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y1 ym

Pseudorandom Generator

X1 Xn

Expand n random bits into m>>n pseudorandom bits

OUTPUT

INPUT



y1 ym

Locally Computable PRGs

X1 Xn

yi= Q(x1,x2,x5)

Expand n random bits into m>>n pseudorandom bits 

each output depends on d=O(1) inputs

• Well studied problem [CM02,Alekh03,MST03,AIK04-6, …]

• For poly-long output length, only known candidates based: 

Random Local Functions [Goldreich00]

OUTPUT

INPUT



y1 ym

Random Local Functions are PRGs

X1 Xn

yi= Q(x1,x2,x5)

Parameters: locality d, predicate Q, output length m

• E.g., d=10, Q=XOR+MAJ and  m=n2

OUTPUT

INPUT

conjecture: for most graphs and properly chosen predicate Q, 

the resulting function is a pseudorandom generator

Choose iid m 

d-tuples 𝑆1, … , 𝑆𝑚 ← [𝑛]
𝑑



y1 ym

Random Local Functions are PRGs

X1 Xn

yi= Q(x1,x2,x5)

Variants:

• Stronger variant: for every sufficiently-good expander graph

- (t,0.9d)-expansion => pseudorandom against exp(Ω(𝑡))-time attacks?    

• Weaker variant:  there exists some graph

OUTPUT

INPUT

conjecture: for most graphs and properly chosen predicate Q, 

the resulting function is a pseudorandom generator



y1 ym

Random Local Functions are PRGs

X1 Xn

yi= Q(x1,x2,x5)

• Studied in [CEMT09,ABW10,A12,ABR12,BR11,BQ12,OW14,FPV15,…] See survey [A15]

• Before assuming crypto in P understand crypto by local functions

• Interesting cryptographic/complexity-theoretic applications [IKOS08,A12,…,JLS21]

- See Aayush’s talk 

OUTPUT

INPUT

conjecture: for most graphs and properly chosen predicate Q, 

the resulting function is a pseudorandom generator



Some Implications



y1 ym

CSP Perspective [AIK06]

X1 Xn

yi= Q(x1,x2,x5)
Constraints

Variables

View (G,y) as CSP: i-th constraint Q(x[Si])=yi

• y←PRG(x) then CSP is satisfiable

• y ← uniform then, whp, 𝑣𝑎𝑙𝑢𝑒 𝐶𝑆𝑃 ≪ 1

• 𝑚 = 𝜔 𝑛 and Q is balanced=> 𝑣𝑎𝑙𝑢𝑒 𝐶𝑆𝑃 ≈ 0.5



y1 ym

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

RLFs are PRGs

Distribution over CSPs which is: 

Hard to approximate/satisfy/refute

CSP Perspective [AIK06]



y1 ym

Learning Perspective [ABW10]

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

Define the function: 𝑔𝑥: 0,1
𝑑 log 𝑛 → {0,1}

• 𝑔𝑥 𝑖1, . . , 𝑖𝑑 = 𝑄 𝑥 𝑖1 , 𝑥 𝑖2 , … , 𝑥 𝑖𝑑

PAC-Learning:

Given m-1 random (inputs/output) pairs 

predict 𝑔𝑥 on fresh random input



y1 ym

Learning Perspective [ABW10]

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

Distribution over functions with domain 𝒏𝒅 which is: 

Hard to PAC-learn given 𝒎 = 𝒏𝒔 samples 

for some 1<s<d

RLFs are PRGs



Scaled-up Version [AR16]

X1 Xn

y= 

Q(xi1,…,xid)

HARD-WIRED

Distribution over functions which is: 

Hard to PAC-learn given any poly(n) uniform samples

Input:

𝑖1 ∈ 0,1
log 𝑛

…

𝑖𝑑 ∈ {0,1}
log 𝑛

Log(n)-local function

Log(n)-local function 𝑥[𝑖1]

…

𝑥[𝑖𝑑]

Q

d-local

RLFs are PRGs

𝑑 = 𝑂(log 𝑛),𝑚 = 𝑛𝜔 1

Supported by the 

“expanders are PRG” 

conjecture

depth-3 AC0



Scaled-up Version [AR16]

Distribution over depth-3 AC0 function which is: 

Hard to PAC-learn given any poly(n) uniform samples

Even given sub-exponential time

[LMN93] learning algorithm is tight 

(can’t learn AC0 over uniform samples in quasi-poly 

time given poly uniform samples)

RLFs are PRGs

𝑑 = 𝑂(log 𝑛),𝑚 = 𝑛𝜔 1



Simple PRF [AR16]

Weak-PRF from n bits to ෩Ω(n) bits computable by 

• AC0 circuit of depth-3 

• Linear-time in RAM model

y= Q(x1,x2,x5)OUTPUT

KEY

INPUT

Random inputs 

Random graph

RLFs are PRGs

𝑑 = 𝑂(log 𝑛),𝑚 = 𝑛𝜔 1



Handling non-random inputs? [AR16]

KEY

INPUT

Fast low-bias generator

Arbitrary polynomialy many inputs

 resulting graph is almost expanding

extractor



Fast PRF [AR16]

Strong-PRF from n bits to ෩Ω(n) bits computable by 

• Constant-depth circuit over AND, OR, MAJORITY

• Quasilinear Circuit

• Sub-exp security given poly(n) queries (beyond?)

More on low-complexity PRFs in Yuval’s talk 

Expander-functions are PRGs

𝑑 = 𝑂(log 𝑛),𝑚 = 𝑛𝜔 1

one-way function

[OlivSanthTell18]: Highly efficient Expander+predicate 

Too-efficient PRF  breakable via natural properties

Barrier for eff expanders/natural properties OR conjecture too bold 



Why should we believe the 

Conjecture?

A1: Unconditional Security against concrete attacks

For m=ns which predicates satisfy the conjecture?

A2: Reduction to One-wayness



Which predicates yield PRGs?

“Local” attacks

Linear algebra

Resiliency

“Degree”



Goal: Hard to distinguish y from random

y1 ym

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

More fragile than one-wayness:

Predicate must be balanced



y1 ym

X1 Xn

yi= MAJ(x1,x2,x5)
OUTPUT

INPUT

More fragile than one-wayness: 

Predicate must be balanced even after fixing single input

Goal: Hard to distinguish y from random



y1 ym

X1 Xn

yi= MAJ(x1,x2,x5)
OUTPUT

INPUT

k-resiliency [Cho-Gol-Has-Fre-Rud-Smo]: 

Predicate must be balanced even after fixing k inputs

Goal: Hard to distinguish y from random



Resiliency defeats local attacks 
[Mossel-Shpilka-Trevisan’03]

For m=ns resiliency of k=2s-1 is necessary and sufficient against 

• Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]

• Semidefinite programs [O’Donnel Witmer14]

• Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

• Statistical algorithms [Feldman Perkins Vempala15]

X1 Xn

OUTPUT

INPUT



Resiliency defeats local attacks

For m=ns resiliency of k=2s-1 is necessary and sufficient against 

• Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]

• Semidefinite programs [O’Donnel Witmer14]

• Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

• Statistical algorithms [Feldman Perkins Vempala15]

X1 Xn

OUTPUT

INPUT

Q: Order these attacks?



Defeating Linear Algebra

For m=ns need algebraic degree of s

Resiliency+DegreePseudorandomness? [OW14, A14, FPV15]

• Yes for m<n5/4 and linear distinguishers [MST03, ABW10, ABR12] 

i.e., small-bias generator [NN]

• No for larger m’s [A-Lovett16]

X1 Xn

OUTPUT

INPUT

XOR(x1,x2,x5)+AND(x7,x8,x10)



Defeating Linear Algebra [AL16]

b-fixing degree: algebraic degree of b even after fixing b inputs

Thm: For m=ns, (s)-bit fixing degree 

necessary & sufficient  against linear distinguishers

Stronger form of rational-degree is necessary & sufficient for 

defeating “algebraic attacks” 

X1 Xn

OUTPUT

INPUT

XOR(x1,x2,x5)+AND(x7,x8,x10)+MAJ(x7,x8,x10)

Q(x)=0 ⇏

low-degree-equation



Defeating Linear Algebra [AL16]

b-fixing degree: algebraic degree of b even after fixing b inputs

Thm: For m=ns, (s)-bit fixing degree 

necessary & sufficient  against linear distinguishers

Stronger form of rational-degree is necessary & sufficient for 

defeating “algebraic attacks” 

X1 Xn

OUTPUT

INPUT

XOR(x1,x2,x5)+AND(x7,x8,x10)+MAJ(x7,x8,x10)

Refutation via polynomial-

calculus proof system 
[CleggEdmondsImpag96]



Random Local Functions:

one-wayness  unpredicatbility



One-Wayness  Pseudorandomness [A11]

OWF Conjecture: f is one-way 

for predicate Q, random graph with m outputs

Implication 1: f is 0.99-unpredictable 

for predicate Q & random graph with m outputs

Implication 2: f is -pseudorandom 

for predicate Q & random graph with m1/3/2 outputs

Supports the PRG-conjecture

Extension to expanders [AR16]: 

• One-wayness over all expanders 

 Pseudorandomness over all expanders



One-Wayness  Pseudorandomness [A11]

CSP Perspective: Search-to-decision reduction

• Solving the GAP-problem=> finding satisfying assignment

• Preserves the distribution (up to loss in the length)



One-Wayness  Pseudorandomness [A11]

Learning Perspective: Proper-to-Improper reduction

Predicting the target function by some arbitrary hypothesis 

=> Recovering the description of the target function 



Prediction  Inversion

ym= Q(xi,xj,xk)

graph 

G

i          j k

Simplifying Assumption:

Q(x1,…, xd)=x1P(x2,…, xd)



ym= Q(xi,xj,xk)

graph 

G

P b = Q(xi,xj,xk) w.p ½+

i          j k

Prediction  Inversion



ym= Q(xi,xj,xk)

graph 

G

P b = Q(xr,xj,xk) w.p ½+

Idea: Run the predictor on a modified graph G’

• Assuming P is right: b=ym iff xi=xr

• We learned a noisy 2-LIN equation xrxi=

Invert by collecting many eq’s + error-correction + re-randomization

r       i          j k

Prediction  Inversion



Crypto Implications

Conjecture: f is one-way 

for predicate Q, random graph with m outputs

m=1.1n outputs

Thm:  Linear-stretch 

local PRG

Thm [A-Kacholon19]:

 poly-stretch local PRG

Tool: Sampling highly-unbalanced 

expanders with 𝑛−𝜔(1) err

m=n1.1 outputs

Drawbacks: 
• Polynomial security loss

• Yields collections of local primitives

• Relies on hardness for most graphs/most expanders



Q: from OWFs to PRGs

Locally and generically for 

arbitrary graph ?

Almost…



Thm: regular local OWF with exponential hardness

 local exp–strong PRG with linear stretch

satisfied by Goldreich’s original conjecture [Bar-Ish-Ost13]
• Can be based on single function 

• Yields single function

Exploiting exponential hardness [A17]

a

b

|A|< exp( n) |B|

B

f:XY

-almost exp(6 n)

A



Proof technique yields new candidates for optimal OWFs

Exploiting exponential hardness [A17]

Thm: regular local OWF with exponential hardness

 local exp–strong PRG with linear stretch

-almost exp(6 n)



Proof extends to the worst-case setting

• If “smooth” 3-CNF are exponentially hard to satisfy

Then 3-CNF are exponentially hard to approximate

• smooth-ETH  Gap-ETH

Exploiting exponential hardness [A17]

|A|< exp( n) |S|

S= Satisfying Assignments

assignments

A

A= Almost-satisfying assignments

S

Thm: regular local OWF with exponential hardness

 local exp–strong PRG with linear stretch

-almost exp(6 n)



Proof extends to the worst-case setting

• If “smooth” 3-CNF are exponentially hard to satisfy

Then 3-CNF are exponentially hard to approximate

• smooth-ETH  Gap-ETH

Exploiting exponential hardness [A17]

|A|< exp( n) |S|

S= Satisfying Assignments

assignments

A

A= Almost-satisfying assignments

S

Thm: regular local OWF with exponential hardness

 local exp–strong PRG with linear stretch

-almost exp(6 n)

Typical instances are smooth:

local-OWF/random-CNFs  smooth-ETH  Gap-ETH



Proof relies on new local hardcore function

Exploiting exponential hardness [A17]

Thm: regular local OWF with exponential hardness

 local exp–strong PRG with linear stretch

-almost exp(6 n)

graph 

G

Assumption: Can’t be inverted

Implication: Can’t be predicted

Local hard-core function

“local encoding” of the [IKOS08] function– see Yuval’s talk 



Complexity of hard-core functions:
• [GL89]: O(n2) randomness/circuit-size 

• [Gol]: O(n) randomness, õ(n) circuit-size

• [BIO13]: O(n) randomness, O(n) circuit-size

Building on [GL89,HMS04,IKOS08]; See Yuval’s talk

All constructions are public-coins g(x,r)=(r,gr(x))
Cannot be implemented locally ! 
New 3-local construction with O(n) private-coins

Building on [AIK04,BIO13]

Universal Hardcore Functions

Definition: g is hardcore function if:

• g(x,r) is pseudorandom given f(x)

• Expansion: |g(x,r)|-|r|=(s)

Let f be 2s -hard one-way function



Open Problems
• Pseudorandomness against low-degree 𝔽2 polynomials?

• Smoothness vs Hardness?

- ETH=>smooth-ETH

- Relate smoothness to graph structure

• Local exp-OWF must be somewhat-regular?

- local exp-OWF => local exp-PRG? 

• How much expansion is needed for security?

- Aggressive relation => No fast expanders [OliveiraSanthanamTell18]

• Other implications of PRG-conjecture ?

- Public-key encryption [ABW10]

- Hardness of learning (log n)-juntas [ABW10]

- Inapproximability of densest sub-hypergraph [A11]



Conclusion

Ambitious Goal: 

Theory for Avg-case hardness over NATURAL Distributions

• Unconditional Hardness against concrete algorithms

• More Structural theory? 

• Algorithmic Hierarchy?

• Distribution-preserving Reductions? 

(Hardness of Rand-SAT=>hardness of planted clique?)

Local Crypto provides some partial results along these lines

Forms strong hypothesis for avg-case hardness

Thank You!


