Cryptographic Hardness of Constraint Satisfaction Problems

Benny Applebaum
Tel-Aviv University

Average-Case Complexity: From Cryptography to Statistical Learning Simons November 2021

Avg-Case

 Hardness of CSP
Locally
 Computable Crypto

Hardness of Learning

Pseudorandom Generator

Expand n random bits into $m \gg n$ pseudorandom bits

Locally Computable PRGs

Expand n random bits into $m \gg n$ pseudorandom bits each output depends on $d=O(1)$ inputs

- Well studied problem [CM02,Alekh03,MST03,AIK04-6, ...]
- For poly-long output length, only known candidates based: Random Local Functions [Goldreich00]

Random Local Functions are PRGs

conjecture: for most graphs and properly chosen predicate \mathbf{Q}, the resulting function is a pseudorandom generator

Parameters: locality d , predicate Q , output length m

- E.g., $d=10, Q=X O R+M A J$ and $m=n^{2}$

$$
y_{1} y_{i}=Q\left(x_{1}, x_{2}, x_{5}\right) \quad y_{m}
$$

OUTPUT
Choose iid m d-tuples $S_{1}, \ldots, S_{m} \leftarrow\binom{[n]}{d}$

INPUT

Random Local Functions are PRGs

conjecture: for most graphs and properly chosen predicate \mathbf{Q}, the resulting function is a pseudorandom generator

Variants:

- Stronger variant: for every sufficiently-good expander graph
- (t,0.9d)-expansion $=>$ pseudorandom against $\exp (\Omega(t))$-time attacks?
-Weaker variant: there exists some graph

Random Local Functions are PRGs

conjecture: for most graphs and properly chosen predicate \mathbf{Q}, the resulting function is a pseudorandom generator

- Studied in [CEMT09,ABW10,A12,ABR12,BR11,BQ12,OW14,FPV15,...] See survey [A15]
- Before assuming crypto in P understand crypto by local functions
- Interesting cryptographic/complexity-theoretic applications [IKOS08,A12,...,JLS21]
- See Aayush's talk

Some Implications

CSP Perspective [AIK06]

View (G,y) as CSP: i-th constraint $Q\left(x\left[S_{i}\right]\right)=y_{i}$

- $y \leftarrow P R G(x)$ then CSP is satisfiable
- $\mathrm{y} \leftarrow$ uniform then, whp, value $(C S P) \ll 1$
- $m=\omega(n)$ and Q is balanced=> value $(C S P) \approx 0.5$

Constraints

Variables

CSP Perspective [AIK06] RLFs are PRGs

Distribution over CSPs which is:
Hard to approximate/satisfy/refute

OUTPUT

Learning Perspective [ABW10]

Define the function: $g_{x}:\{0,1\}^{d \log n} \rightarrow\{0,1\}$

- $g_{x}\left(i_{1}, . ., i_{d}\right)=Q\left(x\left[i_{1}\right], x\left[i_{2}\right], \ldots, x\left[i_{d}\right]\right)$

PAC-Learning:

Given m-1 random (inputs/output) pairs predict g_{x} on fresh random input

$$
\begin{aligned}
& y_{1} y_{i}=Q\left(x_{1}, x_{2}, x_{5}\right) \\
& 0 \circ \circ \ominus^{y_{m}} \quad \text { OUTPUT } \\
& \text { INPUT }
\end{aligned}
$$

Learning Perspective [ABW10]

RLFs are PRGs

Distribution over functions with domain \boldsymbol{n}^{d} which is:
Hard to PAC-learn given $\boldsymbol{m}=\boldsymbol{n}^{\boldsymbol{s}}$ samples for some 1<s<d

Scaled-up Version [AR16]

$$
\begin{gathered}
\text { RLFs are PRGs } \\
d=O(\log n), m=n^{\omega(1)}
\end{gathered}
$$

Supported by the "expanders are PRG" conjecture

Distribution over depth-3 ACO functions which is:
Hard to PAC-learn given any poly(n) uniform samples

Input:

$i_{1} \in\{0,1\}^{\log n}$ Log(n)-local function
$i_{d} \in\{0,1\}^{\log \eta}$ Log(n)-local function
X_{1} HARD-WIRED X_{n}

Scaled-up Version [AR16]

$$
\begin{gathered}
\text { RLFs are PRGs } \\
d=O(\log n), m=n^{\omega(1)}
\end{gathered}
$$

Distribution over depth-3 ACO function which is:
Hard to PAC-learn given any poly(n) uniform samples
Even given sub-exponential time
[LMN93] learning algorithm is tight
(can't learn AC0 over uniform samples in quasi-poly time given poly uniform samples)

Simple PRF [AR16]

RLFs are PRGs
$d=O(\log n), m=n^{\omega(1)}$ ๒

Weak-PRF from n bits to $\widetilde{\Omega}(\mathrm{n})$ bits computable by

- AC0 circuit of depth-3
- Linear-time in RAM model

OUTPUT $\mathrm{y}=\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{5}\right)$ ○○○○○○○○○○○○○○○○

Random inputs \Rightarrow
Random graph

Handling non-random inputs? [AR16]

Fast low-bias generator
Arbitrary polynomialy many inputs
\Rightarrow resulting graph is almost expanding

Fast PRF [AR16]

Expander-functions are one-way function
 $$
d=O(\log n), m=n^{\omega(1)}
$$

Strong-PRF from n bits to $\widetilde{\Omega}(n)$ bits computable by

- Constant-depth circuit over AND, OR, MAJORITY
- Quasilinear Circuit
- Sub-exp security given poly(n) queries (beyond?)
[OlivSanthTell18]: Highly efficient Expander+predicate \Rightarrow
Too-efficient PRF \Rightarrow breakable via natural properties
Barrier for eff expanders/natural properties OR conjecture too bold

Why should we believe the Conjecture?

A1: Unconditional Security against concrete attacks For $m=n^{s}$ which predicates satisfy the conjecture?

A2: Reduction to One-wayness

Which predicates yield PRGs?

Resiliency

Linear algebra

Goal: Hard to distinguish y from random

More fragile than one-wayness:
Predicate must be balanced

Goal: Hard to distinguish y from random

More fragile than one-wayness:
Predicate must be balanced even after fixing single input

Goal: Hard to distinguish y from random

k-resiliency [Cho-Gol-Has-Fre-Rud-Smo]:
Predicate must be balanced even after fixing \mathbf{k} inputs

Resiliency defeats local attacks [Mossel-Shpilka-Trevisan'03]

For $m=n^{s}$ resiliency of $k=2 s-1$ is necessary and sufficient against

- Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O’Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Resiliency defeats local attacks

For $m=n^{s}$ resiliency of $k=2 s-1$ is necessary and sufficient against

- Sub-exponential ACO circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O'Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Q: Order these attacks?

OUTPUT

Defeating Linear Algebra

For $m=n^{s}$ need algebraic degree of s
Resiliency+Degree \Rightarrow Pseudorandomness? [OW14, A14, FPV15]

- Yes for $m<n^{5 / 4}$ and linear distinguishers [MST03, ABW10, ABR12] i.e., small-bias generator [NN]
- No for larger m's [A-Lovett16]

Defeating Linear Algebra [AL16]

b-fixing degree: algebraic degree of b even after fixing b inputs
Thm: For $m=n^{s}, \Theta(s)$-bit fixing degree
necessary \& sufficient against linear distinguishers
Stronger form of rational-degree is necessary \& sufficient for defeating "algebraic attacks"

Defeating Linear Algebra [AL16]

b-fixing degree: algebraic degree of b even after fixing b inputs
Thm: For $m=n^{s}, \Theta(s)$-bit fixing degree
necessary \& sufficient against linear distinguishers
Stronger form of rational-degree is necessary \& sufficient for defeating "algebraic attacks"

Refutation via polynomialcalculus proof system [CleggEdmondsImpag96]

Random Local Functions:

 one-wayness \Rightarrow unpredicatbility
One-Wayness \Rightarrow Pseudorandomness [A11]

OWF Conjecture: f is one-way for predicate Q , random graph with \mathbf{m} outputs

量

Implication 1: f is 0.99 -unpredictable for predicate Q \& random graph with \mathbf{m} outputs

Implication 2: f is ε-pseudorandom for predicate Q \& random graph with $\mathbf{m}^{1 / 3} / \boldsymbol{\varepsilon}^{2}$ outputs

Supports the PRG-conjecture
Extension to expanders [AR16]:

- One-wayness over all expanders
\Rightarrow Pseudorandomness over all expanders

One-Wayness \Rightarrow Pseudorandomness [A11]

CSP Perspective: Search-to-decision reduction

- Solving the GAP-problem=> finding satisfying assignment
- Preserves the distribution (up to loss in the length)

One-Wayness \Rightarrow Pseudorandomness [A11]

Learning Perspective: Proper-to-Improper reduction
Predicting the target function by some arbitrary hypothesis
=> Recovering the description of the target function

Prediction \Rightarrow Inversion

Simplifying Assumption:
 $\mathbf{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)=\mathrm{x}_{1} \oplus \mathbf{P}\left(\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{d}}\right)$

Prediction \Rightarrow Inversion

Prediction \Rightarrow Inversion

Idea: Run the predictor on a modified graph G^{\prime}

- Assuming P is right: $b=y_{m}$ iff $x_{i}=x_{r}$
- We learned a noisy 2-LIN equation $x_{r} \oplus x_{i}=\sigma$

Invert by collecting many eq's + error-correction + re-randomization

Crypto Implications

Conjecture: f is one-way for predicate Q , random graph with m outputs

$\mathrm{m}=1.1 \mathrm{n}$ outputs

Thm: \exists Linear-stretch local PRG

Thm [A-Kacholon19]:
 \exists poly-stretch local PRG

Tool: Sampling highly-unbalanced expanders with $n^{-\omega(1)}$ err

Drawbacks:

- Polynomial security loss
- Yields collections of local primitives
- Relies on hardness for most graphs/most expanders

Q: from OWFs to PRGs Locally and generically for arbitrary graph ?

Almost...

Exploiting exponential hardness [A17]

Thm: α-almost regular local OWF with $\exp (6 \alpha \mathbf{n})$ hardness \Rightarrow local exp-strong PRG with linear stretch
satisfied by Goldreich's original conjecture [Bar-Ish-Ost13]

- Can be based on single function
- Yields single function

Exploiting exponential hardness [A17]

Thm: α-almost regular local OWF with $\exp (6 \alpha \mathbf{n})$ hardness \Rightarrow local exp-strong PRG with linear stretch

Proof technique yields new candidates for optimal OWFs

Exploiting exponential hardness [A17]

Thm: α-almost regular local OWF with $\exp (6 \alpha \mathbf{n})$ hardness \Rightarrow local exp-strong PRG with linear stretch

Proof extends to the worst-case setting

- If "smooth" 3-CNF are exponentially hard to satisfy Then 3-CNF are exponentially hard to approximate
- smooth-ETH \Rightarrow Gap-ETH

S= Satisfying Assignments
A = Almost-satisfying assignments

Exploiting exponential hardness [A17]

Thm: α-almost regular local OWF with $\exp (6 \alpha \mathbf{n})$ hardness \Rightarrow local exp-strong PRG with linear stretch

Proof extends to the worst-case setting

- If "smooth" 3-CNF are exponentially hard to satisfy

Typical instances are smooth:
local-OWF/random-CNFs \Rightarrow smooth-ETH \Rightarrow Gap-ETH

S= Satisfying Assignments
A = Almost-satisfying assignments

Exploiting exponential hardness [A17]

Thm: α-almost regular local OWF with $\exp (6 \alpha \mathbf{n})$ hardness \Rightarrow local exp-strong PRG with linear stretch

Proof relies on new local hardcore function

Assumption: Can't be inverted Implication: Can't be predicted

Local hard-core function
"local encoding" of the [IKOS08] function- see Yuval's talk

Universal Hardcore Functions

Let f be 2^{s}-hard one-way function

Definition: g is hardcore function if:

- $g(x, r)$ is pseudorandom given $f(x)$
- Expansion: $|g(x, r)|-|r|=\Omega(s)$

Complexity of hard-core functions:

- [GL89]: O(n^{2}) randomness/circuit-size
- [Gol]: O(n) randomness, õ(n) circuit-size
- [BIO13]: O(n) randomness, $\mathrm{O}(\mathrm{n})$ circuit-size Building on [GL89,HMS04,IKOSO8]; See Yuval's talk All constructions are public-coins $g(x, r)=\left(r, g_{r}(x)\right)$ Cannot be implemented locally!
New 3-local construction with O(n) private-coins

Building on [AIK04,BIO13]

Open Problems

Pseudorandomness against low-degree \mathbb{F}_{2} polynomials?

- Smoothness vs Hardness?
- ETH=>smooth-ETH
- Relate smoothness to graph structure
- Local exp-OWF must be somewhat-regular?
- local exp-OWF => local exp-PRG?
- How much expansion is needed for security?
- Aggressive relation => No fast expanders [OliveiraSanthanamTell18]
- Other implications of PRG-conjecture ?
- Public-key encryption [ABW10]
- Hardness of learning $(\log n)$-juntas [ABW10]
- Inapproximability of densest sub-hypergraph [A11]

Conclusion

Ambitious Goal:

Theory for Avg-case hardness over NATURAL Distributions

- Unconditional Hardness against concrete algorithms
- More Structural theory?
- Algorithmic Hierarchy?
- Distribution-preserving Reductions?
(Hardness of Rand-SAT=>hardness of planted clique?)

Local Crypto provides some partial results along these lines Forms strong hypothesis for avg-case hardness
Thank You!

