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Optimal quantization and Lloyd’s algorithm

Opt. quant. of a density ρ ∈ P(Ω): miny1,...,yN minα∈∆N
W2

2 (
∑

i αiδyi , ρ)

Used/studied intensively in computer science (e.g. clustering: N is small).
Limit N → +∞: behaviour of minimizers ([Fejes Tóth], [Grüber], d = 2)
Limit N → +∞: behaviour of Lloyd’s algorithm [Iacobelli].
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Optimal uniform quantization
Approximate an image using a point cloud: [de Goes et al. 2012]

ρ y1, . . . , yN

Optimal location problems [Bourne, Schmitzer, Wirth, 2018]

Generation of polycrystalline microstructures [Bourne et al. 2020]

3 / 19



Optimal uniform quantization
Approximate an image using a point cloud: [de Goes et al. 2012]

ρ y1, . . . , yN
Optimal location problems [Bourne, Schmitzer, Wirth, 2018]

Generation of polycrystalline microstructures [Bourne et al. 2020]

3 / 19



Optimal uniform quantization
Approximate an image using a point cloud: [de Goes et al. 2012]

ρ y1, . . . , yN
Optimal location problems [Bourne, Schmitzer, Wirth, 2018]

Generation of polycrystalline microstructures [Bourne et al. 2020]

3 / 19



Motivation
Let Ω ⊆ Rd compact convex, and P(Ω) = probability measures on Ω.

Wasserstein distances Wp (p ≥ 1) are geometric distances on P(Ω), defined
through optimal transport.
Wp is used in generative modeling: if ρ = real data and µθ = generated data,

min
θ

W1(ρ, µθ) [Arjovsky et. al, 2017,][Genevay et al. 2018]

Difficult non-convex optimization problem when the support of µθ depends
on θ, e.g. when µθ =

∑
1≤i≤N αi (θ)δxi (θ)

Uniform optimal quantization = simple variant of this problem:

min
Y=(y1,...,yN )∈Ωd

W2
2

(
ρ,

1
N

∑
i

δyi

)

Efficiently solved using gradient descent despite the non-convexity.

Does gradient descent lead to low-energy configurations?
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Wasserstein distance

2-Wasserstein distance: W2
2(µ, ρ) = minX∼µ,Y∼ρ E(‖X − Y ‖2).

The uniform quantization energy involves a semi-discrete problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)

By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

FN(Y ) = max
Φ

∑
i

αiφi +

∫
Ω

min
i
‖x − yi‖2 − φidρ(x)

Given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is unique
and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .

5 / 19



Wasserstein distance

2-Wasserstein distance: W2
2(µ, ρ) = minX∼µ,Y∼ρ E(‖X − Y ‖2).

The uniform quantization energy involves a semi-discrete problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)

By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

FN(Y ) = max
Φ

∑
i

αiφi +

∫
Ω

min
i
‖x − yi‖2 − φidρ(x)

Given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is unique
and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .

5 / 19



Wasserstein distance

2-Wasserstein distance: W2
2(µ, ρ) = minX∼µ,Y∼ρ E(‖X − Y ‖2).

The uniform quantization energy involves a semi-discrete problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)
By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

FN(Y ) = max
Φ

∑
i

αiφi +

∫
Ω

min
i
‖x − yi‖2 − φidρ(x)

Given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is unique
and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .

5 / 19



Wasserstein distance
2-Wasserstein distance: W2

2(µ, ρ) = minX∼µ,Y∼ρ E(‖X − Y ‖2).
The uniform quantization energy involves a semi-discrete problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)
By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

FN(Y ) = max
Φ

∑
i

αiφi +

∫
Ω

min
i
‖x − yi‖2 − φidρ(x)

= max
Φ

∑
i

[
αiφi +

∫
Lagi (Y ,Φ)

‖x − yi‖2 − φidρ(x)

]
,

where Laguerre cells are defined for Y ∈ ΩN and Φ ∈ RN :

Lagi (Y ,Φ)
def
=
{
x ∈ Rd | ∀j , ‖x − yi‖2 − φi ≤ ‖x − yj‖2 − φj

}

Given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is unique
and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .

5 / 19



Wasserstein distance
2-Wasserstein distance: W2

2(µ, ρ) = minX∼µ,Y∼ρ E(‖X − Y ‖2).
The uniform quantization energy involves a semi-discrete problem:

FN : Y = (y1, . . . , yN) ∈ ΩN 7→W2
2

(
1
N

∑
i

δyi , ρ

)
By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

FN(Y ) = max
Φ

∑
i

αiφi +

∫
Ω

min
i
‖x − yi‖2 − φidρ(x)

= max
Φ

∑
i

[
αiφi +

∫
Lagi (Y ,Φ)

‖x − yi‖2 − φidρ(x)

]
,

where Laguerre cells are defined for Y ∈ ΩN and Φ ∈ RN :

Lagi (Y ,Φ)
def
=
{
x ∈ Rd | ∀j , ‖x − yi‖2 − φi ≤ ‖x − yj‖2 − φj

}
Given pairwise distinct points Y ∈ ΩN , the maximizer ΦY ∈ RN is unique
and characterized by ρ(Lagi (Y ,ΦY )) = 1

N : all cells have mass 1
N .

5 / 19



Optimal quantization energy
We minimize FN : Y ∈ ΩN 7→W2

2
( 1
N

∑
i δyi , ρ

)
.

W2
2 is convex on P(Ω), yet FN is not convex on ΩN .

Proposition
FN is semi-concave on ΩN , it is C1 on a dense open set and

FN(Y ) =
∑
i

∫
Lagi (Y ,ΦY )

‖x − yi‖2 dρ(x),

where bi (Y ) = N
∫
Lagi (Y ,ΦY )

xdρ(x) is the barycenter of the ith cell.

Point cloud Y Lagi (Y ,ΦY ) −N
2∇yi FN(Y )
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Lloyd’s (uniform) algorithm

Lloyd’s algorithm

Optimal quant. of a density ρ ∈ P(Ω),

min
Y

min
α∈∆N

W2
2

(∑
i

αiδyi , ρ

)
︸ ︷︷ ︸

GN (Y )

Algorithm: given Y ∈ ΩN

1. Compute the Voronoi cells of Y
and their barycenters bi w.r.t. to ρ.
2. Set yi := bi and repeat.

Lloyd’s “uniform” algorithm

Optimal uniform quantization of ρ,

min
Y

W2
2

(
1
N

∑
i

δyi , ρ

)
︸ ︷︷ ︸

FN (Y )

Algorithm: given Y ∈ ΩN

1. Compute the Laguerre cells
Lagi (Y ,ΦY ) solving the OT problem
between ρ and µ = 1

N

∑
i δyi and their

barycenters bi (Y ).
2. Set yi := bi (Y ) and repeat.

Lloyd’s algorithms = fixed point algorithms for cancelling ∇GN or ∇FN .
The iterates converge (up to subseq.) to a critical point of FN or GN .
In both cases, there may exist critical points with high energy
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Low- and high-energy critical points of FN
Given ρ bounded from above and below on a bounded convex set Ω ∈ Rd ,

min
ΩN

FN = Θ

((
1
N

)2/d
)
.

Minimizers for FN are critical, i.e. they satisfy ∀i , yi = bi (Y ) .
Due to the non-convexity of FN , some critical points are NOT minimizers:

ρ N = 20 N = 40

Figure: Two high-energy critical point for ρ ≡ 1 uniform on Ω = [0, 1]2: FN(Y ) = Θ(1).
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Convergence under a dimensionality condition

Experimentally, when the point cloud Y = (y1, . . . , yN) is not chosen
adversely, one observes that

W2
2

(
1
N

∑
i

δbi (Y ), ρ

)
� 1.

ρ Y N

BN = (b1(Y N), . . . , bN(Y N))

BN ,N = 7280

Our main theorem explains this behaviour.
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Convergence under a dimensionality condition

Theorem (Santambrogio, Sarrazin, M. (2021))
Let Ω ⊆ Rd be convex and let ρ ∈ P(Ω). Consider a point cloud Y in ΩN s.t.

∀i 6= j , ‖yi − yj‖ ≥ C0N
− 1

β , with β and C0 > 0

Then, W2
2

(
1
N

∑N
i=1 δbi (Y ), ρ

)
≤ cst(d ,Ω,C0) · N

d−1
β −1.

The upper bound goes to zero as N → +∞ provided that β > d − 1.
When β = d , the upper bound of the theorem is

FN(BN) = W2
2

(
1
N

∑
i

δyi , ρ

)
.

(
1
N

)1/d

.
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However, the exponent in the upper bound cannot be improved !
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Tightness in the case β = d
ρ Random:

Grid-like:

N = 400 N = 961 N = 1600 N = 2500

Random ∼ N−0.99 Grid-like ∼ N−0.78

11 / 19



Tightness in the case β = d
ρ Random:

Grid-like:

N = 400 N = 961 N = 1600 N = 2500

Random ∼ N−0.99 Grid-like ∼ N−0.78

11 / 19



Tightness in the case β = d
ρ Random:

Grid-like:

N = 400 N = 961 N = 1600 N = 2500

Random ∼ N−0.99 Grid-like ∼ N−0.78

11 / 19



Tightness in the case β = d

On Ω = [−1, 1]d , let n ∈ N∗, N = nd

ρ(x) =
1
n
1[−1;0] +

(
1− 1

n

)
1[0;1], ρN = ρ⊗ . . .⊗ ρ︸ ︷︷ ︸

d times

and Y N a “grid-like” cloud of N points as on the picture.

Then, ∇Y FN(Y N) = 0, so that Y N is a
fixed point of Lloyd’s algorithm, and

W2
2

(
1
N

N∑
i=1

δbi (Y N ), ρN

)
≥ CN−1/d

with C independent of N.
Thus, the exponent of the main theorem
cannot be improved.
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 257

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 4097

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.
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Numerical example with d − 1 < β < d
Point are sampled from the Von Koch fractal (dimension β = ln 4

ln 3 ' 1.26),
ρ ≡ 1 on Ω = [0, 1]2.

N = 16385

Numerically, it seems that W2
2(µN , ρ) ' N−1.01, while our upper bound

would give an exponent of d−1
β − 1 ' −0.207.

13 / 19



Main theorem: sketch of proof

We assume: ∀i 6= j , ‖yi − yj‖ ≥ C0N
− 1

β , with β and C0 > 0

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

We use the concavity of the Laguerre cells w.r.t the weights Φ:

1
2Lagi (Y , 0)⊕ 1

2Lagi (Y ,Φ) ⊂ Lagi (Y ,Φ/2)

=⇒ if Lagi (Y ,Φ) is “elongated”, then |Lagi (Y ,
1
2Φ)| is “large”:

Lagi(Y, 0) Lagi(Y,
1
2Φ) Lagi(Y,Φ)

C0N
−1/β diam(Lagi(Y,Φ))

= Vori(Y )

The (Lagi (Y ,
1
2Φ))i do not overlap:

∑N
i=1 diam(Lagi (Y ,Φ)) ≤ |Ω|

C0N
− d−1

β

W2
2

(
1
N

∑N
i=1 δbi (Y ), ρ

)
≤
∑N

i=1

∫
Lagi (Y ,Φ)

‖bi (Y )− x‖2 dρ(x) . N
d−1
β −1
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Limit of critical points as N →∞:

If Y N ∈ ΩN is a critical point of FN(Y ) = W2
2(ρ, δY ), what are the possible

narrow limit of the “discrete critical measure” µN = 1
N

∑N
i=1 δyN

i
?

Discrete critical measures seem to converge to ρ or towards measures
supported on union of regular sets as N → +∞.

ρ = Lebesgue on [0; 1]2 ρ = Gaussian on B(0; 1)

Can this behavior be proven ? More generally, what can we say about limits
of discrete critical measures?
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Lagrangian critical measures
Disintegration of OT plan Let ρ, µ ∈ P(Ω) and γ be the quadratic optimal
transport plan, which we disintegrate into γ =

∫
Ω
ρydµ(y).

(ρy )y ' Laguerre cells.

µ ∈ P(Ω) is Lagrangian critical for ρ if for µ-a.e.y ∈ Ω, y =

∫
Ω

xdρy (x)

⇐⇒ ∀ξ ∈ C0
c (Ω,Rd),

d
dt

W2
2((id + tξ)#µ, ρ)

∣∣∣∣
t=0

= 0.

Narrow limit of critical points of FN are Lagrangian critical:

Assume that ∇Y FN(Y N) = 0
and limN→+∞

1
N

∑
i δyN

i
= µ.

Then µ is Lagrangian critical.

ρ 1
N

∑
i δyN

i
µ
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Classification of Lagrangian critical measures

Given µ ∈ P(Ω), let Ek the points of spt(µ) whose “Laguerre cell” ρy has
dimension d − k :

Ek = {y ∈ spt(µ) | dim(span(spt(ρy ))) = d − k} .

[Alberti 1994] =⇒ Ek is included in a countable union of C2 k-dimensional
submanifolds, up to a Hk -negligible set.
Is µ absolutely continuous with respect to Hk on Ek?

Proposition (Santambrogio, Sarrazin, M. 2021)
If µ is a Lagrangian critical point and k ∈ {0, 1, d}, then µ is absolutely
continuous with respect to Hk on Ek .

Very preliminary result: most of the questions about Lagrangian critical
measures are open.
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Summary and Perspectives
Take-home message: Despite the non-convexity, gradient descent strategies for
optimal uniform quantization problem, i.e.

min
Y∈ΩN

W2
2

(
1
N

∑
i

δyi , ρ

)

lead to low energy configurations when the points in the initial point are far
enough from each other, i.e. &

( 1
N

) 1
β with β > d − 1 and d = dim(Ω).

(Some) open questions:
Can the analysis be extended to Wasserstein linear regression ?
Can the exponent be improved if ρ is bounded from above and below?
Can the exponent be improved when ρ is supported on a submanifold of Rd?
What can we say about the limits of discrete critical points?
What about stable critical points ?

Thank you for your attention!
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An unstable critical point
Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=1

Lloyd’s iterate escape the critical point due to numerical error + instability.
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An unstable critical point
Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=101

Lloyd’s iterate escape the critical point due to numerical error + instability.
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An unstable critical point
Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=121

Lloyd’s iterate escape the critical point due to numerical error + instability.
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An unstable critical point
Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=141

Lloyd’s iterate escape the critical point due to numerical error + instability.
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An unstable critical point
Ω = [−π, π]2, ρ ≡ 1/(4π2),N = 102,Y 0 = uniform grid.
Iterates follow Lloyd’s algorithm: Y k+1 = (b1(Y k), . . . , bN(Y k)).

k=161

Lloyd’s iterate escape the critical point due to numerical error + instability.
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