
Low-Complexity Cryptography and
Simple Hard-to-Learn Functions

Yuval Ishai
Technion

Average-Case Complexity:
From Cryptography to Statistical Learning

Simons Institute Workshop, 2021

This talk

• Cryptography and (hardness of) learning

• Low-complexity cryptography

• Low-complexity pseudorandom functions

What is Cryptography?

• Traditional definition:
“THE PRACTICE AND STUDY OF TECHNIQUES

FOR SECURE COMMUNICATION IN THE
PRESENCE OF THIRD PARTIES.”

• Broader definition:
Allowing “good guys” to do G while

preventing “bad guys” from achieving B.

PRG !! "

Low-Level Primitives

OWF "# "

! "

!"#$%&Î! !"'()

$"*+"#,-"*.%(%!/01
2%/2#$01%*+/"#,

$"*+"#,-"*.%3# !/01
2%/2#$01%!-#4+"0#PRF #$ "

#

PRG !! "

Low-Level Primitives

OWF "# "

! "

!"#$%&Î! !"'()

$"*+"#,-"*.%(%!/01
2%/2#$01%*+/"#,

$"*+"#,-"*.%3# !/01
2%/2#$01%!-#4+"0#WPRF #$ "

#

#$%&'()$*+,-./',0)1+-'2!

Higher-Level Primitives

Encryption % %

! "

562/#%1%!/01%43 & 4

10$"!(%1MAC /
Signature

% %'^5 %(s 6

)*+,-./-012.34.325*,.
0+,2".4,3%.%*!!+6*!a b 47+(89Secure

Computation

Back to the 20th Century

Valiant ‘84:
A Theory of the Learnable

Introducing the PAC learning model
– Improper learning
– Distribution-free
– Approximate correctness

“Whether the classes of learnable Boolean concepts can be extended significantly
… is an interesting question. There is circumstantial evidence from cryptography,
however, that the whole class of functions computable by polynomial size circuits is
not learnable.”

Goldreich-Goldwasser-Micali ‘87:
How to Construct Random Functions

Introducing Pseudo-Random Functions
– PRF construction from any one-way function
– Hard to learn!

“…one may conjecture that all functions f that are “simple” (i.e., that are easy to
evaluate given some hidden key) can be “approximately inferred” after temporary
access to an oracle for f. … we show that this is not the case, under the assumption
that one-way functions exist.”

Even with:
- membership queries
- any high-entropy input distribution
- weak approximation guarantee

Goldreich-Goldwasser-Micali ‘87:
How to Construct Random Functions

Introducing Pseudo-Random Functions
– PRF construction from any one-way function
– Hard to learn!

“…one may conjecture that all functions f that are “simple” (i.e., that are easy to
evaluate given some hidden key) can be “approximately inferred” after temporary
access to an oracle for f. … we show that this is not the case, under the assumption
that one-way functions exist.”

Weak PRF:

Hard to learn under the uniform distribution

Kearns-Valiant ‘89:
Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata

Hardness of learning simple functions based on
standard cryptographic assumptions

– Decryption function is hard to learn
– Implement decryption in NC1, TC0
“Our approach in this paper is based on refining the functions provided by
cryptography in an attempt to find the simplest functions that are difficult to learn.
… A technical open problem is to improve the constructions given here to …
even simpler classes of formulae and circuits. ”

Blum-Furst-Kearns-Lipton ‘93:
Cryptographic Primitives Based on

Hard Learning Problems
Apply hardness-of-learning conjectures
towards simple cryptography
– Search-to-decision reduction for Learning Parity

with Noise (LPN)
– WPRF candidate computable by poly-size DNF

𝑓!,# 𝑥 = Parity 𝑥! ⊕Majority 𝑥# 𝐴 = 𝐵 = log 𝑛
“… as “simple” function classes … continue to elude efficient
learning, our belief in the intractability of learning such classes
increases, and we can exploit this intractability to obtain simpler
cryptographic primitives.”

– WPRF candidate computable by poly-size DNF
𝑓!,# 𝑥 = Parity 𝑥! ⊕Majority 𝑥# 𝐴 = 𝐵 = log 𝑛

“… [this is]a distribution on DNF formulas that seems to defy all
known methods of attack, and we believe that any method that could
even weakly predict such functions over a uniform D would require
profoundly new ideas.”

Isn’t this cheating? Where’s the math?

– WPRF candidate computable by poly-size DNF
𝑓!,# 𝑥 = Parity 𝑥! ⊕Majority 𝑥# 𝐴 = 𝐵 = log 𝑛

Isn’t this cheating? Where’s the math?

Well, suppose they are right.
Aren’t we done?

Only weak PRF
Only quasi-polynomial hardness

– WPRF candidate computable by poly-size DNF
𝑓!,# 𝑥 = Parity 𝑥! ⊕Majority 𝑥# 𝐴 = 𝐵 = log 𝑛

Isn’t this cheating? Where’s the math?

Well, suppose they are right.
Aren’t we done?

Only weak PRF
Only quasi-polynomial hardness

Both limitations inherent to AC0
[Linial-Mansour-Nisan 89]

Simple PRFs
Simple

Hard-to-Learn
Functions

Different applications
motivate different notions

of simplicity

Natural Proof
Barriers

Cryptographic
Applications

market for
simple

hard-to-learn
functions

Simple PRFs
Simple

Hard-to-Learn
Functions

Different applications
motivate different notions

of simplicity

Natural Proof
Barriers

Cryptographic
Applications

market for
simple

hard-to-learn
functions

MPC/FHE/ZK-friendly
PRF

x1,k1 x2,k2

y=Fk(x)

Motivating challenge:
Asymptotically Optimal PRF

70,1'%+'1$8%$)9($8&
,+- 0',0)1+-'():%$+)PRF #$ "

#

Fk:{0,1}nà{0,1}n

Efficiency: O(n)-size circuit
Security: 2Ω(n)-size distinguishers

… or even heuristic?Any “provable” construction?

Motivating challenge:
Asymptotically Optimal PRF

70,1'%+'1$8%$)9($8&
,+- 0',0)1+-'():%$+)PRF #$ "

#

Fk:{0,1}nà{0,1}n

Efficiency: O(n)-size circuit
Security: 2Ω(n)-size distinguishers

… or even heuristic?

Motivating challenge:
Asymptotically Optimal PRF

70,1'%+'1$8%$)9($8&
,+- 0',0)1+-'():%$+)PRF #$ "

#

Fk:{0,1}nà{0,1}n

Efficiency: O(n)-size circuit
Security: 2Ω(n)-size distinguishers

Implies linear-time encodable codes…

Low-Complexity
Cryptography

A very broad research agenda…
• Pick a crypto primitive

– OWF, PRG, PRF, CRH, PKE, ZK, SNARG, MPC, FHE, HSS, ABE, IO,…

• Pick a target security level
– Standard / sub-exponential / exponential? Post-quantum?

• Pick a complexity measure
– Computation

• Model: circuit, branching program, RAM, …
• Metric: size, depth, …

– Locality, algebraic degree
– Communication, rounds

• Go as low as you can

What about assumptions?

• Typical methodology: build X under “acceptable” assumption Y
– Notion of “acceptable” somewhat arbitrary

• No assumption? Certainly acceptable.

Information-Theoretic Cryptography

[BenOr-Kilian-Goldwasser-Wigderson 88]
IT-ZK => … PCP … => Practical ZK

What about assumptions?

• Typical methodology: build X under “acceptable” assumption Y
– Notion of “acceptable” somewhat arbitrary

Drawing the line:
• Naor 03

- Gentry-Wichs 11, Pass 11, …
• Goldwasser-Kalai 16
• …

What about assumptions?

• Typical methodology: build X under “acceptable” assumption Y
– Notion of “acceptable” somewhat arbitrary

Typical “acceptable” assumptions:
• Clean and succinct
• Efficiently falsifiable
• Broadly applicable
• Win-win flavor
• Withstood test of time…

What about assumptions?

• Typical methodology: build X under “acceptable” assumption Y
– Notion of “acceptable” somewhat arbitrary
– In reality: “acceptable” aka “standard” = used by those we trust
– Heavily influenced by historical coincidences

• What if this methodology fails?
– When is it ok to make new assumptions?
– Someone needs to be the first...

• Theory community tends to be conservative
– Speculative new assumptions are often broken
– Minimizing assumptions gave rise to a rich and deep theory

Alternative Methodology

1. Identify a class C of natural constructions
2. Identify a class A of natural attacks
3. Find efficient constructions from C resisting A

– Often a combinatorial problem, with no inherent barriers
– Systematic way for navigating “crypto dark matter”
– May lead to new acceptable assumptions

• Common in applied crypto
– Typically heuristic, not systematic, restricted to maximum security

• Less common in theory-oriented crypto
– OWF, PRG [Goldreich00 … Applebaum-Lovett16 …]
– PRF [Miles-Viola12 … Akavia-Bogdanov-Guo-Kamath-Rosen14 …]

Crypto Universe

Provable under acceptable assumptions
Broken by natural attacks

Crypto Universe

Heuristic constructions resisting natural attacks
Broken by natural attacks

Crypto Universe

Heuristic constructions resisting natural attacks
Broken by natural attacks

Lowest complexity
Simplest

Computational Complexity
of Cryptography

Default model:
boolean circuits with bounded fan-in

SecureInsecure

s*poly(𝜆)sTypical:

O(s)
i.e. O(s)+poly(𝜆)

sDream goal….

• 𝜆 = security parameter

$%&'()*+,(-*“.)/0(1/(*)23%-314” 5

Minimizing Circuit Size

Universal Hashing
[Carter-Wegman77]

6$

#

!"#"$!%&'

• Pairwise independence:
– x¹x’ è Hk(x),Hk(x’) are uniform and independent

Complexity of Universal Hashing
• Standard constructions

– Ha,b(x)=ax+b, a,b Î GF(2n)
– Ha,b(x)=(a°x)+b a Î Z2

2n-1, b Î Z2
n

– Both conjectured to require W(n·logn) circuit size
• [Mansour-Nisan-Tiwari 90]

– Time-space tradeoff for universal hashing
– Conjecture: Any universal hash function Hk:{0,1}nà{0,1}n

requires circuits of size W(n·logn).
• [I-Kushilevitz-Ostrovsky-Sahai 08]

– Can be done by linear-size circuits

()*+",,,-
.&)/01)234

7',3891/;

()*+",,-
50367829234 7

!!
7

!"
7

!#
7 7 7 7 7 7

!$

78"6512#%9%:;<<=()*+",-
.3176234

Linear-Size Circuit for Hashing

2

!

Open: k-wise independence for
super-constant k with n/k bits of output

Back to Coding Theory
[Druk-I 14]

• Family of linear-time encodable linear codes
meeting the Gilbert-Varshamov bound
– Efficient decoding?
– Most likely not…

• … so back again to crypto
– Linear-time substitute for random linear codes

Constant-Overhead Cryptography

:00;9'(,)/ <%,9,(,23
-3-* :-/;*,!+).5+!5/-6

<-*=2/%*.>?@

<AB >?@
“C5,/-$/-6” DEB

DEB(.DFGH/-=!2,*2&5.)3&+) DEI

D3)"=!2,*2&5.)3&+).DEI C*&1,*.@3%012+2/3-
J/25.!*%/=53-*!2.0+,2/*!

C/6-+21,*!

[DI14, Cramer-Damgård-
Döttling-Fehr-Spini15]

Constant-Overhead Cryptography

:00;9'(,)/ <%,9,(,23
-3-* :-/;*,!+).5+!5/-6

<-*=2/%*.>?@

<AB >?@
“C5,/-$/-6” DEB

C/6-+21,*!
DEB(.DFGH/-=!2,*2&5.)3&+) DEI

D3)"=!2,*2&5.)3&+).DEI C*&1,*.@3%012+2/3-
J/25.!*%/=53-*!2.0+,2/*!

C*&,*2.C5+,/-6
[Fan-Li-Yang 21]:

Circuit size 2n (over
full basis) is sufficient
and necessary!

Constant Overhead for Other Primitives

:00;9'(,)/ <%,9,(,23
<+..8+)=>?8$8%0)%'708&$)9@

A?,+=B)+#.?19?'C,++*8@
5(::$):%'0,9(-?)%8@

32C=8?:(,?'D>E@

5?:(,?':+-C(%0%$+)
#$%&'-0.$:$+(8'C0,%$?8@

32C=8?:(,?';4E@'D>!@

K/-+,"=CLD
!"##$%&'()*+',')'-.*/*

0(123$%43-5*6'37(8-'8'-2'89:;

G#0=!*&1,*.H3&+).<AB
:;0/73<,<=>)/7?>@!ABC

!"#$%&'(')*++%,-./%'0*&*1'2/345

M*J.@+-N/N+2*

M3.&+-N/N+2*

M3.&+-N/N+2*

Constant Overhead for Other Primitives

:00;9'(,)/ <%,9,(,23
<+..8+)=>?8$8%0)%'708&$)9@

A?,+=B)+#.?19?'C,++*8@
5(::$):%'0,9(-?)%8@

32C=8?:(,?'D>E@

5?:(,?':+-C(%0%$+)
#$%&'-0.$:$+(8'C0,%$?8@

32C=8?:(,?';4E@'D>!@

K/-+,"=CLD
!"##$%&'()*+',')'-.*/*

0(123$%43-5*6'37(8-'8'-2'89:;

G#0=!*&1,*.H3&+).<AB
:;0/73<,<=>)/7?>@!ABC

Applebaum 17:
Implies gap-ETH

[Dinur 16; Manurangsi-Raghavendra 16]

!"#$%&'(')*++%,-./%'0*&*1'2/345

M*J.@+-N/N+2*

M3.&+-N/N+2*

M3.&+-N/N+2*

Natural proof barrier for linear-size circuits

(Previously: quasi-linear size candidate [Miles-Viola12])

Later in the talk…

Constant Overhead for Other Primitives

:00;9'(,)/ <%,9,(,23
<+..8+)=>?8$8%0)%'708&$)9@

A?,+=B)+#.?19?'C,++*8@
5(::$):%'0,9(-?)%8@

32C=8?:(,?'D>E@

5?:(,?':+-C(%0%$+)
#$%&'-0.$:$+(8'C0,%$?8@

32C=8?:(,?';4E@'D>!@

K/-+,"=CLD
!"##$%&'()*+',')'-.*/*

0(123$%43-5*6'37(8-'8'-2'89:;

G#0=!*&1,*.H3&+).<AB
:;0/73<,<=>)/7?>@!ABC

!"#$%&'(')*++%,-./%'0*&*1'2/345

M*J.@+-N/N+2*

M3.&+-N/N+2*

M3.&+-N/N+2*

• Yes for arithmetic circuits
[Bootle-Cerulli-Ghadafi-Groth-Hajiabadi-Jakobsen17]
[Applebaum-Damgård-I-Nielsen-Zichron17]
[Boyle-Couteau-Gilboa-I18, Chase-Dodis-I-Kraschewski-
Liu-Ostrovsky-Vaikuntanathan19]

• Best overhead for Boolean:
polylog(𝜆)

[Damgård-I-Krøigaard10]

Low-Complexity
Pseudorandom Functions

Taxonomy of Constructions
• Security type

– Weak vs. Strong
• Security level

– Polynomial, Quasipolynomial, Subexponential, Exponential
• Complexity class

– Constant-depth poly-size circuits with unbounded fan-in
• AC0: AND/OR/NOT
• AC0[modp]: + parity / modp for prime p
• ACC0: + modm for composite m

– Linear-size circuits
• Assumptions

– Standard, heuristic

Taxonomy of Constructions
• Security type

– Weak vs. Strong
• Security level

– Polynomial, Quasipolynomial, Subexponential, Exponential
• Complexity class

– Constant-depth poly-size circuits with unbounded fan-in
• AC0: AND/OR/NOT
• AC0[modp]: + parity / modp for prime p
• ACC0: + modm for composite m

– Linear-size circuits
• Assumptions

– Standard, heuristic

Viewing key k as fixed

TC0:
Strong PRFs under standard cryptographic
assumptions [Naor-Reingold 97, ...]

No strong PRFs with better
than qpoly security [RR94]

Taxonomy of Constructions
• Security type

– Weak vs. Strong
• Security level

– Polynomial, Quasipolynomial, Subexponential, Exponential
• Complexity class

– Constant-depth poly-size circuits with unbounded fan-in
• AC0: AND/OR/NOT
• AC0[modp]: + parity / modp for prime p
• ACC0: + modm for composite m

– Linear-size circuits
• Assumptions

– Standard, heuristic

Typically: Provable security against
“relevant” attacks: linear, algebraic, ...

AC0
• Limitations [LMN89]

– No strong PRF
– Quasi-polynomial attack against WPRF

• Depth 2
– WPRF candidate [BFKL93]
– “Biased-input” WPRF from local PRG

[Applebaum-Barak-Wigderson 10, Daniely-Vardi 21]

• Depth 3
– WPRF from local PRG [Applebaum-Raykov 16, DV21]

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF Candidate
[Akavia-Bogdanov-Guo-Kamath-Rosen14]

⊕ ⊕⊕ ⊕

∧

⊕ ⊕
key k

input x

∧ ∧

∨

Depth-3
AC![2]

Tribes

AC0 on top of parities?

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF Candidate
[Akavia-Bogdanov-Guo-Kamath-Rosen14]

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input

∧ ∧

∨

Depth-3
AC![2]

Tribes

𝐾 ∈ ℤ!"×"

[Bogdanov-Rosen 17]:
quasi-polynomial time

algebraic attack via
low rational degree

AC0 on top of parities?

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF Candidate
[Boyle-Couteau-Gilboa-I-Kohl-Scholl 21]

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input

∧ ∧

∨

Depth-4
AC![2]

Sipser

𝐾 ∈ ℤ!"×"
Provably high

rational degree

Take 2Low-Complexity Weak Pseudorandom Functions in AC0[MOD2] 491

We present a new candidate WPRF in AC0 ◦ MOD2 which follows the high-level
template of Akavia et al. [1], but with an alternative choice of AC0 circuit struc-
ture. The WPRF candidate of Akavia et al. [1] (hereafter referred to as the
“ABGKR” candidate) is of the form

fs,K(x) = 〈x, s〉 ⊕ g(K · x mod 2)

for s ∈ {0, 1}n, K ∈ {0, 1}(n−1)×n, where g(x) =
∨λ

i=1

∧log λ
j=1 xij is a DNF (the

so-called TRIBES function). Since fs,K(x) can be written as (¬〈x, s〉∧g(K ·x))∨
(〈x, s〉 ∧ ¬g(K · x)), it indeed belongs to AC0 ◦ MOD2. Notice that this candidate
is an instance of the learning parity with simple deterministic noise framework,
where g(·) is the noise function. Since the noise function is biased, XORing it
with 〈x, s〉 makes the final function balanced.

Unfortunately, this candidate was broken in [13] by an algebraic attack. In
our candidate, we address this issue by simply adding a layer of OR gates after
the parity layer, replacing the noise function with:

g(x) =
λ∨

i=1

λ∧

j=1

w∨

k=1

xijk.

We conjecture that our candidate is a subexponentially secure WPRF. We
observe that our candidate resists the same classes of attacks as addressed for
the ABGKR candidate. However, we are further able to prove that our candidate
construction has high rational degree, thus circumventing the algebraic attacks
under which the ABGKR candidate was insecure.2

We also study the resistance of our candidate against linear attacks, a large
class of attacks that includes most state-of-the-art attacks on learning parity
problems (such as the learning parity with noise assumption), whose structure
bears connections to our candidate. We put forth a conjecture which, if true,
implies that our candidate (as well as the WPRF candidates of [1,14]) cannot
be broken by linear attacks.

We view our results as providing a strong indication that AC0◦MOD2 may not
be learnable under the uniform distribution. We compare our results to known
results regarding low-complexity PRFs on Table 1. As shown in the Table, our
work fills gaps in our understanding of the complexity of weak PRFs.

On WRPFs in AC0 on top of public parities. The conjectured security of
our candidate above relies on the MOD2 portion of the AC0◦MOD2 circuit remaining
secret, dictated by the secret WPRF key. We further revisit the question:

Can WPRF exist in the class formed by AC0atop public parities?

2 Formally, high rational degree does not prove resistance to the attack from [13],
which only requires proximity to low rational degree. However, we view this as strong
evidence that the attack does not apply to our candidate.

[BCGIKS21]:
WPRF ruled out by a variant of a conjecture from [ABGKR14].

Linear IPPP conjecture [Servedio-Viola 12]:
Inner-product mod 2 cannot be computed in AC0 ∘ MOD2.

CONJECTURE 1:
There exists a WPRF in

AC0 ∘ MOD2.

CONJECTURE 2:
There does not exist a
WPRF in AC0 on top of

public parities.

Linear IPPP is true.

1
4

AC0 on top of public parities?

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(

Sparse
polynomial

in
pu

t

ke
y

⊕

Depth-2 WPRF?

Applications:
• Correlated PRFs
• XOR-RKA security

[Boyle-Couteau-Gilboa-I-Kohl-Scholl 20]
Candidate WPRF by XNF formulas

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(

Sparse
polynomial

in
pu

t

ke
y

⊕

Depth-2 WPRF?

Secure under
variable-density
variant of LPN

Applications:
• Correlated PRFs
• XOR-RKA security

[Boyle-Couteau-Gilboa-I-Kohl-Scholl 20]

Best possible security: 2 !

[Hellerstein-Servedio 07]

Candidate WPRF by XNF formulas

Sparse multivariate
𝔽!-polynomials in inputs
and their negation

𝑓" 𝑥 =-
#$%

&

-
'$%

(

.
)$%

'

(𝑥#') ⊕𝐾#'))

Bigger j è
more bias towards 0

Intuition: With
more samples,
more of these
terms will “kick in”

WPRF by XNF

Variable-density LPN Standard (dual) LPN

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(

Sparse
polynomial

WPRF by sparse F2-polynomials
[Boyle-Couteau-Gilboa-I-Kohl-Scholl 21]

input

Determined by key

Subexponential security
against linear and algebraic

attacks

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-2
ACC[6]𝐾 ∈ ℤ!"×"

mod-3
addition

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Conjecture:
Exponential security

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-2
ACC[6]𝐾 ∈ ℤ!"×"

mod-3
addition

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Conjecture:
Exponential security

So far withstood analysis
[Cheon-Cho-Kim-Kim 21]
[Dinur-Goldfeder-Halevi-I-Kelkar-

Sharma-Zaverucha 21]]

• Exponential hardness of learning
mod3 ◦ XOR circuits under uniform

• Same for FORMULA[n2.8] ◦ XOR
[Kabanets-Koroth-Lu-Myrisiotis-Oliviera 20]

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-2
ACC[6]𝐾 ∈ ℤ!"×"

mod-3
addition

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Also computable by:
* Sparse Z3 polynomial
* Width-3 BP

Exponential hardness of learning
sparse Z3-polynomials with
uniform inputs from {-1,1}n

Conjecture:
Exponential security

So far withstood analysis
[Cheon-Cho-Kim-Kim 21]
[Dinur-Goldfeder-Halevi-I-Kelkar-Sharma-Zaverucha 21]]

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

WPRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-2
ACC[6]𝐾 ∈ ℤ!"×"

mod-3
addition

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Conjecture:
Exponential security

Easy to
distribute!

Annoying Complexity Class [R. Williams]
Awesome

Fast Distributed Symmetric Crypto
[Dinur-Goldfeder-Halevi-I-Kelkar-

Sharma-Zaverucha 21]

Candidates

Analysis

Protocols

Construction
Parameters

Comment
(n,m, t)

(2, 3)-OWF (s, 3.13s, s/ log 3) aggressive
(s, 3.53s, s/ log 3) conservative

(2, 3)-wPRF (2s, 2s, s/ log 3) aggressive
(2.5s, 2.5s, s/ log 3) conservative

LPN-PRG (s, 3s, 2s)
LPN-wPRF (2s, 2s, s)

Table 1: Concrete parameters for s-bit security.

same input to the wPRF is selected twice) and undesired interactions between the input and the
structured circulant matrix K. More details about such inputs are given in the security analysis.

Concrete parameters. In Table 1 we summarize the recommended concrete parameters for
our constructions with the goal of obtaining s-bit security. For the (2, 3)-OWF and (2, 3)-wPRF
constructions we give both aggressive and more conservative parameter sets. Note that the OWF
and PRG use the minimal secret input (and output) sizes, while for wPRFs we use a larger secret.
This is a result of di↵erent tradeo↵s between security and performance. For example, we could have
set n = s for the (2, 3)-wPRF, but cryptanalysis would force setting m to be much larger than 2s
and result in less e�cient protocols. A lower bound on m in case n = s is deduced by a subset-sum
attack which resembles the one on the (2, 3)-OWF construction. Yet, optimizations that exploit
the additional data available may be possible. While we do not expect security to degrade sharply
in this case, we leave the concrete analysis for this parameter setting to future work. On the other
hand, setting n = 2s for the (2, 3)-OWF would also require doubling the size of the output,2 once
again, degrading e�ciency.

Our constructions are new and it is not unlikely that some will be broken and require updating
the parameter sets (even the “conservative” ones). Conversely, if for some of our constructions the
more aggressive parameter sets turn out to resist future analysis, we would gain further confidence
in their security.

One of the main questions we leave open is how to better exploit the structured matrices
used in our constructions in cryptanalysis. This question is particularly interesting for the wPRF
constructions where the attacker obtains several samples, and can perhaps utilize the structured
matrices to combine their information in more e�cient attacks.

1.1.3 Distributed protocols and optimized implementations

As discussed above, our design criteria are guided by the goal of supporting e�cient MPC protocols
for distributed evaluation. We consider protocols for semi-honest parties in several standard MPC
models, either with or without preprocessing.

E�cient protocols. For our wPRF candidates, we present protocols in several di↵erent settings:
(1) 2PC with preprocessing, where the input, key, and output are all secret-shared between the
parties; (2) 3PC with one passive corruption, and (3) an OPRF-style 2PC with preprocessing,

2 Otherwise, each output would have 2s preimages and there would be no security advantage.

6

(2, 3)-constructions

Parameters. Let � be the security parameter and define parameters n,m, t as functions of
� such that m � n,m � t.
Public values. Let A 2 Zm⇥n

2 and B 2 Zt⇥m

3 be fixed public matrices chosen uniformly at
random. The matrices can also be chosen to be full-rank circulant matrices.

Construction 3.1 (Mod-2/Mod-3 wPRF Candidate [BIP+18]). The (2, 3)-wPRF candidate
is a family of functions F� : Zm⇥n

2 ⇥Zn

2 ! Zt

3 with key-space K� = Zm⇥n

2 , input space X� = Zn

2

and output space Y� = Zt

3. For a key K 2 K�, we define FK(x) = F�(K, x) as follows:

1. On input x 2 Zn

2 , first compute w = BL2(K, x) = Kx.

2. Output y = Lin
B
3

�
Convert(2,3)(w)

�
. That is, view w as a vector over Z3 and then output

y = Bw.

Construction 3.2 (Mod-2/Mod-3 OWF Candidate). The (2, 3)-OWF candidate is a function
F� : Zn

2 ! Zt

3 with input space X� = Zn

2 and output space Y� = Zt

3. We define F(x) = F�(x)
as follows:

1. On input x 2 Zn

2 , first compute w = Lin
A
2 (x) = Ax.

2. Output y = Lin
B
3

�
Convert(2,3)(w)

�
. That is, view w as a vector over Z3 and then output

y = Bw.

K

x

B y

(2, 3)-wPRF

Ax B y

(2, 3)-OWF

Figure 2: (2, 3)-constructions

reinterpreted over Z3) and then reduced modulo 2 to obtain v. The sum w = u � v is then
multiplied by a second linear map (given by B) over Z2. The map B is always public, while
for keyed primitives, the key K is used instead of A.

The construction is parameterized by positive integers n,m, t (as functions of the security
parameter �) denoting the size of the input vector, the intermediate vector(s), and the output
vector (all over Zp). Concretely, given A 2 Zm⇥n

2 and a public B 2 Zt⇥m

2 , for an input x 2 Zn

2 ,
the construction first computes the intermediate vector:

w = [(Ax mod 2) + (Ax mod 3) mod 2] mod 2.

The output y is then computed as y = Bw mod 2. The upshot of this style is that the input
and the output are both over Z2. Intuitively, each intermediate vector bit can be thought of
as a deterministic Learning-Parity-with-Noise (LPN) instance with a noise rate of 1/3. The
noise is deterministically generated and is dependent on the input x and a specific column of
A. The noise for the ith instance will be 1 if and only if hAi, xi = 1.

13

LPN-style-constructions

Parameters. n,m, t are functions of the security parameter �.
Public values. Let A 2 Zm⇥n

2 and B 2 Zt⇥m

2 be fixed public matrices chosen uniformly at
random. Alternatively, the matrices can also be chosen to be full-rank circulant matrices.

Construction 3.3 (LPN-wPRF Candidate). The LPN-wPRF candidate is a family of func-
tions F� : Zm⇥n

2 ⇥ Zn

2 ! Zt

2 with key-space K� = Zm⇥n

2 , input space X� = Zn

2 and output
space Y� = Zt

2. For a key K 2 K�, we define FK(x) = F�(K, x) as follows:

1. On input x 2 Zn

2 , first compute u = BL2(K, x) = Kx.

2. Let K⇤ = Convert(2,3)(K) and x⇤ = Convert(2,3)(x). Compute v =
Convert(3,2)(BL3(K

⇤, x⇤)) = K⇤x⇤ mod 2. That is, compute v = (Kx mod 3) mod 2
where both K and x are first reinterpreted over Z3.

3. Compute w = u� v and output y = Lin
B
2 (w).

Construction 3.4 (LPN-PRG Candidate). The LPN-PRG is a length-doubling PRG can-
didate defined as the function F� : Zn

2 ! Z2n
2 with input space X� = Zn

2 and output space
Y� = Z2n

2 . For this construction, we consider the parameters n,m, t with m � n, t and t = 2n.
We define F(x) = F� as follows:

1. On input x 2 Zn

2 , first compute u = Lin2(A, x) = Ax.

2. Let x⇤ = Convert(2,3)(x). Compute v = Convert(3,2)(Lin
A
3 (x⇤)) = (Ax⇤) mod 2. That is,

compute (Ax mod 3) mod 2 where both A and x are first reinterpreted over Z3.

3. Compute w = u� v and output y = Lin
B
2 (w).

K

x

K

x

LPN-wPRF

B y

Ax

x A

B y

LPN-PRG

Figure 3: LPN-style-constructions

A similar construction was considered in [BIP+18] but only for a single-bit output. Specif-
ically, they considered A 2 Z1⇥n

2 and output the single bit w. In our construction, we addi-
tionally apply a compressive linear map (using B) to get the final output. This is done to
resist standard attacks on LPN (see Section 4 and Appendix A for details).

Winning candidates. Through cryptanalysis and considering the cost for each candidate (See
Sections 4 and 5 for details), we find that some of our candidates are more suited (i.e., “win”) for

14

LPN-style-constructions

Parameters. n,m, t are functions of the security parameter �.
Public values. Let A 2 Zm⇥n

2 and B 2 Zt⇥m

2 be fixed public matrices chosen uniformly at
random. Alternatively, the matrices can also be chosen to be full-rank circulant matrices.

Construction 3.3 (LPN-wPRF Candidate). The LPN-wPRF candidate is a family of func-
tions F� : Zm⇥n

2 ⇥ Zn

2 ! Zt

2 with key-space K� = Zm⇥n

2 , input space X� = Zn

2 and output
space Y� = Zt

2. For a key K 2 K�, we define FK(x) = F�(K, x) as follows:

1. On input x 2 Zn

2 , first compute u = BL2(K, x) = Kx.

2. Let K⇤ = Convert(2,3)(K) and x⇤ = Convert(2,3)(x). Compute v =
Convert(3,2)(BL3(K

⇤, x⇤)) = K⇤x⇤ mod 2. That is, compute v = (Kx mod 3) mod 2
where both K and x are first reinterpreted over Z3.

3. Compute w = u� v and output y = Lin
B
2 (w).

Construction 3.4 (LPN-PRG Candidate). The LPN-PRG is a length-doubling PRG can-
didate defined as the function F� : Zn

2 ! Z2n
2 with input space X� = Zn

2 and output space
Y� = Z2n

2 . For this construction, we consider the parameters n,m, t with m � n, t and t = 2n.
We define F(x) = F� as follows:

1. On input x 2 Zn

2 , first compute u = Lin2(A, x) = Ax.

2. Let x⇤ = Convert(2,3)(x). Compute v = Convert(3,2)(Lin
A
3 (x⇤)) = (Ax⇤) mod 2. That is,

compute (Ax mod 3) mod 2 where both A and x are first reinterpreted over Z3.

3. Compute w = u� v and output y = Lin
B
2 (w).

K

x

K

x

LPN-wPRF

B y

Ax

x A

B y

LPN-PRG

Figure 3: LPN-style-constructions

A similar construction was considered in [BIP+18] but only for a single-bit output. Specif-
ically, they considered A 2 Z1⇥n

2 and output the single bit w. In our construction, we addi-
tionally apply a compressive linear map (using B) to get the final output. This is done to
resist standard attacks on LPN (see Section 4 and Appendix A for details).

Winning candidates. Through cryptanalysis and considering the cost for each candidate (See
Sections 4 and 5 for details), we find that some of our candidates are more suited (i.e., “win”) for

14
Primitive Construction

Param.
(n,m, t)

Distributed 2PC
(with preprocessing)

Distributed
3PC

Public-Input 2PC
(with preprocessing)

Online
Comm.

Prepr.
Online
Comm.

Online
Comm.

Prepr.

wPRF
(2, 3)-wPRF (256, 256, 81) (1536, 4, 2) (2348, 662) (1430, 4, 1) (512, 2, 1) (1324, 406)
LPN-wPRF (256, 256, 128) (2860, 6, 3) (4995, 1730) (1324, 4, 2) (3160, 918)

OWF (2, 3)-OWF (128, 452, 81) (904, 2, 1) (2337, 717) (2525, 4, 1) - -
PRG LPN-PRG (128, 512, 256) (1880, 4, 2) (4334, 1227) - -

Table 3: Concrete MPC costs for our winning candidate constructions in three settings (Distributed
2PC (with preprocessing), 3PC, and Public-input 2PC) using our proposed parameters. For the
distributed 2PC and the public-input 2PC settings, we provide the total online communication (bits,
messages, rounds) and the preprocessing required in bits (without compression, with compression).
For the compressed size of the preprocessing, we do not include values that can be reused (e.g.,
PRG seeds). For the distributed 3PC setting, we provide the total online communication cost (bits,
messages, rounds) for our (2, 3)-constructions. The cost of the reusable PRG seeds is not included.

• (Compression using a PRG). Another standard technique for compressing the size of prepro-
cessing is to use a PRG. Intuitively, each party is given a di↵erent PRG seed by the trusted
dealer which they can use locally to generate their randomness. Only a single party has its
shares given by the dealer to ensure that the randomness is appropriately correlated.

Concrete costs. In Table 3, we provide the concrete costs for our protocols in di↵erent settings
for our specific parameter choices. For the distributed 2PC and public-input 2PC settings that use
preprocessing, we provide the online and preprocessing costs when using a trusted dealer. Later, in
Section 5.5, we will show how to distribute the trusted dealer as well, through e�cient protocols for
generating the preprocessed correlations we require from standard OT-correlations. This combined
with fast silent OT [BCG+19a; YWL+20] makes the gap between the online cost mentioned in
Table 3 and the total cost (including distributing the dealer) quite small. As a concrete example,
the (amortized) total communication for the (2,3)-wPRF in the distributed 2PC setting is only
23% higher than the online cost when a trusted dealer is used.

5.2 Distributed Evaluation in the Preprocessing Model

Equipped with our technical overview, we now move to constructing distributed protocols (with
preprocessing) for our candidate constructions. By distributed evaluation, we mean that all inputs
are secret shared between all parties and the protocol provides parties with a sharing of the output.
As a concrete example, we provide the complete details of a 2-party distributed evaluation protocol
for our (2, 3)-wPRF candidate.

5.2.1 2-Party Protocol for (2, 3)-wPRF

We detail a 2-party semi-honest protocol for evaluating the (2, 3)-wPRF candidate (Construc-
tion 3.1). In this setting, two parties, denoted by P1 and P2 hold additive shares of a keyK 2 Zm⇥n

2 ,
and an input x 2 Zn

2 . The goal is to compute an additive sharing of the wPRF output y = Lin
B
3 (Kx)

where B 2 Zt⇥m

3 is a publicly known matrix.

25

Practical post-quantum signatures

(2, 3)-constructions

Parameters. Let � be the security parameter and define parameters n,m, t as functions of
� such that m � n,m � t.
Public values. Let A 2 Zm⇥n

2 and B 2 Zt⇥m

3 be fixed public matrices chosen uniformly at
random. The matrices can also be chosen to be full-rank circulant matrices.

Construction 3.1 (Mod-2/Mod-3 wPRF Candidate [BIP+18]). The (2, 3)-wPRF candidate
is a family of functions F� : Zm⇥n

2 ⇥Zn

2 ! Zt

3 with key-space K� = Zm⇥n

2 , input space X� = Zn

2

and output space Y� = Zt

3. For a key K 2 K�, we define FK(x) = F�(K, x) as follows:

1. On input x 2 Zn

2 , first compute w = BL2(K, x) = Kx.

2. Output y = Lin
B
3

�
Convert(2,3)(w)

�
. That is, view w as a vector over Z3 and then output

y = Bw.

Construction 3.2 (Mod-2/Mod-3 OWF Candidate). The (2, 3)-OWF candidate is a function
F� : Zn

2 ! Zt

3 with input space X� = Zn

2 and output space Y� = Zt

3. We define F(x) = F�(x)
as follows:

1. On input x 2 Zn

2 , first compute w = Lin
A
2 (x) = Ax.

2. Output y = Lin
B
3

�
Convert(2,3)(w)

�
. That is, view w as a vector over Z3 and then output

y = Bw.

K

x

B y

(2, 3)-wPRF

Ax B y

(2, 3)-OWF

Figure 2: (2, 3)-constructions

reinterpreted over Z3) and then reduced modulo 2 to obtain v. The sum w = u � v is then
multiplied by a second linear map (given by B) over Z2. The map B is always public, while
for keyed primitives, the key K is used instead of A.

The construction is parameterized by positive integers n,m, t (as functions of the security
parameter �) denoting the size of the input vector, the intermediate vector(s), and the output
vector (all over Zp). Concretely, given A 2 Zm⇥n

2 and a public B 2 Zt⇥m

2 , for an input x 2 Zn

2 ,
the construction first computes the intermediate vector:

w = [(Ax mod 2) + (Ax mod 3) mod 2] mod 2.

The output y is then computed as y = Bw mod 2. The upshot of this style is that the input
and the output are both over Z2. Intuitively, each intermediate vector bit can be thought of
as a deterministic Learning-Parity-with-Noise (LPN) instance with a noise rate of 1/3. The
noise is deterministically generated and is dependent on the input x and a specific column of
A. The noise for the ith instance will be 1 if and only if hAi, xi = 1.

13

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, ⌧)

(128, 453, 81) (16, 150, 51) 13.30
(16, 168, 45) 12.48
(16, 250, 36) 11.54

Picnic3-L1 (16, 250, 36) 12.60
(128, 453, 81) (64, 151, 45) 13.59

(64, 209, 34) 11.70
(64, 343, 27) 10.66

Picnic2-L1 (64, 343, 27) 12.36

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, ⌧)

(256, 906, 162) (16, 324, 92) 50.19
(16, 400, 79) 47.08
(16, 604, 68) 45.82

Picnic3-L5 (16, 604, 68) 48.72
(256, 906, 162) (64, 322, 82) 51.23

(64, 518, 60) 44.04
(64, 604, 57) 43.45

Picnic2-L5 (64, 604, 58) 46.18

Table 4: Signature size estimates for Picnic using (2, 3)-OWF, compared to Picnic using LowMC.
The left table shows security level L1 (128 bits) with N = 16 and N = 64 parties, and the right
table shows level L5 (256 bits).

the message to be signed is bound to the proof by including it in the hash when computing the
challenge. In addition to assuming the OWF is secure, the only other assumption required is a
secure hash function. As no additional number-theoretic assumptions are required, these types of
signatures are often proposed as secure post-quantum schemes.

Concretely, our design follows the Picnic signature scheme [CDG+17], specifically the variant
instantiated with the KKW proof system [KKW18] (named Picnic2 and Picnic3). We chose to use
the KKW, rather than ZKB++ proof system since our MPC protocol to evaluate the (2, 3)-OWF
is most e�cient with a pre-processing phase, and KKW generally produces shorter signatures.
We replace the LowMC block cipher [ARS+15] in Picnic with the (2, 3)-OWF, and make the
corresponding changes to the MPC protocol.

This is the first signature scheme based on the hardness of inverting the (2, 3)-OWF (or similar
function), a function with a simple mathematical description, making it an accessible target for
cryptanalysis, especially when compared to block ciphers. Arguably, the simplicity of the OWF can
lead to simpler implementations: the MPC protocol is simpler, and no large precomputed constants
are required.

Our presentation is somewhat brief here, as many details are identical to Picnic, and the (2, 3)-
OWF MPC has been described in Section 5. Appendix C includes additional details.

Parameters. Let  be a security parameter. The (2, 3)-OWF parameters are denoted (n,m, t).
The KKW parameters (N,M, ⌧) denote the number of parties N , the total number of MPC in-
stances M , and the number ⌧ of MPC instances where the verifier checks the online phase of
simulation. The scheme also requires a cryptographic hash function.

Key generation. The signer chooses a random x 2 Zn

2 as secret key, and a random seed s 2
{0, 1} such that s expands to matrices A 2 Zm⇥n

2 and B 2 Zm⇥t

3 that are full rank (using a suitable
cryptographic function, such as the SHAKE extendable output function [KCP16]). Compute y =
F(x) and set (y, s) as the public key. Recall that the (2, 3)-OWF is defined as y = F(x) where
x 2 Zn

2 and y 2 Zt

3, and is computed as y = B(Ax) where Ax is first cast to Z3. We use unique
A and B per signer in order to avoid multi-target attacks against F. We specify the scheme using
random matrices, however, it could also be instantiated with circulant matrices, which may improve

34

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

Strong PRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-3
AC![6]𝐾 ∈ ℤ!$×$

map ∈ ℤ89×ℓ

mapT ∈ ℤ8<×9

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Conjecture:
Exponential security

==> Natural proof
barrier for ACC0

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(𝑠))
[GGM84]

DES (1975)

AES (1998)

Strong PRF candidate in ACC0

⊕ ⊕⊕ ⊕

∧

⊕ ⊕

input x

∧ ∧

∨

Depth-3
AC![6]𝐾 ∈ ℤ!$×$

map ∈ ℤ89×ℓ

mapT ∈ ℤ8<×9

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

Lin-size map =>
asymptotically

optimal PRF
candidate

Open:
- Break in time 2o(n)

- Prove k-wise ind.

… or even 2-wise independence
Only proved recently for AES-like
construction
[Liu-Tessaro-Vaikuntanathan 21]

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(
DES (1975)

AES (1998)

Alternative weak PRF candidate in ACC0

input

round

key
mod-6
inner

product

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

𝐹 $,%!,%",…,%# 𝑥 ≔ 𝑔∏$∈ # %$
&$

[NR97]

𝑘

𝑠(𝑠)

𝑠((𝑠() 𝑠)(
DES (1975)

AES (1998)

Alternative weak PRF candidate in ACC0

input

round

key
mod-6
inner

product

Mixing Moduli
[Boneh-I-Passelègue-Sahai-Wu 18]

LWR mod 6
[Banerjee-Peikert-Rosen 12]

Broken in time
2O(n/logn)

[Blum-Kalai-Wasserman 00]

LPN with
deterministic noise

Conclusion
• Simple hard-to-learn functions are useful!
• Many gaps in our understanding

– Much more “dark matter” to be explored
• Making new assumptions can help

– Responsibly, based on evidence, when called for
– Critical for progress on some fronts

• Joint effort of several communities
– Cryptography, cryptanalysis
– Computational learning theory
– Complexity theory

Conclusion
• Simple hard-to-learn functions are useful!
• Many gaps in our understanding

– Much more “dark matter” to be explored
• Introducing new assumptions can help

– Responsibly, based on evidence, when called for
– Critical for progress on some fronts
– More analysis is needed

• Joint mission of several communities
– Cryptography, cryptanalysis
– Computational learning theory
– Complexity theory, Algorithms, ...

The research leading to these results has received
funding from the European Union's Horizon 2020
Research and Innovation Program under grant

agreement
no. 742754 – ERC – NTSC

