The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

 $\mathsf{Duke} \Longrightarrow \mathsf{Simons} \Longrightarrow \mathsf{Cornell}$

Nov 5, 2021

Joint IFML/CCSI Symposium

The Planted Matching Problem

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Joint work with Jian Ding¹, Yihong Wu² and Jiaming Xu³.

- ¹ Department of Statistics, The Wharton School, University of Pennsylvania
- ² Department of Statistics and Data Science, Yale University
- ³ The Fuqua School of Business, Duke University

Planted models and recovery

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Model : planted structure + noise. **Question :** When/how can one recover the planted structure from its noisy observation ?

Planted models and recovery

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Model : planted structure + noise. **Question :** When/how can one recover the planted structure from its noisy observation ?

Examples

- Recovery of planted clique in Erdős-Rényi graphs.
- Community detection under the Stochastic Block Model.

The planted matching problem

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Planted structure : perfect matching in bipartite graph.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS'10]

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

[Sinibaldi-lebba-Chinappi MicrobiologyOpen'18]

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

[Hemelrijk-Costanzo-Hildenbrandt-Carere Behavioral Ecology and Sociobiology'19]

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS'10]

Planted matching model

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- Planted matching M* uniformly distributed in all perfect matchings.
- Edges not in M* appear independently w.p. ^d/_n.
- Edge weight

$$W_e \stackrel{\text{ind.}}{\sim} egin{cases} P & e \in M^* \ Q & e \notin M^* \end{cases}$$

Main results

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Theorem (Ding-Wu-Xu-Y '21)

Sharp threshold for almost perfect recovery :

If $\sqrt{dB(\mathcal{P},\mathcal{Q})} \leq 1$, then some \widehat{M} achieves

$$rac{1}{n}\mathbb{E}\left|\widehat{M} riangle M^{*}
ight|
ightarrow 0$$
 as $n
ightarrow\infty.$

• If $\sqrt{dB(\mathcal{P}, \mathcal{Q})} \ge 1 + \epsilon$ for $\epsilon > 0$, then for all \widehat{M} and some constant c,

$$\frac{1}{n}\mathbb{E}\left|\widehat{M}\triangle M^*\right|\geq c.$$

Bhattacharyya coefficient (Hellinger affinity) $B(\mathcal{P}, \mathcal{Q}) \stackrel{\triangle}{=} \int \sqrt{d\mathcal{P}d\mathcal{Q}}.$

Main results

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Theorem (Ding-Wu-Xu-Y '21)

Sharp threshold for almost perfect recovery :

If $\sqrt{dB(\mathcal{P},\mathcal{Q})} \leq 1$, then some \widehat{M} achieves

$$rac{1}{n}\mathbb{E}\left|\widehat{M} riangle M^{*}
ight|
ightarrow 0$$
 as $n
ightarrow\infty.$

• If $\sqrt{dB(\mathcal{P}, \mathcal{Q})} \ge 1 + \epsilon$ for $\epsilon > 0$, then for all \widehat{M} and some constant c,

$$\frac{1}{n}\mathbb{E}\left|\widehat{M}\bigtriangleup M^*\right|\geq c.$$

Bhattacharyya coefficient (Hellinger affinity) $B(\mathcal{P}, \mathcal{Q}) \stackrel{\triangle}{=} \int \sqrt{d\mathcal{P}d\mathcal{Q}}.$

- Result works for both sparse (d bounded) and dense $(d \rightarrow \infty)$ graphs.
- In the dense $d \to \infty$ regime, need certain scaling assumptions on Q.

Examples

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Exponential model (dense regime)[Maharrami-Moore-Xu '19, Semerjian-Sicuro-Zdeborová '20] :

- $d = n, P = \operatorname{Exp}(\lambda), Q = \operatorname{Exp}(1/n).$
- Sharp threshold : $\lambda = 4$.

Examples

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Unweighted model (sparse regime) :

- d = const, P = Q.
- The edge weights do not offer any information for recovery.
- Sharp threshold : d = 1.

Analysis (unweighted model)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- **1** Establish positive direction $(d \le 1)$ by analyzing the maximum likelihood estimator;
- 2 Establish negative direction $(d \ge 1 + \epsilon)$ by analyzing the posterior distribution.

Analysis for $d \leq 1$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

1 Analyze the MLE :

 $\widehat{M}_{ML} \in \{ \text{perfect matchings in } G \}$.

Analysis for $d \leq 1$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

1 Analyze the MLE :

 $\widehat{M}_{ML} \in \{ \text{perfect matchings in } G \}$.

2 First moment analysis :

$$\mathbb{P}\left\{ \left| \widehat{M}_{\mathsf{ML}} \bigtriangleup M^* \right| \ge \beta n \right\}$$

$$\leq \mathbb{P}\left\{ \exists \text{ perfect matching } M \text{ in } G, \text{ s.t. } |M \bigtriangleup M^*| \ge \beta n \right\}$$

$$\leq \sum_{t \ge \beta n/2} \binom{n}{t} t! \left(\frac{d}{n}\right)^t$$

$$\to 0 \text{ for some } \beta = o(1) \text{ when } d \le 1.$$

Analysis (unweighted model)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- **I** Establish positive direction $(d \le 1)$ by analyzing the maximum likelihood estimator;
- 2 Establish negative direction $(d \ge 1 + \epsilon)$ by analyzing the posterior distribution.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

Sampling from the posterior distribution is optimal within a factor of two.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Crucial observations

Sampling from the posterior distribution is optimal within a factor of two.

Proof : Let \widetilde{M} be sampled from the posterior distribution, then for any estimator \widehat{M} ,

$$\mathbb{E}\left|\widetilde{M} \bigtriangleup M^*\right| \leq \mathbb{E}\left|\widetilde{M} \bigtriangleup \widehat{M}\right| + \mathbb{E}\left|\widetilde{M} \bigtriangleup M^*\right| = 2\mathbb{E}\left|\widehat{M} \bigtriangleup M^*\right|,$$

where the equality is because $\mathcal{L}(G, \widetilde{M}) = \mathcal{L}(G, M^*)$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

- **I** Sampling from the posterior distribution is close to optimal.
- **2** The posterior distribution is uniform over the set of all perfect matchings in G.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Crucial observations

- **I** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Crucial observations

- **I** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.

Claim : number of "bad" solutions is $exp(\Omega(n))$.

For $d \geq 1 + \epsilon$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

- **1** Sampling from the posterior distribution is close to optimal.
- **2** The posterior distribution is uniform over the set of all perfect matchings in G.
- **3** For all perfect matching M, $M \triangle M^*$ consists of a disjoint union of alternating cycles.

For $d \geq 1 + \epsilon$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Crucial observations

- **1** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.
- **3** For all perfect matching M, $M \triangle M^*$ consists of a disjoint union of alternating cycles.

For $d \geq 1 + \epsilon$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

- **1** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.
- **3** For all perfect matching M, $M \triangle M^*$ consists of a disjoint union of alternating cycles.

Conclusion : It suffices to show the existence of $e^{\Omega(n)}$ distinct alternating cycles in *G* of length $\Omega(n)$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Natural attempt : first and second moment method.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Natural attempt : first and second moment method.

• Let S be the set of alternating cycles in G of length at least cn, then $\mathbb{E}|S| = e^{\Omega(n)}$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Natural attempt : first and second moment method.

- Let S be the set of alternating cycles in G of length at least cn, then $\mathbb{E}|S| = e^{\Omega(n)}$.
- If $\mathbb{E}(|S|^2) \lesssim (\mathbb{E}|S|)^2$, then $|S| = e^{\Omega(n)}$ with some constant probability.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Natural attempt : first and second moment method.

- Let S be the set of alternating cycles in G of length at least cn, then $\mathbb{E}|S| = e^{\Omega(n)}$.
- If $\mathbb{E}(|S|^2) \lesssim (\mathbb{E}|S|)^2$, then $|S| = e^{\Omega(n)}$ with some constant probability.
- However, E(|S|²) ≫ (E|S|)² due to the excessive correlation between long cycles.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Natural attempt : first and second moment method.

- Let S be the set of alternating cycles in G of length at least cn, then $\mathbb{E}|S| = e^{\Omega(n)}$.
- If $\mathbb{E}(|S|^2) \leq (\mathbb{E}|S|)^2$, then $|S| = e^{\Omega(n)}$ with some constant probability.
- However, E(|S|²) ≫ (E|S|)² due to the excessive correlation between long cycles.

Key idea : First find many disjoint short paths, then connect the paths into long cycles [Aldous '98, Ding-Goswami '15, ...].

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Two-stage cycle-finding scheme

Reserve a set V of γn vertices for some small $\gamma > 0$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Two-stage cycle-finding scheme

Reserve a set V of γn vertices for some small $\gamma > 0$.

Stage 1 (path construction) : Find Ω(n) disjoint short (constant length) alternating paths, using vertices in V^c.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Two-stage cycle-finding scheme

Reserve a set V of γn vertices for some small $\gamma > 0$.

- Stage 1 (path construction) : Find Ω(n) disjoint short (constant length) alternating paths, using vertices in V^c.
- Stage 2 (sprinkling) : Connect the paths into long cycles, using vertices in *V*.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Two-stage cycle-finding scheme

Reserve a set V of γn vertices for some small $\gamma > 0$.

- Stage 1 (path construction) : Find Ω(n) disjoint short (constant length) alternating paths "bushes", using vertices in V^c.
- Stage 2 (sprinkling) : Connect the paths into long cycles, using vertices in *V*.

Two-stage cycle-finding scheme

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Stage 1 (path construction) :

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Stage 2 (sprinkling) :

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Stage 2 (sprinkling) : Let $U'_k = \{v' \in V' : (v', u) \in E(G) \text{ for some } u \in L_k\},$ $V_k = \{v \in V : (v, u') \in E(G) \text{ for some } u' \in R_k\}.$

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Stage 2 (sprinkling) :

Let $U'_k = \{v' \in V' : (v', u) \in E(G) \text{ for some } u \in L_k\},$ $V_k = \{v \in V : (v, u') \in E(G) \text{ for some } u' \in R_k\}.$

2 Look for blue edges connecting $\{U_k\}, \{V'_k\}$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Stage 2 (sprinkling) :

Let $U'_{k} = \{v' \in V' : (v', u) \in E(G) \text{ for some } u \in L_{k}\}, V_{k} = \{v \in V : (v, u') \in E(G) \text{ for some } u' \in R_{k}\}.$

2 Look for blue edges connecting $\{U_k\}_{k \leq K}, \{V'_k\}_{k \leq K}$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Super graph : Define G_{super} on $[K] \times [K]'$, such that (k, k') is a red edge for all k, and (i, j') is a blue edge iff U_i and V'_j is connected by at least one blue edge.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Super graph : Define G_{super} on $[K] \times [K]'$, such that (k, k') is a red edge for all k, and (i, j') is a blue edge iff U_i and V'_j is connected by at least one blue edge.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Super graph: Define G_{super} on $[K] \times [K]'$, such that (k, k') is a red edge for all k, and (i, j') is a blue edge iff U_i and V'_j is connected by at least one blue edge.

Existence of exponentially many long alternating cycles in G

I Each alternating cycle on G_{super} expands into a alternating cycle in G.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Super graph: Define G_{super} on $[K] \times [K]'$, such that (k, k') is a red edge for all k, and (i, j') is a blue edge iff U_i and V'_j is connected by at least one blue edge.

Existence of exponentially many long alternating cycles in G

- **I** Each alternating cycle on G_{super} expands into a alternating cycle in G.
- Informal) G_{super} is a very supercritical E-R bipartite graph with a planted perfect matching.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Super graph : Define G_{super} on $[K] \times [K]'$, such that (k, k') is a red edge for all k, and (i, j') is a blue edge iff U_i and V'_j is connected by at least one blue edge.

Existence of exponentially many long alternating cycles in G

- **I** Each alternating cycle on G_{super} expands into a alternating cycle in G.
- Informal) G_{super} is a very supercritical E-R bipartite graph with a planted perfect matching.
- **3** G_{super} contains $e^{\Omega(n)}$ alternating cycles of length $\Omega(n)$.

Path construction via breadth-first search

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponenti model

Conclusion

Two-sided tree ("bush") :

Path construction via breadth-first search

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

When $d \ge 1 + \epsilon$, the branching processes survive with constant probability.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Unplanted version (Random assignment model) [Mézard-Parisi 87', Aldous 01', ...] :

- Observe W_e on the complete bipartite graph, where $W_e \stackrel{i.i.d.}{\sim} \exp(1)$.
- Minimum weight matching has average weight $\pi^2/6$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Unplanted version (Random assignment model) [Mézard-Parisi 87', Aldous 01', ...] :

- Observe W_e on the complete bipartite graph, where $W_e \stackrel{i.i.d.}{\sim} \exp(1)$.
- Minimum weight matching has average weight $\pi^2/6$.

Planted version :

• d = n, $\mathcal{P} = \exp(\lambda)$, $\mathcal{Q} = \exp(1/n)$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Unplanted version (Random assignment model) [Mézard-Parisi 87', Aldous 01', ...] :

- Observe W_e on the complete bipartite graph, where $W_e \stackrel{i.i.d.}{\sim} \exp(1)$.
- Minimum weight matching has average weight $\pi^2/6$.

Planted version :

- d = n, $\mathcal{P} = \exp(\lambda)$, $\mathcal{Q} = \exp(1/n)$.
- Minimum weight matching achieves almost perfect recovery iff

 $\lambda \geq$ 4[Maharrami-Moore-Xu '19].

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Unplanted version (Random assignment model) [Mézard-Parisi 87', Aldous 01', ...] :

- Observe W_e on the complete bipartite graph, where $W_e \stackrel{i.i.d.}{\sim} \exp(1)$.
- Minimum weight matching has average weight $\pi^2/6$.

Planted version :

- d = n, $\mathcal{P} = \exp(\lambda)$, $\mathcal{Q} = \exp(1/n)$.
- Minimum weight matching achieves almost perfect recovery iff λ > 4[Maharrami-Moore-Xu '19].
- Sharp threshold : $\lambda = 4$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

Unplanted version (Random assignment model) [Mézard-Parisi 87', Aldous 01', ...] :

- Observe W_e on the complete bipartite graph, where $W_e \stackrel{i.i.d.}{\sim} \exp(1)$.
- Minimum weight matching has average weight $\pi^2/6$.

Planted version :

- d = n, $\mathcal{P} = \exp(\lambda)$, $\mathcal{Q} = \exp(1/n)$.
- Sharp threshold : $\lambda = 4$.
- For $\lambda = 4 \epsilon$,

$$e^{-c_1/\sqrt{\epsilon}} \leq \inf_{\widehat{M}} \frac{1}{n} \mathbb{E} \left| \widehat{M} \bigtriangleup M^* \right| \leq e^{-c_2/\sqrt{\epsilon}},$$

revealing an infinite-order phase transition, conjectured in [Semerjian-Sicuro-Zdeborová '20].

For the lower bound proof, we resort to "bushes" paths.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : √dB(P, Q) = 1.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is $\exp(-\Theta(1/\sqrt{\epsilon}))$ when $\lambda = 4 - \epsilon$.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is $\exp(-\Theta(1/\sqrt{\epsilon}))$ when $\lambda = 4 - \epsilon$.
 - Key idea : two-stage cycle finding (path construction + sprinkling).

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is exp(-Θ(1/√ε)) when λ = 4 - ε.
- Key idea : two-stage cycle finding (path construction + sprinkling).

Open problems :

1 Phase transition for general distributions?

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is exp(-Θ(1/√ε)) when λ = 4 - ε.
- Key idea : two-stage cycle finding (path construction + sprinkling).

Open problems :

- 1 Phase transition for general distributions?
- 2 Error characterization in entire parameter range?

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is exp(-Θ(1/√ε)) when λ = 4 - ε.
- Key idea : two-stage cycle finding (path construction + sprinkling).

Open problems :

- 1 Phase transition for general distributions?
- 2 Error characterization in entire parameter range?
- 3 Extension to planted k-factor model ? Conjecture[Sicuro-Zdeborová '20] : √kdB(P,Q) = 1.

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

- Sharp threshold for almost perfect recovery under the planted matching model : $\sqrt{dB(\mathcal{P}, \mathcal{Q})} = 1$.
- Infinite-order phase transition under the exponential model : optimal reconstruction error is exp(-Θ(1/√ε)) when λ = 4 - ε.
- Key idea : two-stage cycle finding (path construction + sprinkling).

Open problems :

- 1 Phase transition for general distributions?
- 2 Error characterization in entire parameter range?
- **3** Extension to planted *k*-factor model? Conjecture[Sicuro-Zdeborová '20] : $\sqrt{kd}B(\mathcal{P}, \mathcal{Q}) = 1$.

Thank you !

General model

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Planted matching model (general)

True matching $M^* \sim \text{Unif}\{\text{all perfect matchings on } [n] \times [n]'\}$. Observed graph *G* contains all the edges in M^* , and for each $e \notin M^*$, $e \in G$ independently with probability d/n. Observe $(W_e)_{e \in G}$, where

$$W_e \overset{\text{indep.}}{\sim} \begin{cases} \mathcal{P} & \text{if } e \in M^* \\ \mathcal{Q} & \text{if } e \notin M^*. \end{cases}$$

General model

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Planted matching model (general)

True matching $M^* \sim \text{Unif}\{\text{all perfect matchings on } [n] \times [n]'\}$. Observed graph *G* contains all the edges in M^* , and for each $e \notin M^*$, $e \in G$ independently with probability d/n. Observe $(W_e)_{e \in G}$, where

$$W_e \overset{\text{indep.}}{\sim} \begin{cases} \mathcal{P} & \text{if } e \in M^* \\ \mathcal{Q} & \text{if } e \notin M^*. \end{cases}$$

Sharp threshold : $\sqrt{d}B(\mathcal{P},\mathcal{Q}) = 1$.

Proof of the positive result

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

1 Analyze the MLE :

 $\widehat{M}_{\mathsf{ML}} \in \{ \mathsf{perfect matchings in } G \}$.

2 Union bound :

$$\mathbb{P}\left\{ \left| \widehat{M}_{\mathsf{ML}} \bigtriangleup M^* \right| \ge \beta n \right\}$$

$$\leq \mathbb{P} \left\{ \exists \text{ perfect matching } M \text{ in } G, \ s.t. \ |M \bigtriangleup M^*| \ge \beta n \right\}$$

$$\leq \sum_{t \ge \beta n/2} \binom{n}{t} t! \left(\frac{d}{n}\right)^t$$

 \rightarrow 0 for some $\beta = o(1)$ when $d \leq 1$.

Proof of the positive result

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

1 Analyze the MLE :

 $\widehat{M}_{\mathsf{ML}} \in \arg \max_{M \in \mathcal{M}} \sum_{e \in M} \log \frac{\mathcal{P}}{\mathcal{Q}}(W_e).$

Proof of the positive result

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

1 Analyze the MLE :

$$\widehat{M}_{\mathsf{ML}} \in rg\max_{M \in \mathcal{M}} \sum_{e \in M} \log rac{\mathcal{P}}{\mathcal{Q}}(W_e).$$

2 Union bound :

$$\begin{split} & \mathbb{P}\left\{ \left| \widehat{M}_{\mathsf{ML}} \triangle M^* \right| \ge \beta n \right\} \\ \le & \mathbb{P}\left\{ \exists M \text{ in } G \text{ of higher likelihood than } M^*, \ s.t. \ |M \triangle M^*| \ge \beta n \right\} \\ & \le & \sum_{t \ge \beta n/2} \binom{n}{t} t! \left(\frac{d}{n} B^2(\mathcal{P}, \mathcal{Q}) \right)^t \\ & \to 0 \text{ for some } \beta = o(1) \text{ when } \sqrt{d}B(\mathcal{P}, \mathcal{Q}) \le 1. \end{split}$$

Proof of the negative result

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

- **1** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.
- **3** For all perfect matching M, $M \triangle M^*$ consists of a disjoint union of alternating cycles.

Proof of the negative result

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

Crucial observations

- **1** Sampling from the posterior distribution is close to optimal.
- 2 The posterior distribution is uniform over the set of all perfect matchings in *G*.
- **3** For all perfect matching M, $M \triangle M^*$ consists of a disjoint union of alternating cycles.

Analysis of the posterior distribution

Analysis of the posterior distribution

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and resul

Exponenti

Conclusion

Additional challenges for weighted graphs :

• Control the posterior mass of matchings close to M^* .

Analysis of the posterior distribution

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Exponential model

Conclusion

Additional challenges for weighted graphs :

- Control the posterior mass of matchings close to M^* .
- Find exponentially many long alternating cycles C that are augmenting :

$$\sum_{e \in \mathcal{E}_{blue}(\mathcal{C})} \log \frac{\mathcal{P}}{\mathcal{Q}}(W_e) \geq \sum_{e \in \mathcal{E}_{red}(\mathcal{C})} \log \frac{\mathcal{P}}{\mathcal{Q}}(W_e).$$

Exploration + selection

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition Conclusion

Construction of augmenting paths :

Analysis (lower bound)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponentia model

Conclusion

• Follow the two-stage cycle finding scheme.
Analysis (lower bound)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- Follow the two-stage cycle finding scheme.
- For the path construction stage, the exploration + selection scheme is too wasteful.

Analysis (lower bound)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- Follow the two-stage cycle finding scheme.
- For the path construction stage, the exploration + selection scheme is too wasteful.

Path construction (exponential model)

- Directly show the existence of many short augmenting alternating paths using first and second moment method.
 - Impose uniformity (bounded weight fluctuation on paths) to reduce second moment [Ding '13, Ding-Sun-Wilson '15].

Analysis (lower bound)

The Planted Matching Problem: Sharp Threshold and Infinite-order Phase Transition

Dana Yang

Model and result

Analysis

Exponential model

Conclusion

- Follow the two-stage cycle finding scheme.
- For the path construction stage, the exploration + selection scheme is too wasteful.

Path construction (exponential model)

- **1** Directly show the existence of many short augmenting alternating paths using first and second moment method.
 - Impose uniformity (bounded weight fluctuation on paths) to reduce second moment [Ding '13, Ding-Sun-Wilson '15].
- Extract a large collection of vertex-disjoint paths via Turán's Theorem [Ding-Goswami '15].