Indistinguishability Obfuscation and Learning Problems

Aayush Jain

NTT Research, CMU (Fall 2022)

Indistinguishability Obfuscation (iO) [DH 76, BGIRSVY 01]

(same input-output behavior)

(Polynomially slower)
Hides implementation differences!

Indistinguishability Obfuscation (iO)

 [DH 76, BGIRSWY 01]

Functionally

Indistinguishability Obfuscation (iO) [DH 76, BGIRSVY 01]

Same
Input-Output Behavior
Common Sense
Requirements:

- Running times
- Description size

Different
Implementations

Indistinguishability Obfuscation (iO) [DH 76, BGIRSVY 01]

Functionally 三

Functionality Preserving

Hard to distinguish \approx_{c}

Functionality Preserving

Hides implementation differences!

Indistinguishability Obfuscation (iO) [DH 76, BGIRSVY 01]

Functionally 三

Hard to distinguish \approx_{c}

Hides implementation differences!

Applications: Indistinguishability Obfuscation (i@) [SW 14, 100's of works]

Brave new world!

Problems Used to Construct $i \odot$

Problems Used to Construct $i \odot$

Boolean PRGs in NC^{0}

Computable by: Constant-depth circuits.
Polynomial Stretch: $m \geq n^{1+\Omega(1)}$
Cryptographic Security:

Input: $\vec{x} \in\{0,1\}^{n}$

Output: $\vec{y} \in\{0,1\}^{m}$

$$
\{G(\vec{x})\} \approx_{c}\{\vec{r}\}
$$

For any polynomial time attacker \mathscr{A},
$\left|\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[\mathscr{A}(G(x))=1]-\operatorname{Pr}_{r \leftarrow\{0,1\}^{m}}[\mathscr{A}(r)=1]\right| \leq$ CRYPTOSMALL $=2^{-n^{Q(1)}}$

How to Build Boolean PRGs in NC^{0}

A general recipe by Goldreich in 2001.
A balanced constant local predicate

$$
P:\{0,1\}^{d} \rightarrow\{0,1\}
$$

$f_{P, H}\left(\vec{x} \in\{0,1\}^{n}\right)=\left(y_{1}, \ldots, y_{m}\right)$
$y_{i}=P\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)$ where $S_{i}=\left\{i_{1}, \ldots, i_{d}\right\}$

PRG Conjecture:
Properly chosen H and $P \Longrightarrow f_{P, H}$ is a secure PRG

Hypergraph $H=\left(S_{1}, \ldots, S_{m}\right)$

Random d-CSPs

A balanced constant local predicate $P:\{0,1\}^{d} \rightarrow\{0,1\}$ and a random H $d \geq 3$

Planted Distribution:

- Sample $x^{*} \leftarrow\{0,1\}^{n}$
- m constraints, one per $S_{i}=\left\{i_{1}, \ldots, i_{d}\right\}$.

1. Sample $\vec{c}_{i} \leftarrow\{0,1\}^{d}$, and flip from $\operatorname{Ber}(\rho)$
2. Output $\vec{c}_{i}, b_{i}=P\left(\left.\vec{c}_{i} \oplus x^{*}\right|_{S_{i}}\right) \oplus$ flip $_{i}$

Random Distribution:

- m constraints, one per $S_{i}=\left\{i_{1}, \ldots, i_{d}\right\}$.

1. Sample $\vec{c}_{i} \leftarrow\{0,1\}^{d}$, and r_{i} from $\operatorname{Ber}(0.5)$
2. Output $\vec{c}_{i}, b_{i}=r_{i}$

Hypergraph $H=\left(S_{1}, \ldots, S_{m}\right)$

$$
m=\Delta n
$$

Problems about Random d-CSPs

Objective: $\operatorname{Val}(x)=$ Number of constraints satisfied by x

$$
\mathrm{OPT}=\max _{x} \operatorname{Val}(x)
$$

OPT[planted] $\geq m(1-\rho-o(1))$ with high probability OPT[random] $\leq m(0.5+o(1))$ with high probability

```
    Search:
    Find }\mp@subsup{x}{}{\prime}\mathrm{ s.t.
    Val(x) \geqOPT [planted]
```

Distinguishing:
Distinguish planted vs random with $\Omega(1)$ probability

Find an algorithm R that on input Ψ :
Output $v \geq$ OPT
If Random: with $\Omega(1)$ probability

$$
v \leq m(1-\delta) \text { for } \delta>\rho
$$

Problems about Random d-CSPs

Search:
Find x^{\prime} s.t.
$\operatorname{Val}(x) \geq$ OPT [planted]

> Refutation:
> Certify random instances
> Find an algorithm R that on input Ψ :
> Output $v \geq$ OPT
> If Random: with $\Omega(1)$ probability
> $v \leq m(1-\delta)$ for $\delta>\rho$

Distinguishing:
Distinguish planted vs random with $\Omega(1)$ probability

Hardness:

- SEARCH>DISTINGUISHING
- REFUTATION>DISTINGUISHING
- DISTINGUISHING>SEARCH (see Benny's talk)

Feige's Hypothesis:
"When $m \geq \Delta n$ for a constant Δ, then there is no polynomial time refutation for random 3-SAT"

- Exist P such that best known algorithms subexponential when $m=n^{1+\Omega(1)}$ (even $m=n^{d / 2-\epsilon}$)

Building PRGs from CSP

High level idea: Use an appropriate CSP to build a PRG, constant $d \geq 3, m \geq n^{1+\Omega(1)}$

Issue 1: CSP where distinguishing success is cryptographically SMALL
Random H do not satisfy required expansion properties with probability $\frac{1}{n^{O(1)}}$
For example, $S_{1}=S_{2}$ with noticeable probability, and y_{1}, y_{2} might be correlated.
Reasonable to expect SMALL probability if Graph is "nice".
Issue 2: Which predicate to use?
$d-\mathrm{XOR}$, as hard as any d-CSP.

One predicate to rule them all: d-XOR

Consider $P\left(x_{1}, \ldots, x_{k}\right)$ there exists $S \subseteq[k]$ with $|S|=d$ such that:

$$
\left|\mathbb{E}_{x \in\{0,1\}^{k}} P\left(x_{1}, \ldots, x_{k}\right) \oplus_{i \in S} x_{i}-\frac{1}{2}\right| \geq 2^{-k / 2}
$$

Can transform planted instance with $m(1-\rho-o(1))$ satisfied constraints to a d-XOR instance with $m\left(0.5+2^{-k / 2}-\rho-o(1)\right)$ satisfied constraints

Strong Refutation for $d-\mathrm{XOR} \Longrightarrow$ weak refutation for P

Random $d-\mathrm{XOR}$

Long history of study. Let's say $m=n^{d / 2-c}$

CSP Algorithms:

- Sum-of-Squares: [G 01, S08, OW14, AOW 15, KMOW 17]
- Statistical Query Model: [FPV 15]
- Restricted models (such as $A C^{0}$ circuits, myopic models): [ABR 12, App 15]

Runtime: $2^{n^{\Omega_{d}(t)}}$
Does not care about noise (any d wise independent predicate suffices)
Threshold behavior: Easily broken when $m=\tilde{\Omega}\left(n^{d / 2}\right)$
First candidate: Use noiseless d XOR!
Will avoid these attacks for $m=n^{d / 2-\epsilon}$

Problems due to lack of noise: Algebra strikes

$$
P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus \ldots \oplus x_{d}
$$

Equations are non-noisy. Gaussian elimination can just invert. Prone to Algebra.

Didn't apply to CSPs because of "noise".

Idea: Adding Non-Linearity [MST 03]:

$$
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \operatorname{NL}\left(x_{d+1}, \ldots, x_{2 d}\right)
$$

Examples of NL: AND, OR, Majority....

Algebraic Attacks

$$
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \mathrm{NL}\left(x_{d+1}, \ldots, x_{2 d}\right)
$$

Polynomial time CSP algorithms fail even when $m=n^{d / 2-\epsilon}$

Question: How to choose, NL, to prove security against Linear Algebra?
We need $m=n^{1+\Omega(1)}$ but preferably we'd like to support $m=n^{\Omega(d)}$. Ideally if $n^{d / 2}$ possible?

Types of Algebraic Attacks

Goal: Find Test $\subseteq[m]$ such that
 $\oplus_{i \in \text { Test }} P\left(x_{S_{i}}\right)$ is biased.

$f_{H, P}$ is small bias generator, $\forall T e s t \subseteq[m]$

$$
\left|\mathbb{E}_{x}\left[\oplus_{i \in \text { Test }} y_{i}\right]-0.5\right| \leq 2^{-n^{2(1)}}
$$

Polynomial Calculus [AL 16]
Goal: Refutations via
high degree algebraic manipulations

Prove algebraic refutation lower-bounds.

Linear Attacks: Choice of NL is important

Recall: $f_{H, P}$ is secure against linear attacks if (small bias generator),

$$
\begin{array}{r}
\forall \text { Test } \subseteq[m]\left|\mathbb{E}_{x}\left[\oplus_{\left.i \in \text { Test } y_{i}\right]}\right]-0.5\right| \leq 2^{-n^{\Omega(1)}} \\
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \mathrm{NL}\left(x_{d+1}, \ldots, x_{2 d}\right) \quad m=n^{\Omega(d)}
\end{array}
$$

Proofs exploit structure of NL and expansion of the graph in a crucial manner.

Linear Attacks: How to Choose NL?

Example:
$P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \mathrm{NL}\left(x_{d+1}, \ldots, x_{2 d}\right)$

Arbitrary NL? Partially yes.
[ABR 12]: $d \geq 3$ and arbitrary NL \Longrightarrow security for $m=n^{1.25-\epsilon}$

Question: Large degree? What about $\mathrm{NL}=x_{d+1} \ldots x_{2 d}$?

Large degree does not imply small Bias [AL 16]

Recall:

$$
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus x_{d+1} \cdots x_{2 d}
$$

$$
\text { Broken by linear attacks when } m=n^{2.1} \text { (independent of } d \text {) }
$$

Step 1: Collect $t=\Omega\left(n^{1.1}\right)$ outputs y_{1}, \ldots, y_{t} where $y_{i}=P\left(\left.x\right|_{S_{i}}\right)$ and

$$
\begin{aligned}
S_{i} & =\left\{i_{1}, \ldots, i_{d} 1, i_{d+2}, i_{d+3}, \ldots, i_{2 d}\right\} \\
y_{i} & =x_{i_{1}} \oplus \ldots \oplus x_{i_{d}} \oplus x_{1} x_{i_{d+2}} \ldots x_{i_{d}}
\end{aligned}
$$

Step 2: If $x_{1}=0$ (w.p. 0.5) then, becomes a linear equation in rest of the variables. Solve for x

What Criteria is Needed for Small Bias?

r-Bit-Fixing degree needs to be high.
r-Bit-Fixing degree (P)=e if minimum degree of P for any fixing of r bits
is e
E.g. 1-Bit-Fixing degree of P with $N L=x_{d+1} x_{d+2} \ldots x_{2 d}$ is 1 .

Thm [AL 16]: If r-bit fixing degree of P is e, then $f_{H, P}$ Broken by linear attacks $m>n^{r+e}$.

Thm [AL 16]: If r-bit fixing degree of P is e where, $r, e=\Omega(d)$ then, $f_{H, P}$ is small bias generator when

$$
m=n^{\Omega(d)} .
$$

Conclusion: Use NL with large bit fixing degree such as majority $d / 4$ bit fixing degree $d / 4$.
A huge gap between attacks, and what we can prove secure.

Algebraic Refutation Attacks [AL 16]

Is Small Bias enough to argue security? No!

What if $P=\oplus_{i \in[d]} x_{i} \oplus \mathrm{NL}\left(x_{d+1}, \ldots, x_{2 d}\right)$ has large bit fixing degree but,
Can find low degree $e Q, R$ such that:
Minimum such: rational degree

$$
\begin{gathered}
P Q=R \\
O R\left(x_{1}, x_{2}, \ldots, x_{d}\right) \cdot x_{1}=x_{1}
\end{gathered}
$$

Form equations: $y_{i} Q\left(\left.x\right|_{S_{i}}\right)=R\left(\left.x\right|_{S_{i}}\right)$
Thm [AL 16]: Broken when $m=n^{e}$; Use linearization/polynomial calculus refutations

Algebraic Refutation Attacks [AL 16]

How to build counterexamples?

Observation: Use $O R$

$$
P\left(x_{1}, \ldots, x_{d+d^{2}}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \mathrm{OR}_{i \in[d]}\left(\oplus_{j \in[d]} x_{d+(i-1) d+j}\right)
$$

$d-1$ bit fixing degree d
Thm [AL 16]: $f_{H, P}$ is small bias generator when $m=n^{\Omega(d)}$.

$$
\text { But broken when } m \geq n^{2}
$$

[AL 16]: For any predicate with Rational degree e, $f_{H, P}$ secure when $m \leq n^{\Omega(e)}$.
Gap exists between attacks and lower bounds

Summary

OPTIMAL PREDICATE

$$
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \operatorname{NL}\left(x_{d+1}, \ldots, x_{2 d}\right)
$$

1. d wise-independence, CSP attack fails when $m<n^{d / 2-\varepsilon}$
2. NL must have high bit fixing and Rational Degree

High rational degree \Longrightarrow high bit fixing degree.
Use Majority. Rational degree of $\lceil d / 2\rceil$

$$
P\left(x_{1}, \ldots, x_{2 d}\right)=x_{1} \oplus \ldots \oplus x_{d} \oplus \operatorname{MAJ}\left(x_{d+1}, \ldots, x_{2 d}\right)
$$

No known heuristic attacks: $m=n^{d / 2-\epsilon}$
Provable bounds much weaker: $m \approx n^{d / 38}$

Open Questions

Formal connections between Random CSP and PRGs PRGs as secure as CSPs?

Tighter Characterization?
Fill differences between attacks and proofs?

Other attacks?

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

(N, M, ρ, p)-Search LPN: Decoding problem. Find \vec{s}.
Unique when $M=O_{\rho}(N)$.
(N, M, ρ, p)-Decision LPN: Distinguish between (A, b) and (A, u).

Use in Cryptography [BFKL 93, IPS 09]

\mathbb{F}_{2} is used more (but \mathbb{F}_{p} is also common). Typically samples are $M=N^{\Omega(1)}$
$\rho=O\left(\frac{1}{N}\right)$, broken in polynomial time $\rho=1$, perfectly indistinguishable

$$
\text { For iO } \rho=\frac{1}{N^{0.00001}}
$$

For Public-Key Encryption $\rho=O\left(N^{-0.5}\right)$

Search vs Distinguishing

Claim: Distinguishing > Decoding/Search [BFKL 94, Reg 05, MM 10, MP 13]
Simple approach: Using Distinguisher to guess bits of secret \vec{s}
Each LPN sample: $\vec{a}=\left(a_{1}, \ldots, a_{N}\right),\langle\vec{a}, \vec{s}\rangle+e \bmod 2$

$$
\begin{aligned}
& \vec{a}^{\prime},\langle\vec{a}, \vec{s}\rangle+e-a_{1} s_{1, \text { guess }} \\
& \vec{a}^{\prime}=\left(a_{2}, \ldots, a_{N}\right)
\end{aligned}
$$

If guess is correct, we get LPN samples in dimension $N-1$, else we get random.
Reduction run time/sample complexity poly $\left(p, \frac{1}{\epsilon}, N, M\right)$
Sample preserving [MM 10]

Credit: Geffroy Couteau

Security of LPN over Large Fields

A tremendous number of attacks on LPN has been published in the literature

- Statistical Decoding Attacks
- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKIO6]
- Debris-Tillich variant [ISIT:DT17]
- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Stern's variant [ICIT:Stern88]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Classical Techniques
- Low-deg approx [ITCS:ABGKR17]
- Gaussian Elimination attacks
- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]

How to Solve LPN: Guessing Algorithm

Quick and dirty calculatio -

$\operatorname{Pr}[N$ equations are errorless $]=(1-\rho)^{N}$
Expected run time $=(1-\rho)^{-N} \operatorname{poly}(N)$

Blum-Kalai-Wasserman [2003]

Main Result: Can solve \mathbb{F}_{2} LPN with constant

$$
t=O(\sqrt{N})
$$

$a_{M},\left\langle a_{M}, s\right\rangle+e_{1} \quad \begin{array}{r}\text { Sparse vector } \vec{x} \in\{0,1\}^{N} \\ \text { Such that } \sum_{i} x_{i} a_{i}=(1,0, . ., 0)\end{array}$
Modifications:

Can be found whp if $M \geq 2^{O(N / \log N)}$
In time poly(m)

Open Questions

- Matching result for large fields?
- Other algorithms?
- Worst-case hardness? [BLVW 19, YZ 19]
- How do LPN with various prime fields relate?

