Indistinguishability Obfuscation and Learning Problems

Aayush Jain NTT Research, CMU (Fall 2022)

Indistinguishability Obfuscation (i) [DH 76, BGIRSVY 01]

int main()
{
 //say hello
 cout << "Hello C++" << endl;</pre>

y

 \mathcal{X}

system("PAUSE");
return 0;

ioo
indistinguishability Obfuscator
(Efficient compiler)

Cefficient compiler)

Cefficient compiler
C

(same input-output behavior)

 \mathcal{X}

Indistinguishability Obfuscation (i O)[DH 76, BGIRSVY 01]

Indistinguishability Obfuscation (iO) [DH 76, BGIRSVY 01]

Same Input-Output Behavior

- Common Sense Requirements: • Running times
- Description size

Different Implementations

Indistinguishability Obfuscation (i) [DH 76, BGIRSVY 01]

Hides implementation differences!

Hard to distinguish \approx_{c}

Indistinguishability Obfuscation (i O)[DH 76, BGIRSVY 01]

Functionally

Hides implementation differences!

Hard to distinguish \approx_{c}

Applications: Indistinguishability Obfuscation (iO) [SW 14, 100's of works]

Deniable Encryption Functional Encryption Two round MPC

i0

Public-Key Encryption

Signatures, Short-Signatures

NIZK, NIWI Homomorphic Encryption

Homomorphic Encryption ABE, IBE

Succinct Garbled RAM

Pre-*i o* **applications**!

One-way functions with poly hardcore bits Witness Encryption Quantum Money

Hardness of Nash-Equilibrium

Fiat-Shamir Heuristic Correlation-Intractable Hash Functions

Multi-Party Key Exchange

Universal Samplers

Succinct Arguments

Brave new world!

Problems Used to Construct i0

Using Pairing Groups / Elliptic Curves

[LT 18, AJLMS 19, Agr 19, JLMS 19....]

[JLS 20, JLS 21]

Computational Problems: Boolean PRG in NC^0 Learning Parity with Noise over \mathbb{Z}_{p} Elliptic Curve Cryptography

- Well studied assumptions
- Elliptic curve crypto broken in quantum polynomial time

Constructions of Indistinguishability Obfuscation [GGHRSW 13 ++]

Both styles, not feasible for implementation yet.

Lattice Decoding Only

[Mmaps, BDGM 20]

[WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]

Computational Problems:

LWE ++ (LWE + structured leakage)

- New, exciting and needs analysis
- Holy grail: a construction from LWE alone

• Also important: LWE+well understood leakage

Problems Used to Construct i0

[JLS 20, JLS 21]

Using Pairing Groups / Elliptic Curves

[LT 18, AJLMS 19, Agr 19, JLMS 19....]

Computational Problems: Boolean PRG in NC^0

Learning Parity with Noise over \mathbb{Z}_{i}

Elliptic Curve Cryptography

- Well studied assumptions
- Elliptic curve crypto broken in quantum polynomial time

Constructions of Indistinguishability Obfuscation [GGHRSW 13 ++]

Both styles, not feasible for implementation yet.

Lattice Decoding Only

[Mmaps, BDGM 20]

[WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]

Computational Problems:

LWE ++ (LWE + structured leakage)

- New, exciting and needs analysis
- Holy grail: a construction from LWE alone

• Also important: LWE+well understood leakage

Boolean PRGs in NC⁰ Computable by: Constant-depth circuits. Polynomial Stretch: $m \ge n^{1+\Omega(1)}$ Cryptographic Security: $\{G(\vec{x})\} \approx_c \{\vec{r}\}$ For any polynomial time attacker \mathcal{A} , $\Pr_{x \leftarrow \{0,1\}^n} [\mathscr{A}(G(x)) = 1] - \Pr_{r \leftarrow \{0,1\}^m} [\mathscr{A}(r) = 1] \le \mathsf{CRYPTOSMALL} = 2^{-n^{\Omega(1)}}$

Input: $\overrightarrow{x} \in \{0,1\}^n$

Constant-Depth Function $G: \{0,1\}^n \to \{0,1\}^m$

Output: $\overrightarrow{y} \in \{0,1\}^m$

Extensively studied [Gol 00, CM 01, MST 03, IKOS 08, ABR 12, BQ 12, App 12, KMOW 17, CDM+18....].

How to Build Boolean PRGs in NC⁰

A general recipe by Goldreich in 2001.

A balanced constant local predicate $P: \{0,1\}^d \to \{0,1\}$

 $f_{P,H}(\vec{x} \in \{0,1\}^n) = (y_1, ..., y_m)$ $y_i = P(x_{i_1}, ..., x_{i_d})$ where $S_i = \{i_1, ..., i_d\}$

PRG Conjecture: Properly chosen *H* and $P \Longrightarrow f_{P,H}$ is a secure PRG

Hypergraph $H = (S_1, \dots, S_m)$

Random d-CSPs

A balanced constant local predicate $P: \{0,1\}^d \rightarrow \{0,1\}$ and a random Hd > 3

Planted Distribution:

- Sample $x^* \leftarrow \{0,1\}^n$
- *m* constraints, one per $S_i = \{i_1, \dots, i_d\}$.
 - 1. Sample $\overrightarrow{c}_i \leftarrow \{0,1\}^d$, and flip, from $Ber(\rho)$
 - 2. Output $\overrightarrow{c}_i, b_i = P(\overrightarrow{c}_i \oplus x^*|_{S_i}) \oplus \text{flip}_i$

Random Distribution:

- *m* constraints, one per $S_i = \{i_1, \dots, i_d\}$.
 - 1. Sample $\overrightarrow{c}_i \leftarrow \{0,1\}^d$, and r_i from Ber(0.5)
 - 2. Output $\overrightarrow{c}_i, b_i = r_i$

Hypergraph $H = (S_1, \ldots, S_m)$ $m = \Delta n$

d neighbors

3

n

 S_1

 S_{2}

 S_m

Problems about Random d-CSPs

Objective: Val(x) = Number of constraints satisfied by x

Refutation: Certify random instances Find an algorithm R that on input Ψ : Output $v \ge \mathsf{OPT}$ If Random: with $\Omega(1)$ probability $v \leq m(1-\delta)$ for $\delta > \rho$

Search: Find x' s.t. $Val(x') \ge OPT [planted]$ $OPT = max_{r}Val(x)$

OPT[planted] $\geq m(1 - \rho - o(1))$ with high probability OPT[random] $\leq m(0.5 + o(1))$ with high probability

> Distinguishing: Distinguish planted vs random with $\Omega(1)$ probability

Problems about Random d-CSPs

Search: Find x' s.t. $Val(x') \ge OPT [planted]$

Refutation: Certify random instances Find an algorithm R that on input Ψ : Output $v \ge \mathsf{OPT}$ If Random: with $\Omega(1)$ probability $v \leq m(1-\delta)$ for $\delta > \rho$

Hardness:

- SEARCH>DISTINGUISHING
- REFUTATION>DISTINGUISHING
- DISTINGUISHING>SEARCH (see Benny's talk)

Feige's Hypothesis:

"When $m \geq \Delta n$ for a constant Δ , then there is no polynomial time refutation for random 3-SAT"

Distinguishing: Distinguish planted vs random with $\Omega(1)$ probability

• Exist P such that best known algorithms subexponential when $m = n^{1+\Omega(1)}$ (even $m = n^{d/2-\epsilon}$)

Building PRGs from CSP

- High level idea: Use an appropriate CSP to build a PRG, constant $d\geq 3$, $m\geq n^{1+\Omega(1)}$
- ssue 1: CSP where distinguishing success is cryptographically SMALL
- Random *H* do not satisfy required expansion properties with probability $\frac{1}{n^{O(1)}}$
- For example, $S_1 = S_2$ with noticeable probability, and y_1, y_2 might be correlated.
- Reasonable to expect SMALL probability if Graph is "nice".
- **Issue 2:** Which predicate to use?
- d-XOR, as hard as any d-CSP.

One predicate to rule them all: d-XOR

Consider $P(x_1, ..., x_k)$ there exists $S \subseteq [k]$ with |S| = d such that: $\mathbb{E}_{x \in \{0,1\}^k} P(x_1, \dots, x_k) \oplus_{i \in \mathbb{N}} P(x_k, \dots,$

Can transform planted instance with $m(1 - \rho - o(1))$ satisfied constraints to a d-XOR instance with $m(0.5 + 2^{-k/2} - \rho - o(1))$ satisfied constraints

Strong Refutation for $d \rightarrow XOR \implies$ weak refutation for P

$$\sum_{i=1}^{\infty} \left| \frac{1}{2} \right| \ge 2^{-k/2}$$

Random *d*-XOR

Long history of study. Let's say $m = n^{d/2-\epsilon}$

CSP Algorithms: • Sum-of-Squares: [G 01, S08, OW14, AOW 15, KMOW 17]

- Statistical Query Model: [FPV 15]
- Restricted models (such as AC^0 circuits, myopic models): [ABR 12, App 15]

Runtime: $2^{n^{\Omega_d(\epsilon)}}$

Does not care about noise (any d wise independent predicate suffices) Threshold behavior: Easily broken when $m = \tilde{\Omega}(n^{d/2})$ First candidate: Use noiseless d XOR! Will avoid these attacks for $m = n^{d/2 - \epsilon}$

Problems due to lack of noise: Algebra strikes

- Equations are non-noisy. Gaussian elimination can just invert. Prone to Algebra.
- Didn't apply to CSPs because of "noise".
- Idea: Adding Non-Linearity [MST 03]:

 $P(x_1, \ldots, x_d) = x_1 \oplus \ldots \oplus x_d$

Mimic CSP noise.

 $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{NL}(x_{d+1}, \dots, x_{2d})$

Examples of NL: AND, OR, Majority....

Algebraic Attacks

 $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{NL}(x_{d+1}, \dots, x_{2d})$

Question: How to choose, NL, to prove security against Linear Algebra? We need $m = n^{1+\Omega(1)}$ but preferably we'd like to support $m = n^{\Omega(d)}$. Ideally if $n^{d/2}$ possible?

Polynomial time CSP algorithms fail even when $m = n^{d/2-\epsilon}$

Types of Algebraic Attacks

Linear Bias [CM01, MST 03,...]

Goal: Find Test $\subseteq [m]$ such that $\bigoplus_{i \in \text{Test}} P(x_{S_i})$ is biased.

 $f_{H,P}$ is small bias generator, $\forall \text{Test} \subseteq [m]$ $\left| \mathbb{E}_{x} [\bigoplus_{i \in \mathsf{Test}} y_{i}] - 0.5 \right| \leq 2^{-n^{\Omega(1)}}$

lower-bounds.

Linear Attacks: Choice of NL is important

Recall: $f_{H,P}$ is secure against linear attacks if (small bias generator), $\forall \mathsf{Test} \subseteq [m] \left| \mathbb{E}_x[\bigoplus_{i \in \mathsf{Test}} y_i] - 0.5 \right| \le 2^{-n^{\Omega(1)}}$

 $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{NL}(x_{d+1}, \dots, x_{2d}) \quad m = n^{\Omega(d)}$

Proofs exploit structure of NL and expansion of the graph in a crucial manner.

Linear Attacks: How to Choose NL?

Example:

 $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{NL}(x_{d+1}, \dots, x_{2d})$

Arbitrary NL? Partially yes.

[ABR 12]: $d \ge 3$ and arbitrary NL \implies security for $m = n^{1.25-\epsilon}$

Question: Large degree? What about NL = $x_{d+1} \dots x_{2d}$?

Large degree does not imply small Bias [AL 16]

Recall:

 $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus x_{d+1} \cdots x_{2d}$

Step 1: Collect $t = \Omega(n^{1.1})$ outputs $S_i = \{i_1, ..., i_d, 1, i_d\}$ $y_i = x_{i_1} \oplus \ldots \oplus x$

Broken by linear attacks when $m = n^{2.1}$ (independent of d)

$$\{y_1, ..., y_t \text{ where } y_i = P(x|_{S_i}) \text{ and } \\ = d+2, i_{d+3}, ..., i_{2d} \}$$

 $\{x_{i_d} \bigoplus x_1 x_{i_{d+2}} \dots x_{i_{2d}}\}$

Step 2: If $x_1 = 0$ (w.p. 0.5) then, becomes a linear equation in rest of the variables. Solve for x

What Criteria is Needed for Small Bias?

- r-Bit-Fixing degree needs to be high. r-Bit-Fixing degree (P)= e if minimum degree of P for any fixing of r bits is e
 - E.g. 1-Bit-Fixing degree of P with $NL = x_{d+1}x_{d+2} \dots x_{2d}$ is 1.
- Thm [AL 16]: If r-bit fixing degree of P is e, then $f_{H,P}$ Broken by linear attacks $m > n^{r+e}$.
- Thm [AL 16]: If r-bit fixing degree of P is e where, $r, e = \Omega(d)$ then, $f_{H,P}$ is small bias generator when $m = n^{\Omega(d)}$
 - Conclusion: Use NL with large bit fixing degree such as majority d/4 bit fixing degree d/4.
 - A huge gap between attacks, and what we can prove secure.

Algebraic Refutation Attacks [AL 16]

Is Small Bias enough to argue security? No!

Can find low degree e Q, R such that:

 $OR(x_1, x_2, ..., x_d) \cdot x_1 = x_1$

What if $P = \bigoplus_{i \in [d]} x_i \bigoplus NL(x_{d+1}, \dots, x_{2d})$ has large bit fixing degree but,

Minimum such: rational degree

PQ = R

Form equations: $y_i Q(x|_{S_i}) = R(x|_{S_i})$

Thm [AL 16]: Broken when $m = n^e$; Use linearization/polynomial calculus refutations

Algebraic Refutation Attacks [AL 16]

How to build counterexamples?

Observation: Use OR

- $P(x_1, \dots, x_{d+d^2}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{OR}_{i \in [d]}(\bigoplus_{i \in [d]} x_{d+(i-1)d+i})$
 - d-1 bit fixing degree d
 - Thm [AL 16]: $f_{H,P}$ is small bias generator when $m = n^{\Omega(d)}$.
 - But broken when $m \ge n^2$
- [AL 16]: For any predicate with Rational degree e, $f_{H,P}$ secure when $m \leq n^{\Omega(e)}$.
 - Gap exists between attacks and lower bounds

Summary Optimal predicate

- $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{NL}(x_{d+1}, \dots, x_{2d})$ ndence CSP attack fails when $m < n^{d/2 - \epsilon}$
- 1. d wise-independence, CSP attack fails when $m < n^{d/2-\epsilon}$ 2. NL must have high bit fixing and Rational Degree High rational degree \implies high bit fixing degree. Use Majority. Rational degree of $\lceil d/2 \rceil$ $P(x_1, \dots, x_{2d}) = x_1 \oplus \dots \oplus x_d \oplus \mathsf{MAJ}(x_{d+1}, \dots, x_{2d})$ No known heuristic attacks: $m = n^{d/2 - \epsilon}$ Provable bounds much weaker: $m \approx n^{d/38}$

Open Questions

Formal connections between Random CSP and PRGs PRGs as secure as CSPs?

Tighter Characterization? Fill differences between attacks and proofs?

Other attacks?

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

 $\leftarrow \mathbb{Z}^{1} \leftarrow \text{sparse error}_{\text{Error: Each coordinate } e_{i}}$

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

 (N, M, ρ, p) -Search LPN: Decoding problem. Find \vec{s} . Unique when $M = O_{\rho}(N)$. (N, M, ρ, p) -Decision LPN: Distinguish between (A, b) and (A, u).

Use in Cryptography [BFKL 93, IPS 09]

 \mathbb{F}_2 is used more (but \mathbb{F}_p is also common). Typically samples are $M = N^{\Omega(1)}$ $\rho = O\left(\frac{1}{N}\right)$, broken in polynomial time

High-noise $\rho = \Theta(1)$

$$\rho = \frac{1}{N^{\delta}}$$

 $\rho = 1$, perfectly indistinguishable

Search vs Distinguishing Claim: Distinguishing > Decoding/Search [BFKL 94, Reg 05, MM 10, MP 13] Simple approach: Using Distinguisher to guess bits of secret \vec{s} Each LPN sample: $\vec{a} = (a_1, ..., a_N), \langle \vec{a}, \vec{s} \rangle + e \mod 2$ $\overrightarrow{a}', \langle \overrightarrow{a}, \overrightarrow{s} \rangle + e - a_1 s_{1,guess}$ $\overrightarrow{a}' = (a_2, \dots, a_N)$

If guess is correct, we get LPN samples in dimension N-1, else we get random.

Reduction run time/sample complexity poly(p

Sample preserving [MM 10]

$$(\lambda, \frac{1}{\epsilon}, N, M)$$

Credit: Geffroy Couteau Security of LPN over Large Fields

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

Information Set Decoding Attacks

- Prange's algorithm [Prange62]
- Stern's variant [ICIT:Stern88]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]

• Classical Techniques

Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN has been published in the literature

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

• Other Attacks

- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]

How to Solve LPN: Guessing Algorithm

 $\Pr[N \text{ equations are errorless}] = (1 - \rho)^N$

Expected run time= $(1 - \rho)^{-N}$ poly(N)

Blum-Kalai-Wasserman [2003]

Main Result: Can solve \mathbb{F}_2 LPN with constant

 $a_1, \langle a_1, s \rangle + e_1$

 $t = O(\sqrt{N})$

sparse vector $\overrightarrow{x} \in \{0,1\}^N$ Such that $\sum x_i a_i = (1,0,...,0)$

Can be found whp if $M \ge 2^{O(N/\log N)}$ In time poly(m)

Open question: Algorithm for large fields?

 $a_M, \langle a_M, s \rangle + e_1$

Modifications: [Lyu 05] $2^{O(N/\log \log N)}$ time algorithm for $M = N^{1+\epsilon}$

Open Questions

- Matching result for large fields?
- Other algorithms?
- Worst-case hardness? [BLVW 19, YZ 19]
- How do LPN with various prime fields relate?

'Z 19] ds relate?