Low-Complexity Cryptography and Simple Hard-to-Learn Functions

Yuval Ishai

Technion

Average-Case Complexity:
From Cryptography to Statistical Learning
Simons Institute Workshop, 202I

This talk

- Cryptography and (hardness of) learning
- Low-complexity cryptography
- Low-complexity pseudorandom functions

What is Cryptography?

- Traditional definition:
"THE PRACTICE AND STUDY OF TECHNIQUES FOR SECURE COMMUNICATION IN THE PRESENCE OF THIRD PARTIES."
- Broader definition:

$$
\begin{aligned}
& \text { Allowing "good guys" to do G while } \\
& \text { preventing "bad guys" from achieving B. }
\end{aligned}
$$

Low-Level Primitives

G

OWF

PRG

distinguish y from a random string
distinguish F_{k} from a random function

Low-Level Primitives

Higher-Level Primitives

G

Encryption

learn m from c

MAC /

Signature

modify m

Secure

Computation

(a) $\Rightarrow b$ \& $f(a, b)$
learn input of other party from messages

Back to the 20th Century

Valiant ‘84:

A Theory of the Learnable

Introducing the PAC learning model

- Improper learning
- Distribution-free
- Approximate correctness
"Whether the classes of learnable Boolean concepts can be extended significantly ... is an interesting question. There is circumstantial evidence from cryptography, however, that the whole class of functions computable by polynomial size circuits is not learnable."

Goldreich-Goldwasser-Micali ‘87: How to Construct Random Functions

Introducing Pseudo-Random Functions

- PRF construction from any one-way function
- Hard to learn!

Goldreich-Goldwasser-Micali ‘87: How to Construct Random Functions

Introducing Pseudo-Random Functions

- PRF construction from any one-way function
- Hard to learn!

Kearns-Valiant ‘89:

Cryptographic Limitations on Learning Boolean Formulae and Finite Automata

Hardness of learning simple functions based on standard cryptographic assumptions

- Decryption function is hard to learn
- Implement decryption in NC1, TC0
"Our approach in this paper is based on refining the functions provided by cryptography in an attempt to find the simplest functions that are difficult to learn.
... A technical open problem is to improve the constructions given here to ... even simpler classes of formulae and circuits. "

Blum-Furst-Kearns-Lipton ‘93: Cryptographic Primitives Based on Hard Learning Problems

Apply hardness-of-learning conjectures towards simple cryptography

- Search-to-decision reduction for Learning Parity with Noise (LPN)
- WPRF candidate computable by poly-size DNF

$$
f_{A, B}(x)=\operatorname{Parity}\left(x_{A}\right) \oplus \operatorname{Majority}\left(x_{B}\right) \quad|A|=|B|=\log n
$$

". . . as "simple" function classes ... continue to elude efficient learning, our belief in the intractability of learning such classes increases, and we can exploit this intractability to obtain simpler cryptographic primitives."

- WPRF candidate computable by poly-size DNF $f_{A, B}(x)=\operatorname{Parity}\left(x_{A}\right) \oplus \operatorname{Majority}\left(x_{B}\right) \quad|A|=|B|=\log n$

Isn't this cheating? Where's the math?

"... [this is]a distribution on DNF formulas that seems to defy all known methods of attack, and we believe that any method that could even weakly predict such functions over a uniform D would require profoundly new ideas."

- WPRF candidate computable by poly-size DNF $f_{A, B}(x)=\operatorname{Parity}\left(x_{A}\right) \oplus \operatorname{Majority}\left(x_{B}\right) \quad|A|=|B|=\log n$

Isn't this cheating? Where's the math?

Well, suppose they are right. Aren't we done?

Only weak PRF
Only quasi-polynomial hardness

- WPRF candidate computable by poly-size DNF $f_{A, B}(x)=\operatorname{Parity}\left(x_{A}\right) \oplus \operatorname{Majority}\left(x_{B}\right) \quad|A|=|B|=\log n$

Isn't this cheating? Where's the math?

Well. sudoose they are right.

Both limitations inherent to AC0
[Linial-Mansour-Nisan 89]

done?

Only weak PRF
Only quasi-polynomial hardness

Natural Proof Barriers

Different applications motivate different notions of simplicity

Simple PRFs

Simple Hard-to-Learn Functions

Cryptographic Applications

market for simple
hard-to-learn
functions

Natural Proof Barriers

Different applications motivate different notions of simplicity

Motivating challenge: Asymptotically Optimal PRF

Hard to distinguish from a random function

$$
F_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Efficiency: O(n)-size circuit
Security: $2^{\Omega(n)}$-size distinguishers
Any "provable" construction?

Motivating challenge: Asymptotically Optimal PRF

Hard to distinguish from a random function

$$
F_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Efficiency: O(n)-size circuit
Security: $2^{\Omega(n)}$-size distinguishers

... or even heuristic?

Motivating challenge: Asymptotically Optimal PRF

Hard to distinguish from a random function

$$
F_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Efficiency: O(n)-size circuit
Security: $2^{\Omega(n)}$-size distinguishers

Low-Complexity Cryptography

A very broad research agenda...

- Pick a crypto primitive
- OWF, PRG, PRF, CRH, PKE, ZK, SNARG, MPC, FHE, HSS, ABE, IO,...
- Pick a target security level
- Standard / sub-exponential / exponential? Post-quantum?
- Pick a complexity measure
- Computation
- Model: circuit, branching program, RAM, ...
- Metric: size, depth, ...
- Locality, algebraic degree
- Communication, rounds
- Go as low as you can

What about assumptions?

- Typical methodology: build X under "acceptable" assumption Y
- Notion of "acceptable" somewhat arbitrary
- No assumption? Certainly acceptable.

Information-Theoretic Cryptography
[BenOr-Kilian-Goldwasser-Wigderson 88]
IT-ZK => ... PCP ... => Practical ZK

What about assumptions?

- Typical methodology: build X under "acceptable" assumption Y
- Notion of "acceptable" somewhat arbitrary

What about assumptions?

- Typical methodology: build X under "acceptable" assumption Y
- Notion of "acceptable" somewhat arbitrary

Typical "acceptable" assumptions:

- Clean and succinct
- Efficiently falsifiable
- Broadly applicable
- Win-win flavor
- Withstood test of time...

What about assumptions?

- Typical methodology: build X under "acceptable" assumption Y
- Notion of "acceptable" somewhat arbitrary
- In reality: "acceptable" aka "standard" = used by those we trust
- Heavily influenced by historical coincidences
- What if this methodology fails?
- When is it ok to make new assumptions?
- Someone needs to be the first...
- Theory community tends to be conservative
- Speculative new assumptions are often broken
- Minimizing assumptions gave rise to a rich and deep theory

Alternative Methodology

1. Identify a class C of natural constructions
2. Identify a class A of natural attacks
3. Find efficient constructions from C resisting A

- Often a combinatorial problem, with no inherent barriers
- Systematic way for navigating "crypto dark matter"
- May lead to new acceptable assumptions
- Common in applied crypto
- Typically heuristic, not systematic, restricted to maximum security
- Less common in theory-oriented crypto
- OWF, PRG [Goldreich00 ... Applebaum-Lovett16 ...]
- PRF [Miles-Viola12 ... Akavia-Bogdanov-Guo-Kamath-Rosen14 ...]

Crypto Universe

Broken by natural attacks
Provable under acceptable assumptions

Crypto Universe

Broken by natural attacks
Heuristic constructions resisting natural attacks

Crypto Universe

Broken by natural attacks
Heuristic constructions resisting natural attacks

Computational Complexity of Cryptography

Default model:
boolean circuits with bounded fan-in

Minimizing Circuit Size

- $\lambda=$ security parameter

	Insecure	Secure	
Typical:	s	$\mathrm{s}^{*} \operatorname{poly}(\lambda)$	
Dream goal....	s	$\mathrm{O}(\mathrm{s})$ i.e. $\mathrm{O}(\mathrm{s})+\operatorname{poly}(\lambda)$	

Crypto with "constant overhead"?

Universal Hashing [Carter-Wegman77]

- Pairwise independence:
$-x \neq x^{\prime} \rightarrow H_{k}(x), H_{k}\left(x^{\prime}\right)$ are uniform and independent

Complexity of Universal Hashing

- Standard constructions

$$
\begin{array}{ll}
-H_{a, b}(x)=a x+b, & a, b \in G F\left(2^{n}\right) \\
-H_{a, b}(x)=\left(a^{\circ} x\right)+b & a \in Z_{2}^{2 n-1}, b \in Z_{2}^{n}
\end{array}
$$

- Both conjectured to require $\Omega(\mathrm{n} \cdot \operatorname{logn})$ circuit size
- [Mansour-Nisan-Tiwari 90]
- Time-space tradeoff for universal hashing
- Conjecture: Any universal hash function $H_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ requires circuits of size $\Omega(\mathrm{n} \cdot \operatorname{logn})$.
- [I-Kushilevitz-Ostrovsky-Sahai 08]
- Can be done by linear-size circuits

Linear-Size Circuit for Hashing

Back to Coding Theory [Druk-I 14]

- Family of linear-time encodable linear codes meeting the Gilbert-Varshamov bound
- Efficient decoding?
- Most likely not...
- ... so back again to crypto
- Linear-time substitute for random linear codes

Constant-Overhead Cryptography

Assumption
none
Primitive
Universal hashing
One-time MAC

OWF

MAC
"Shrinking" PRF

Lin-stretch local PRG
PRF, PKE
Signatures

Poly-stretch local PRG

Secure Computation with semi-honest parties

Constant-Overhead Cryptography

Assumpti [Fan-Li-Yang 21]:

none
Circuit size 2n (over full basis) is sufficient and necessary!

Primitive
Jniversal hashing
One-time MAC

Lin-stretch local PRG

OWF

MAC
 "Shrinking" PRF

PRF, PKE
Signatures

Poly-stretch local PRG

Secure Computation with semi-honest parties

Constant Overhead for Other Primitives

Assumption

Primitive

Binary-SVP

[Applebaum-Haramaty-I-

Kushilevitz-Vaikuntanathan17]
 Exp-secure Local OWF

[Baron-I-Ostrovsky16]
New Candidate
[Boneh-I-Passelègue-Sahai-Wu18]

No candidate

No candidate

Collision-Resistant Hashing?

Exp-secure PRF?

Zero-knowledge proofs?
Succinct arguments?
Secure computation with malicious parties?

Collision-Resistant Hashing?

Exp-secure Local OWF

[Baron-I-Ostrovsky16]
New Candidate
[Boneh-I-Passelego -ail/u18]

Constant Overhead for Other Primitives

Assumption

Primitive

Binary-SVP

[Applebaum-Haramaty-I-
Collision-Resistant Hashing?
Kushilevitz-Vaikuntanathan17]
Exp-secure Local OWF
[Baron-I-Ostrovsky16]
New Candidate

- Yes for arithmetic circuits
[Bootle-Cerulli-Ghadafi-Groth-Hajiabadi-Jakobsen17]
[Applebaum-Damgård-I-Nielsen-Zichron17]
[Boyle-Couteau-Gilboa-I18, Chase-Dodis-I-Kraschewski-
Liu-Ostrovsky-Vaikuntanathan19]
- Best overhead for Boolean: polylog(λ)
[Damgård-I-Krøigaard10]
Zero-knowledge proofs?
Succinct arguments?
Secure computation with malicious parties?

Low-Complexity Pseudorandom Functions

Taxonomy of Constructions

- Security type
- Weak vs. Strong
- Security level
- Polynomial, Quasipolynomial, Subexponential, Exponential
- Complexity class
- Constant-depth poly-size circuits with unbounded fan-in
- AC0: AND/OR/NOT
- AC0[mod ${ }_{p}$]: + parity / $\bmod _{\mathrm{p}}$ for prime p
- ACC0: + $\bmod _{\mathrm{m}}$ for composite m
- Linear-size circuits
- Assumptions
- Standard, heuristic

Taxonomy of Constructions

- Security type
- Weak vs. Strong
- Security level
- Polyr Viewing key k as fixed I, Subexponential, Exponential
- Complexir a ass
- Constant-de No strong PRFs with better unbounded fan-in
- ACO: AND $/$ than qpoly security [RR94]
- $A C O\left[\mathrm{mod}_{\mathrm{p}}\right]$: + parity / $\mathrm{mod}_{\mathrm{p}}$ tor prime p
- ACC0: + $\bmod _{\mathrm{m}}$ for composite m
- Linear-sin aircuits
- Assun Tco:
- Star Strong PRFs under standard cryptographic assumptions [Naor-Reingold 97, ...]

Taxonomy of Constructions

- Security type
- Weak vs. Strong
- Security level
- Polynomial, Quasipolynomial, Subexponential, Exponential
- Complexity class
- Constant-depth poly-size circuits with unbounded fan-in
- AC0: AND/OR/NOT
- ACO[mod ${ }_{\mathrm{p}}$]: + parity / $\bmod _{\mathrm{p}}$ for prime p
- ACCO: + mod $_{\mathrm{m}}$ for cor
- Linear-size circuits Typically: Provable security against
- Assumptions
- Standard, heuristic

ACO

- Limitations [LMN89]
- No strong PRF
- Quasi-polynomial attack against WPRF
- Depth 2
- WPRF candidate [BFKL93]
- "Biased-input" WPRF from local PRG [Applebaum-Barak-Wigderson 10, Daniely-Vardi 21]
- Depth 3
- WPRF from local PRG [Applebaum-Raykov 16, DV21]

ACO on top of parities?

WPRF Candidate

[Akavia-Bogdanov-Guo-Kamath-Rosen14]

AC0 on top of parities?

WPRF Candidate [Akavia-Bogdanov-Guo-Kamath-Rosen14]

[Bogdanov-Rosen 17]: quasi-polynomial time algebraic attack via low rational degree

Tribes

$K \in \mathbb{Z}_{2}^{n \times}$ input

Depth-3
AC^{0} [2]

Take 2

WPRF Candidate
 [Boyle-Couteau-Gilboa-I-Kohl-Scholl 21]

Provably high rational degree

AC0 on top of public parities?

[BCGIKS21]:

WPRF ruled out by a variant of a conjecture from [ABGKR14].

Linear IPPP conjecture [Servedio-Viola 12]: Inner-product mod 2 cannot be computed in AC0 \circ MOD2.

```
    CONJECTURE 1:
    There exists a WPRF in
    AC0 o MOD2.
    CONJECTURE 2:
There does not exist a
WPRF in AC0 on top of
    public parities.
```


Depth-2 WPRF?

Candidate WPRF by XNF formulas

[Boyle-Couteau-Gilboa-I-Kohl-Scholl 20]

Applications:

- Correlated PRFs
- XOR-RKA security

Depth-2 WPRF?

Candidate WPRF by XNF formulas

[Boyle-Coutean-Gilhna-I-K n b

Sparse multivariate
\mathbb{F}_{2}-polynomials in inputs and their negation
Secure under variable-density

Sparse

[Hellerstein-Servedio 07]
Applications:

- Correlated PRFs
- XOR-RKA security

WPRF by XNF

Variable-density LPN

WPRF by sparse F_{2}-polynomials [Boyle-Couteau-Gilboa-I-Kohl-Scholl 21]

Determined by key

input

Subexponential security against linear and algebraic attacks

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]
WPRF candidate in ACCO

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]So far withstood analysis
WP [Cheon-Cho-Kim-Kim 21]
[Dinur-Goldfeder-Halevi-I-Kelkar-
Sharma-Zaverucha 21]
InOd-3

- Exponential hardness of learning $\bmod _{3}{ }^{\circ}$ XOR circuits under uniform
- Same for FORMULA[n2.8] \circ XOR
[Kabanets-Koroth-Lu-Myrisiotis-Oliviera 20]

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]So far withstood analysis
[Cheon-Cho-Kim-Kim 21]
[Dinur-Goldfeder-Halevi-I-Kelkar-Sharma-Zaverucha 21]
Conjecture:
Exponential security

Also computable by:

* Sparse Z_{3} polynomial
* Width-3 BP

> mod-3 addition

$K \in \mathbb{Z}_{2}^{n \times n}$

Exponential hardness of learning sparse Z_{3}-polynomials with uniform inputs from $\{-1,1\}^{n}$

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]
WPRF candidate in ACCO

Conjecture:
Exponentia Awesome
Annoxing Complexity Class [R. Williams]
.O $K \in \mathbb{Z}_{2}^{n \times n} \quad$ ACC[6]

> Easy to distribute!
input x

Fast Distributed Symmetric Crypto [Dinur-Goldfeder-Halevi-I-Kelkar-Sharma-Zaverucha 21]

Candidates

Construction	Parameters (n, m, t)	Comment
$(2,3)$-OWF	$(s, 3.13 s, s / \log 3)$ $(s, 3.53 s, s / \log 3)$	aggressive conservative
$(2,3)$-wPRF	$(2 s, 2 s, s / \log 3)$ $(2.5 s, 2.5 s, s / \log 3)$	aggressive conservative
LPN-PRG	$(s, 3 s, 2 s)$	
LPN-wPRF	$(2 s, 2 s, s)$	

Protocols

Primitive	Construction	Param. (n, m, t)	Distributed 2PC (with preprocessing)		Distributed $3 P C$	Public-Input 2PC (with preprocessing)	
			Online Comm.	Prepr.	Online Comm.	Online Comm.	Prepr.
	$(2,3)-$-wPRF	$(256,256,81)$	$(1536,4,2)$	$(2348,662)$	$(1430,4,1)$	$(512,2,1)$	$(1324,406)$
	LPN-wPRF	$(256,256,128)$	$(2860,6,3)$	$(4995,1730)$		$(1324,4,2)$	$(3160,918)$
OWF	$(2,3)-$ OWF	$(128,452,81)$	$(904,2,1)$	$(2337,717)$	$(2525,4,1)$	-	-
PRG	LPN-PRG	$(128,512,256)$	$(1880,4,2)$	$(4334,1227)$		-	-

Practical post-quantum signatures

OWF Params (n, m, t)	KKW params (N, M, τ)	Sig. size (KB)
$(128,453,81)$	$(16,150,51)$	13.30
	$(16,168,45)$	12.48
	$(16,250,36)$	$\mathbf{1 1 . 5 4}$
Picnic3-L1	$(16,250,36)$	12.60
$(128,453,81)$	$(64,151,45)$	13.59
	$(64,209,34)$	11.70
	$(64,343,27)$	$\mathbf{1 0 . 6 6}$
Picnic2-L1	$(64,343,27)$	12.36

OWF Params (n, m, t)	KKW params (N, M, τ)	Sig. size (KB)
$(256,906,162)$	$(16,324,92)$	50.19
	$(16,400,79)$	47.08
	$(16,604,68)$	$\mathbf{4 5 . 8 2}$
Picnic3-L5	$(16,604,68)$	48.72
$(256,906,162)$	$(64,322,82)$	51.23
	$(64,518,60)$	44.04
	$(64,604,57)$	$\mathbf{4 3 . 4 5}$
Picnic2-L5	$(64,604,58)$	46.18

Table 4: Signature size estimates for Picnic using (2,3)-OWF, compared to Picnic using LowMC. The left table shows security level L1 (128 bits) with $N=16$ and $N=64$ parties, and the right table shows level L5 (256 bits).

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]
Strong PRF candidate in ACCO

Conjecture:

Exponential security
==> Natural proof barrier for ACCO

$K \in \mathbb{Z}_{2}^{m \times m}$

$$
\operatorname{map}^{\top} \in \mathbb{Z}_{3}^{n \times m}
$$

input x

Mixing Moduli

[Boneh-I-Passelègue-Sahai-Wu 18]

Strong PRF candidate in ACCO

Lin-size map =>
asymptotically optimal PRF candidate

Open:

- Break in time $2^{o(n)}$
- Prove k-wise ind.

$\operatorname{map} \in \mathbb{Z}_{2}^{m \times \ell}$

... or even 2-wise independence
Only proved recently for AES-like
construction
[Liu-Tessaro-Vaikuntanathan 21]
input x

Mixing Moduli

[Boneh-I-Passelègue-Sahai-Wu 18]

Alternative weak PRF candidate in ACCO

key
mod-6
inner
product
input

Mixing Moduli

 [Boneh-I-Passelègue-Sahai-Wu 18]
Alternative weak PRF candidate in ACCO

LWR mod 6

[Banerjee-Peikert-Rosen 12]

LPN with

 deterministic noise
Broken in time

$$
2^{O(n / \log n)}
$$

[Blum-Kalai-Wasserman 00]
input

Conclusion

- Simple hard-to-learn functions are useful!
- Many gaps in our understanding
- Much more "dark matter" to be explored

Conclusion

- Simple hard-to-learn functions are useful!
- Many gaps in our understanding
- Much more "dark matter" to be explored
- Introducing new assumptions can help
- Responsibly, based on evidence, when called for
- Critical for progress on some fronts
- More analysis is needed
- Joint mission of several communities
- Cryptography, cryptanalysis
- Computational learning theory
- Complexity theory, Algorithms, ...

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement

$$
\text { no. } 742754-E R C-N T S C
$$

