\infty}(x)
$$

$>(t, s)$-Time-Bounded Computational Depth

$$
\operatorname{cd}^{t, s}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{s}(x)
$$

$>$ An algorithm A is called a universal heuristic scheme for L if for some polynomial p, for every $x \in\{0,1\}^{*}$ and every $t \geq p(|x|)$,

1. $A(x, t)=L(x)$ and
2. $A(x, t)$ halts in time $2^{O\left(\mathrm{~cd}^{t, p(t)}(x)+\log t\right)}$.

Theorem [H. STOC'21]

(2') NP $\nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow$ DistPH $\nsubseteq \operatorname{AvgP}$

Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme A for L, then

$$
L \in \operatorname{DTIME}\left(2^{O(n / \log n)}\right)
$$

Proof Idea: Find a parameter t so that the input x is "computationally shallow" (i.e., $\mathrm{cd}^{t, p(t)}(x)=O(n / \log n)$). Proof: Consider the following telescoping sum for a parameter $I=\epsilon \log n(\epsilon>0$, constant):

$$
\begin{aligned}
& \operatorname{cd}^{t, p(t)}(x)+\operatorname{cd}^{p(t), p \circ p(t)}(x)+\cdots+\operatorname{cd}^{p^{I-1}(t), p^{I}(t)}(x)=\mathrm{K}^{t}(x)-\mathrm{K}^{p^{I}(t)}(x) \leq n+O(1) \\
& \Rightarrow \text { for some } i \in\{1,2, \ldots, I\}, \text { we have } \mathrm{cd}^{p^{i-1}(t), p^{i}(t)}(x) \leq \frac{n+O(1)}{I}=O\left(\frac{n}{\log n}\right) .
\end{aligned}
$$

Algorithm B :
Run $A(x, t), A(x, p(t)), A\left(x, p^{2}(t)\right), \ldots, A\left(x, p^{I-1}(t)\right)$ in parallel. Take the first one that halts, and output what it outputs.

Correctness: $B(x)=L(x)$ for every input x.

A universal heuristic scheme A for $L: \exists p(t)=t^{O(1)}$,

1. $A(x, t)=L(x)$
2. $A(x, t)$ runs in time $2^{o\left(\mathrm{~cd}^{t, p(t)}(x)+\log t\right)}$.
(The running time of $B) \lesssim \min _{i}\left\{2^{o\left(\operatorname{cd}^{p^{i-1}(t), p^{i}(t)}(x)+\log p^{i}(t)\right)}\right\} \leq 2^{O(n / \log n)}$

$$
\left(p^{I}(t) \lesssim n^{c^{I}} \leq 2^{O(n / \log n)} \text { for } I=\epsilon \log n\right)
$$

How we overcame limits of black-box reductions

Let $p(n)$ be the
runtime of AvgP.

DistPH \subseteq AvgP

$\xrightarrow{\left[\mathrm{H} . \text { FOCS' }^{\prime} 18, \text { CCC' }^{20]}\right.}$ GapMINKT ${ }^{\text {NP }} \in \mathrm{P}$


```
                                    [H. STOC'21]
```

 based on [H. ITCS'20, STOC'20]

$>$ The reduction is non-black-box because we exploit the efficiency of AvgP.
I.e., the proof is not subject to the barrier of [Bogdanov \& Trevisan'06].

Theorem [H. STOC'21]

(2') $\operatorname{NP} \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow$ DistPH $\nsubseteq \operatorname{AvgP}$

k-Wise Direct Product Generator [H. Stoc'20]

$$
\begin{aligned}
& \mathrm{DP}_{k}:\{0,1\}^{n} \times\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}^{n k+k} \\
& \qquad \mathrm{DP}_{k}\left(x ; z_{1}, \ldots, z_{k}\right)=\left(z_{1}, \ldots, z_{k},\left\langle z_{1}, x\right\rangle, \ldots,\left\langle z_{k}, x\right\rangle\right)
\end{aligned}
$$

A pseudorandom generator construction based on a "hard" truth table x that extends seed z by k bits.
$\left\langle z_{i}, x\right\rangle$: the inner product between z_{i} and x modulo 2 .
A Reconstruction Property of DP_{k} : (under DistNP \subseteq AvgP or a derandomization assumption)
For every oracle $D:\{0,1\}^{n k+k} \rightarrow\{0,1\}$ and every $x \in\{0,1\}^{n}$, if $\mathrm{K}^{t, D}(x) \geq k+O(\log n)$, then $\mathrm{DP}_{k}(x ;-)$ is pseudorandom against D; that is,

$$
\operatorname{Pr}_{z \sim\{0,1\}^{n k}}\left[D\left(\mathrm{DP}_{k}(\boldsymbol{x} ; \mathbf{z})\right)=1\right] \approx \operatorname{Pr}_{w \sim\{0,1\}^{n k+k}}[D(w)=1] .
$$

The Key Point: (The advice complexity of $\left.\mathrm{DP}_{k}\right)=k+O(\log n)$

Claim: DistNP \subseteq AvgP \Rightarrow GapMINKT $\in P$

$>$ For simplicity, $t:=n^{2}$.
$>$ Consider the following distributional problem (MINKT, \mathcal{U}^{\prime}) \in DistNP:
Given $x \sim\{0,1\}^{n}$ as input, decide whether $\mathrm{K}^{t}(x)<n-2$ or not.
$>$ Let A be an errorless heuristic algorithm that solves (MINKT, U^{\prime}) with probability $\geq 1-o(1)$.
$A(x)$ outputs the correct answer or \perp ("time out").

$$
\mathrm{K}^{t}(x)<n-2 \Rightarrow A(x) \in\{1, \perp\}
$$

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}[A(x)=\perp] \leq o(1)
$$

> A randomized algorithm B for solving GapMINKT:
(YES case)

$$
B\left(x, 1^{s}\right):=1 \Leftrightarrow A\left(\operatorname{DP}_{k}(x ; z)\right) \in\{1, \perp\} \text { for a random } z \sim\{0,1\}^{n k+k} \text { and } k:=s+O(\log n) .
$$

(No case) $\quad \mathrm{K}^{t^{\prime}}(x) \gg s+O(\log n)=k \Rightarrow \operatorname{Pr}_{z}\left[A\left(\mathrm{DP}_{k}(x ; z)\right) \in\{1, \perp\}\right] \approx \underset{w}{\operatorname{Pr}}[A(w) \in\{1, \perp\}] \leq \frac{1}{4}+o(1)$

$$
\begin{aligned}
\mathrm{K}^{t}(x) \leq s & \Rightarrow \mathrm{~K}^{2 t}\left(\mathrm{DP}_{k}(x ; z)\right) \leq \mathrm{K}^{t}(x)+|z|+O(1) \leq s+n k+O(1) \ll k+n k-2 . \\
& \Rightarrow A\left(\operatorname{DP}_{k}(x ; z)\right) \in\{1, \perp\} \text { with probability } 1
\end{aligned}
$$

This is a non-black-box reduction: $t^{\prime} \approx($ the running time of $A)=\operatorname{poly}(t, n)$.
GapMINKT is a meta-computational problem!

Summary and Open Questions

> Meta-complexity is a powerful tool to analyze average-case complexity.

- Especially because it allows us to overcome the limits of black-box reductions
$>$ A lot of interesting questions remain open:
- Non-relativizing proof techniques in this context?
- NP-hardness of GapMINKT
- Can we prove NP $\nsubseteq \operatorname{DTIME}\left(2^{o(n)}\right) \Longrightarrow$ DistNP \nsubseteq AvgP?
- Does the exponential-time hypothesis (ETH) imply DistPH \nsubseteq AvgP?
- Can we prove PH \ddagger io-DTIME $\left(2^{o(n)}\right) \Rightarrow$ DistPH \ddagger io-AvgP?

Viola's barrier comes into play in this setting!

[^0]: $\mathcal{T}:=\left\{\mathcal{J}_{n}\right\}_{n \in \mathbb{N}} ; \mathcal{T}_{n}$ is the singleton distribution on 1^{n}.

