Discrete-To-Continuum Limits of Dynamical Optimal Transport Problems

Lorenzo Portinale, Hausdorff Center for Mathematics (Bonn)

In collaboration with: Eva Kopfer, Peter Gladbach, and Jan Maas

Dynamics and Discretization: PDEs, Sampling, and Optimization

Simons Institute, Berkeley, October 29th, 2021

イロト イポト イヨト イヨト

- (1) A general class of **dynamical transport problems** on \mathbb{R}^d .
- (2) The **discrete optimal transport** problem on graphs.
- (3) **Discrete-to-continuum** limits of transport problems on \mathbb{Z}^d -periodic graphs.
- (4) Some examples: in particular, \mathbb{Z}^d -periodic finite volume partitions.

(日)

(1/4) Dynamical Transport Problems

The dynamical formulation of OT: Benamou-Brenier formula

$$\mathbb{W}_{2}(\mu,\nu)^{2} := \min_{\pi} \left\{ \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} |x-y|^{2} \, \mathrm{d}\pi(x,y) \ : \ \pi \in \Gamma(\mu,\nu) \right\}$$
(quadratic cost)

Theorem [Benamou and Brenier, 2000] [Ambrosio, Gigli, and Savaré, 2008]: for any $\mu_0, \mu_1 \in \mathscr{P}_2(\mathbb{R}^d)$, we have the equality:

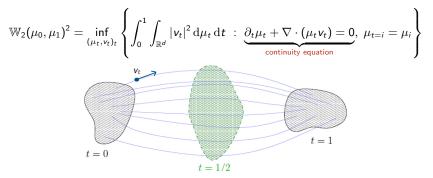


Figure: An evolution $(\mu_t)_t \subset \mathscr{P}_2(\mathbb{R}^d)$ from μ_0 to μ_1 (edited from [Villani, 2009]).

・ロン ・四 と ・ 日 と ・ 日 ・ - 日 ・

Dynamical transport problems in $\mathcal{M}_+(\mathbb{R}^d)$.

For a given convex, lsc function $f : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$, we are interested in

$$C_f(\mu_0,\mu_1) := \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} f(\mu_t,\xi_t) \, \mathrm{d}x \, \mathrm{d}t \ : \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0}_{\text{continuity equation}}, \ \mu_{t=i} = \mu_i \right\}$$

where μ_0 , $\mu_1 \in \mathcal{M}_+(\mathbb{R}^d)$ are given initial and final measures, $\xi_t := \mu_t v_t$ is the flux.

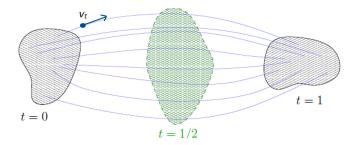


Figure: An evolution $(\mu_t)_t \subset \mathcal{M}_+(\mathbb{R}^d)$ from μ_0 to μ_1 (edited from [Villani, 2009]).

イロト イロト イモト イモト 一日

Examples of transport problems (1).

$$C_{f}(\mu_{0},\mu_{1}) := \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} f(\mu_{t},\xi_{t}) \, \mathrm{d}x \, \mathrm{d}t : \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0, \ \mu_{t=i} = \mu_{i}}_{(\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1})} \right\}$$

• $f(\mu,\xi) = |\xi|^2/\mu$ corresponds to the (2)-Wasserstein distance \mathbb{W}_2 :

$$\mathbb{W}_{2}(\mu_{0},\mu_{1})^{2} = \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1}) \right\}$$

whose dynamical interpretation is due to [Benamou and Brenier, 2000].

Examples of transport problems (1).

$$C_{f}(\mu_{0},\mu_{1}) := \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} f(\mu_{t},\xi_{t}) \, \mathrm{d}x \, \mathrm{d}t : \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0, \ \mu_{t=i} = \mu_{i}}_{(\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1})} \right\}$$

• $f(\mu,\xi) = |\xi|^2/\mu$ corresponds to the (2)-Wasserstein distance \mathbb{W}_2 :

$$\mathbb{W}_{2}(\mu_{0},\mu_{1})^{2} = \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1}) \right\}$$

whose dynamical interpretation is due to [Benamou and Brenier, 2000].

• More general: $f(\mu,\xi) = |\xi|^p / m(\mu)^{p-1}$ for $m : \mathbb{R}^+ \to \mathbb{R}^+$ concave mobility:

$$\mathbb{W}_{p,m}(\mu_0,\mu_1)^p := \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\xi_t|^p}{m(\mu_t)^{p-1}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1) \right\}$$

are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .

Examples of transport problems (2).

$$C_{f}(\mu_{0},\mu_{1}) := \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} f(\mu_{t},\xi_{t}) \, \mathrm{d}x \, \mathrm{d}t \; : \; \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0, \; \mu_{t=i} = \mu_{i}}_{(\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1})} \right\}$$

• $f(\mu,\xi) = F(\xi)$ are flow-based problems, studied by Beckmann in the 70s.

Examples of transport problems (2).

$$C_{f}(\mu_{0},\mu_{1}) := \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} f(\mu_{t},\xi_{t}) \, \mathrm{d}x \, \mathrm{d}t : \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0, \ \mu_{t=i} = \mu_{i}}_{(\mu_{t},\xi_{t})_{t} \in \mathsf{CE}(\mu_{0},\mu_{1})} \right\}$$

• $f(\mu,\xi) = F(\xi)$ are flow-based problems, studied by Beckmann in the 70s.

$$\int_0^1 \int_{\mathbb{R}^d} F(\xi_t) \, \mathrm{d}x \, \mathrm{d}t \stackrel{\text{Jensen}}{\geq} \int_{\mathbb{R}^d} F\left(\underbrace{\int_0^1 \xi_t \, \mathrm{d}t}_{=:\bar{\xi}}\right) \, \mathrm{d}x = \int_{\mathbb{R}^d} F(\bar{\xi}) \, \mathrm{d}x,$$

In this case, one has the equivalent static formulation:

$$C_f(\mu_0,\mu_1) = \inf_{\bar{\xi}} \left\{ \int_{\mathbb{R}^d} F(\bar{\xi}) \, \mathrm{d}x : \nabla \cdot \bar{\xi} = \mu_0 - \mu_1 \right\}.$$

This includes \mathbb{W}_1 $(F(\bar{\xi}) = |\bar{\xi}|)$ and negative Sobolev distance H^{-1} $(F(\bar{\xi}) = |\bar{\xi}|^2)$.

(1) Modeling: optimal transport, traffic flows, congested transport,

(1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.

$$\partial_t \mu_t -
abla \cdot (\mu_t
abla (\mathsf{DE}(\mu_t))) = 0, \quad \mathsf{E} : \mathcal{M}_+(\mathbb{R}^d) o [0, +\infty].$$

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

$$\partial_t \mu_t = \Delta \mu_t, \quad \mathsf{E}(\mu) = \int_{\mathbb{R}^d} \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}x}\right) \mathrm{d}\mu.$$

3

・ロト ・四ト ・ヨト ・ヨト

(1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.

$$\partial_t \mu_t -
abla \cdot (\mu_t
abla (\mathsf{DE}(\mu_t))) = 0, \quad \mathsf{E} : \mathcal{M}_+(\mathbb{R}^d) o [0, +\infty].$$

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

$$\partial_t \mu_t = \Delta \mu_t, \quad \mathsf{E}(\mu) = \int_{\mathbb{R}^d} \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}x}\right) \mathrm{d}\mu.$$

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory):

$$\mathsf{Ric}_{(M,g)} \ge \mathsf{0} \quad \Longleftrightarrow \quad \mathsf{E}(\mu) = \int_M \log\left(rac{\mathrm{d}\mu}{\mathrm{d}x}
ight) \mathrm{d}\mu \quad \mathsf{convex along} \,\, \mathbb{W}_2 ext{-geodesics.}$$

3

(1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.

$$\partial_t \mu_t -
abla \cdot (\mu_t
abla (\mathsf{DE}(\mu_t))) = 0, \quad \mathsf{E} : \mathcal{M}_+(\mathbb{R}^d) o [0, +\infty].$$

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

$$\partial_t \mu_t = \Delta \mu_t, \quad \mathsf{E}(\mu) = \int_{\mathbb{R}^d} \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}x}\right) \mathrm{d}\mu.$$

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory):

$$\mathsf{Ric}_{(M,g)} \ge \mathsf{0} \quad \Longleftrightarrow \quad \mathsf{E}(\mu) = \int_M \log\left(rac{\mathrm{d}\mu}{\mathrm{d}x}
ight) \mathrm{d}\mu \quad \mathsf{convex along} \,\, \mathbb{W}_2 ext{-geodesics.}$$

[Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

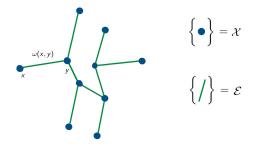
(2/4) Discrete Optimal Transport

Optimal transport on discrete spaces.

The dynamical formulation of (2)-Wasserstein distance \mathbb{W}_2 on $\mathscr{P}_2(\mathbb{R}^d)$:

$$\mathbb{W}_{2}(\mu_{0},\mu_{1})^{2} = \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t : \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0}_{\text{continuity equation}}, \ \mu_{t=i} = \mu_{i}. \right\}$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is \mathcal{X} finite set of *nodes*, \mathcal{E} set of *edges*, and ω a weight function on \mathcal{E} . We fix a reference measure $\pi \in \mathscr{P}(\mathcal{X})$.



Optimal transport on discrete spaces.

The dynamical formulation of (2)-Wasserstein distance \mathbb{W}_2 on $\mathscr{P}_2(\mathbb{R}^d)$:

$$\mathbb{W}_{2}(\mu_{0},\mu_{1})^{2} = \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t : \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0}_{\text{continuity equation}}, \ \mu_{t=i} = \mu_{i}. \right\}$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is \mathcal{X} finite set of *nodes*, \mathcal{E} set of *edges*, and ω a weight function on \mathcal{E} . We fix a reference measure $\pi \in \mathscr{P}(\mathcal{X})$.

Definition [Maas, 2011] [Mielke, 2011] : for $m_0, m_1 \in \mathscr{P}(\mathcal{X})$:

$$\mathcal{W}^{\theta}(m_0,m_1)^2 := \inf_{(m_t,j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x,y)\in\mathcal{E}} \frac{1}{\omega(x,y)} \frac{|j_t(x,y)|^2}{\theta\left(\frac{m_t(x)}{\pi(x)},\frac{m_t(y)}{\pi(y)}\right)} \, \mathrm{d}t \right\}.$$

where (m_t, j_t) is solution to the discrete continuity equation for $x \in \mathcal{X}$:

$$\partial_t m_t(x) + \frac{1}{2} \sum_{y \sim x} \left(j_t(x, y) - j_t(y, x) \right) = 0, \quad m_{t=i} = m_i.$$

Optimal transport on discrete spaces.

The dynamical formulation of (2)-Wasserstein distance \mathbb{W}_2 on $\mathscr{P}_2(\mathbb{R}^d)$:

$$\mathbb{W}_{2}(\mu_{0},\mu_{1})^{2} = \inf_{(\mu_{t},\xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t \; : \; \underbrace{\partial_{t}\mu_{t} + \nabla \cdot \xi_{t} = 0}_{\text{continuity equation}}, \; \mu_{t=i} = \mu_{i}. \right\}$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is \mathcal{X} finite set of *nodes*, \mathcal{E} set of *edges*, and ω a weight function on \mathcal{E} . We fix a reference measure $\pi \in \mathscr{P}(\mathcal{X})$.

Definition [Maas, 2011] [Mielke, 2011] : for $m_0, m_1 \in \mathscr{P}(\mathcal{X})$:

$$\mathcal{W}(m_0,m_1)^2 := \inf_{(m_t,j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \frac{1}{\omega(x,y)} \frac{|j_t(x,y)|^2}{\theta_{\mathsf{log}}\left(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)}\right)} \, \mathrm{d}t \right\}.$$

where (m_t, j_t) is solution to the discrete continuity equation for $x \in \mathcal{X}$:

$$\partial_t m_t(x) + \frac{1}{2} \sum_{y \sim x} \left(j_t(x, y) - j_t(y, x) \right) = 0, \quad m_{t=i} = m_i.$$

Why the logarithmic average? Maas (2011), Mielke (2011)

$$\mathcal{W}(m_0, m_1)^2 := \inf_{(m_t, j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \frac{1}{\omega(x, y)} \frac{|j_t(x, y)|^2}{\theta_{\log}(r_t(x), r_t(y))} \, \mathrm{d}t \right\}.$$
$$\theta_{\log}(r, s) = \frac{r - s}{\log r - \log s} , \quad r_t(x) := \frac{m_t(x)}{\pi(x)} \text{ (density)}.$$

Consider the discrete entropy functional $\mathcal{E}:(\mathscr{P}(\mathcal{X}),\mathcal{W})\to\mathbb{R}^+$

$$\mathcal{E}(m) := \sum_{x \in \mathcal{X}} m(x) \log \left(\frac{m(x)}{\pi(x)} \right) = \sum_{x \in \mathcal{X}} r(x) \log r(x) \pi(x).$$

(日)

Why the logarithmic average? Maas (2011), Mielke (2011)

$$\mathcal{W}(m_0, m_1)^2 := \inf_{(m_t, j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \frac{1}{\omega(x, y)} \frac{|j_t(x, y)|^2}{\theta_{\log}(r_t(x), r_t(y))} \, \mathrm{d}t \right\}.$$
$$\theta_{\log}(r, s) = \frac{r - s}{\log r - \log s} , \quad r_t(x) := \frac{m_t(x)}{\pi(x)} \text{ (density)}.$$

Consider the discrete entropy functional $\mathcal{E}:(\mathscr{P}(\mathcal{X}),\mathcal{W})\to\mathbb{R}^+$

$$\mathcal{E}(m) := \sum_{x \in \mathcal{X}} m(x) \log \left(\frac{m(x)}{\pi(x)} \right) = \sum_{x \in \mathcal{X}} r(x) \log r(x) \pi(x).$$

The gradient flow of \mathcal{E} in $(\mathscr{P}(\mathcal{X}), \mathcal{W})$ is the graph heat flow

$$\dot{r}_t = \Delta_{\mathcal{X}} r_t, \quad ext{where} \quad \Delta_{\mathcal{X}} r = \sum_{y \sim x} rac{\omega(x,y)}{\pi(x)} ig(r(y) - r(x)ig) \quad (ext{discrete Laplacian}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣・

(3/4) Discrete-to-Continuum Limits of Transport Problems

- GLADBACH, KOPFER, MAAS, AND PORTINALE. Homogenisation of one-dimensional discrete optimal transport. J. Math. Pures Appl. (9), 139:204–234, 2020.
- GLADBACH, KOPFER, MAAS, AND PORTINALE. Discrete-to-continuum limits of dynamical transport problems on periodic graphs. *http://arxiv.org/abs/2110.15321 (appeared today!)*.

イロト 不得 トイヨト イヨト 二日

Discrete-to-continuum limits of transport problems.

 First convergence result [Gigli and Maas, 2013]: transport metrics associated to the cubic mesh on the torus T^d converge to W₂ in the limit of vanishing mesh size.

https://en.wikipedia.org/wiki/Torus

イロト 不得 トイヨト イヨト

Discrete-to-continuum limits of transport problems.

 First convergence result [Gigli and Maas, 2013]: transport metrics associated to the cubic mesh on the torus T^d converge to W₂ in the limit of vanishing mesh size.

https://en.wikipedia.org/wiki/Torus

イロト イポト イヨト イヨト

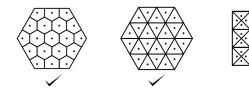
(2) Geometric graphs on point clouds [García Trillos, 2020]: almost sure convergence of the discrete metrics to W₂, but diverging degree.

Discrete-to-continuum limits of transport problems.

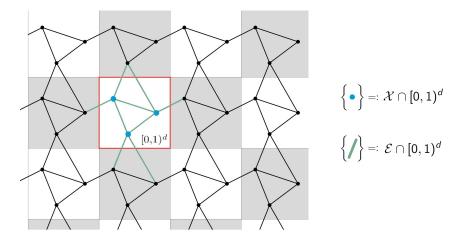
 First convergence result [Gigli and Maas, 2013]: transport metrics associated to the cubic mesh on the torus T^d converge to W₂ in the limit of vanishing mesh size.

https://en.wikipedia.org/wiki/Torus

- (2) Geometric graphs on point clouds [García Trillos, 2020]: almost sure convergence of the discrete metrics to W₂, but diverging degree.
- (3) Finite volume partitions T in ℝ^d [Gladbach, Kopfer, and Maas, 2020]: convergence of W_T to W₂ as size(T) → 0 is essentially equivalent to an isotropy condition.



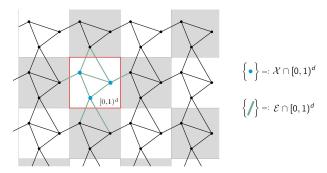
Setting: \mathbb{Z}^{d} -periodic, symmetric, connected, and locally finite graph $(\mathcal{X}, \mathcal{E})$ in \mathbb{R}^{d} .



Given a convex, local function $f : \mathcal{M}_+(\mathcal{X}) \times \mathbb{R}^{\mathcal{E}} \to \mathbb{R} \cup \{+\infty\}$, we consider

$$\mathcal{C}_{f}(m_{0},m_{1}) := \inf \left\{ \int_{0}^{1} f(m_{t},j_{t}) dt : \partial_{t} m_{t}(x) + \frac{1}{2} \sum_{y \sim x} (j_{t}(x,y) - j_{t}(y,x)) = 0 \right\}$$

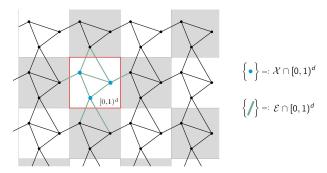
among $j_t \in \mathbb{R}^{\mathcal{E}}_{per}$ and $m_t \in \mathcal{M}^{per}_+(\mathcal{X})$, satisfying b.c. $m_{t=0} = m_0$, $m_{t=1} = m_1$.



Given a convex, local function $f : \mathcal{M}_+(\mathcal{X}) \times \mathbb{R}^{\mathcal{E}} \to \mathbb{R} \cup \{+\infty\}$, we consider

$$\mathcal{C}_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) \, \mathrm{d}t \ : \ \partial_t m_t(x) + \sum_{y \sim x} j_t(x, y) = 0, \ j_t \text{ skew-sym.} \right\}$$

among $j_t \in \mathbb{R}^{\mathcal{E}}_{per}$ and $m_t \in \mathcal{M}^{per}_+(\mathcal{X})$, satisfying b.c. $m_{t=0} = m_0$, $m_{t=1} = m_1$.



Transport on periodic graphs: some examples.

$$\mathcal{C}_{f}(m_{0}, m_{1}) := \inf \left\{ \int_{0}^{1} f(m_{t}, j_{t}) dt : (m_{t}, j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0}, m_{1}) \right\}$$

• The edge-based case corresponds to the choice

$$f(m,j) = \frac{1}{2} \sum_{x \in \mathcal{X} \cap [0,1)^d} \sum_{y \sim x} f_{xy}(m(x), m(y), j(x, y)).$$

The m-Wasserstein-like distances are obtained using quadratic functions

$$f_{xy}(m,n,j)=rac{1}{\omega(x,y)}rac{|j|^2}{\mathfrak{m}\circ hetaig(rac{m}{\pi(x)},rac{n}{\pi(y)}ig)},\quad m,n\in\mathbb{R}^+,\,j\in\mathbb{R}.$$

2

Transport on periodic graphs: some examples.

$$\mathcal{C}_{f}(m_{0}, m_{1}) := \inf \left\{ \int_{0}^{1} f(m_{t}, j_{t}) dt : (m_{t}, j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0}, m_{1}) \right\}$$

• The edge-based case corresponds to the choice

$$f(m,j) = \frac{1}{2} \sum_{x \in \mathcal{X} \cap [0,1)^d} \sum_{y \sim x} f_{xy}(m(x), m(y), j(x, y)).$$

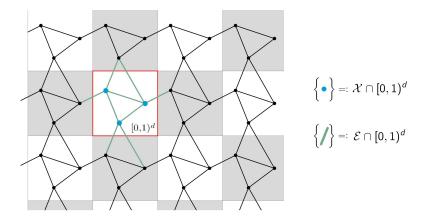
The m-Wasserstein-like distances are obtained using quadratic functions

$$f_{xy}(m,n,j) = \frac{1}{\omega(x,y)} \frac{|j|^2}{\mathfrak{m} \circ \theta(\frac{m}{\pi(x)},\frac{n}{\pi(y)})}, \quad m,n \in \mathbb{R}^+, j \in \mathbb{R}.$$

• The flow-based case corresponds to the choice f(m,j) = F(j) and

$$C_f(m_0, m_1) = \inf \left\{ F(j) : \frac{1}{2} \sum_{y \sim x} (j(x, y) - j(y, x)) = m_0 - m_1 \right\}.$$

$$\mathcal{C}_{f}(m_{0}, m_{1}) := \inf \left\{ \int_{0}^{1} f(m_{t}, j_{t}) dt : (m_{t}, j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0}, m_{1}) \right\}$$



$$\mathcal{C}_{f}(m_{0}, m_{1}) := \inf \left\{ \int_{0}^{1} f(m_{t}, j_{t}) dt : (m_{t}, j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0}, m_{1}) \right\}$$

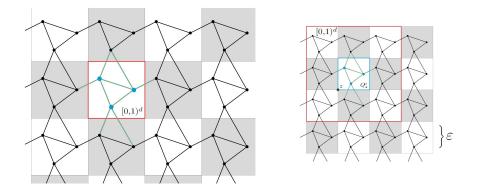


Figure: One the right, the rescaled graph $\mathcal{X}_{\varepsilon} = \varepsilon \mathcal{X}$, $\mathcal{E}_{\varepsilon} = \varepsilon \mathcal{E}$, for $\frac{1}{\varepsilon} \in \mathbb{N}$.

$$\mathcal{C}_{f}^{\varepsilon}(m_{0},m_{1}) := \inf \left\{ \int_{0}^{1} \sum_{z \in \mathbb{T}_{\varepsilon}^{d}} \varepsilon^{d} f\left(\frac{m_{t}(\cdot-z)}{\varepsilon^{d}}, \frac{j_{t}(\cdot-z)}{\varepsilon^{d-1}}\right) \mathrm{d}t : (m_{t},j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_{0},m_{1}) \right\}$$

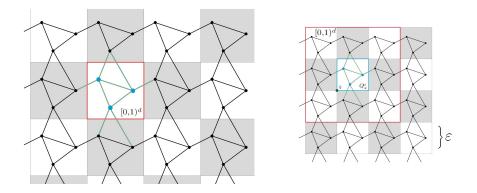


Figure: One the right, the rescaled graph $\mathcal{X}_{\varepsilon} = \varepsilon \mathcal{X}$, $\mathcal{E}_{\varepsilon} = \varepsilon \mathcal{E}$, for $\frac{1}{\varepsilon} \in \mathbb{N}$.

・ロト ・四ト ・ヨト ・ヨト 三日

$$\mathcal{C}_{f}^{\varepsilon}(m_{0},m_{1}):=\inf\left\{\int_{0}^{1}\sum_{z\in\mathbb{T}_{\varepsilon}^{d}}\varepsilon^{d}f\left(\frac{m_{t}(\cdot-z)}{\varepsilon^{d}},\frac{j_{t}(\cdot-z)}{\varepsilon^{d-1}}\right)\mathrm{d}t : (m_{t},j_{t})_{t}\in\mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_{0},m_{1})\right\}$$

Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2021)

Assume f is convex, lower semicontinuous, with superlinear growth^(*) in j. Then C_f^{ε} Γ -converges in the weak^{*}-topology as $\varepsilon \to 0$ to a continuous problem

$$C_{\text{hom}}(\mu_0,\mu_1) = \inf \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\text{hom}}\left(\frac{\mathrm{d}\mu_t}{\mathrm{d}x},\frac{\mathrm{d}\xi_t}{\mathrm{d}x}\right) \mathrm{d}x \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i \right\},$$

where f_{hom} is given by a cell problem depending on f and the initial graph $(\mathcal{X}, \mathcal{E})$.

イロト 不得 トイヨト イヨト

$$\mathcal{C}_{f}^{\varepsilon}(m_{0},m_{1}):=\inf\left\{\int_{0}^{1}\sum_{z\in\mathbb{T}_{\varepsilon}^{d}}\varepsilon^{d}f\left(\frac{m_{t}(\cdot-z)}{\varepsilon^{d}},\frac{j_{t}(\cdot-z)}{\varepsilon^{d-1}}\right)\mathrm{d}t : (m_{t},j_{t})_{t}\in\mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_{0},m_{1})\right\}$$

Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2021)

Assume f is convex, lower semicontinuous, with superlinear growth^(*) in j. Then C_f^{ε} Γ -converges in the weak^{*}-topology as $\varepsilon \to 0$ to a continuous problem

$$C_{\mathsf{hom}}(\mu_0,\mu_1) = \inf \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}\left(\frac{\mathrm{d}\mu_t}{\mathrm{d}x},\frac{\mathrm{d}\xi_t}{\mathrm{d}x}\right) \mathrm{d}x \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i \right\},$$

where f_{hom} is given by a cell problem depending on f and the initial graph $(\mathcal{X}, \mathcal{E})$.

• The *d* = 1, quadratic case: [Gladbach, Kopfer, Maas, and P., JMPA (2020)], with very different techniques (interpolation).

ヘロト 人間 とうほう 人口 とう

$$\mathcal{C}_{f}^{\varepsilon}(m_{0},m_{1}):=\inf\left\{\int_{0}^{1}\sum_{z\in\mathbb{T}_{\varepsilon}^{d}}\varepsilon^{d}f\left(\frac{m_{t}(\cdot-z)}{\varepsilon^{d}},\frac{j_{t}(\cdot-z)}{\varepsilon^{d-1}}\right)\mathrm{d}t : (m_{t},j_{t})_{t}\in\mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_{0},m_{1})\right\}$$

Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2021)

Assume f is convex, lower semicontinuous, with superlinear growth^(*) in j. Then C_f^{ε} Γ -converges in the weak^{*}-topology as $\varepsilon \to 0$ to a continuous problem

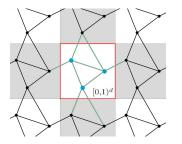
$$C_{\mathsf{hom}}(\mu_0,\mu_1) = \inf \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}\left(\frac{\mathrm{d}\mu_t}{\mathrm{d}x},\frac{\mathrm{d}\xi_t}{\mathrm{d}x}\right) \mathrm{d}x \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i \right\},$$

where f_{hom} is given by a cell problem depending on f and the initial graph $(\mathcal{X}, \mathcal{E})$.

- The *d* = 1, quadratic case: [Gladbach, Kopfer, Maas, and P., JMPA (2020)], with very different techniques (interpolation).
- In $d \ge 1$, it is achieved by (space-time) Γ -convergence and coercivity of the actions

$$\boldsymbol{m} := (m_t)_t \mapsto \mathcal{A}_{\varepsilon}(\boldsymbol{m}) := \inf_{\boldsymbol{j}} \left\{ \int_0^1 \sum_{z \in \mathbb{T}_{\varepsilon}^d} \varepsilon^d f\left(\frac{m_t(\cdot - z)}{\varepsilon^d}, \frac{j_t(\cdot - z)}{\varepsilon^{d-1}}\right) \mathrm{d}t : (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}_{\varepsilon}} \right\}$$

The cell problem: a formula for the limit f_{hom} .



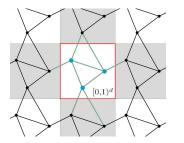
For
$$m \in \mathcal{M}^{\text{per}}_{+}(\mathcal{X})$$
 and \mathbb{Z}^{d} -periodic $j \in \mathbb{R}^{\mathcal{E}}_{a}$, define:

$$\|m\| := \sum_{x \in \mathcal{X} \cap [0,1]^{d}} m(x) \in \mathbb{R}^{+},$$
Eff $(j) := \frac{1}{2} \sum_{x \in \mathcal{X} \cap [0,1]^{d}} \sum_{y \sim x} j(x,y)(y-x) \in \mathbb{R}^{d},$
div $j(x) := \sum_{y \sim x} j(x,y).$

イロト イヨト イヨト イヨト

2

The cell problem: a formula for the limit f_{hom} .



For
$$m \in \mathcal{M}^{\text{per}}_{+}(\mathcal{X})$$
 and \mathbb{Z}^{d} -periodic $j \in \mathbb{R}^{\mathcal{E}}_{a}$, define:

$$\|m\| := \sum_{x \in \mathcal{X} \cap [0,1]^{d}} m(x) \in \mathbb{R}^{+},$$
Eff $(j) := \frac{1}{2} \sum_{x \in \mathcal{X} \cap [0,1]^{d}} \sum_{y \sim x} j(x,y)(y-x) \in \mathbb{R}^{d},$
div $j(x) := \sum_{y \sim x} j(x,y).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

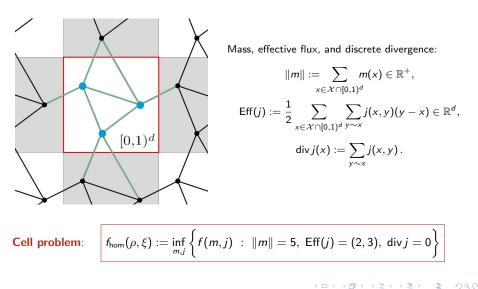
Cell problem: for any $\rho \in \mathbb{R}^+$, $\xi \in \mathbb{R}^d$, the limit cost is given by

$$f_{hom}(\rho,\xi) := \inf_{m,j} \left\{ f(m,j) : \|m\| = \rho, \ \mathsf{Eff}(j) = \xi, \ \mathsf{div} \, j = 0 \right\}$$

where the inf is taken over $m \in \mathcal{M}^{\mathsf{per}}_+(\mathcal{X})$ and \mathbb{Z}^d -periodic, skew-sym. $j \in \mathbb{R}^{\mathcal{E}}$.

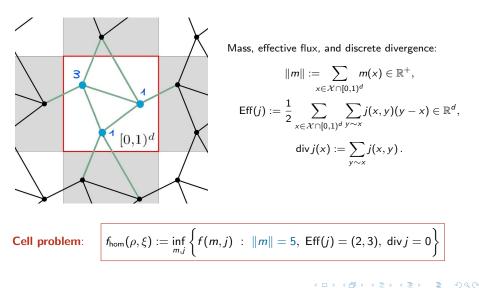
An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:



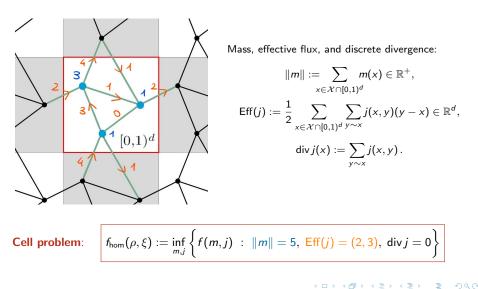
An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:



An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:



(4/4) Application: periodic finite-volume partitions.

イロト イロト イヨト イヨト 二日

Application: periodic finite-volume partitions.

$$\mathcal{W}_{\theta}(m_0, m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{g}}(x, y)} \frac{|j_t(x, y)|^2}{\theta\left(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)}\right)} \, \mathrm{d}t \; : \; (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}$$

where we choose:
$$\omega_{\mathfrak{g}}(x,y) := rac{\mathscr{H}^{d-1}(\partial K_x \cap \partial K_y)}{|y-x|}, \quad \pi(x) := \mathscr{L}^d(K_x).$$

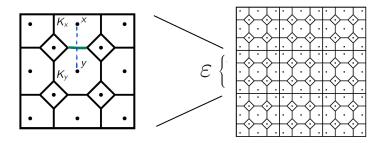


Figure: Periodic finite-volume partition of \mathbb{T}^d .

イロト イロト イヨト イヨト 二日

Application: periodic finite-volume partitions.

$$\mathcal{W}_{\theta}(m_{0},m_{1})^{2} := \frac{1}{2} \inf \left\{ \int_{0}^{1} \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{g}}(x,y)} \frac{|j_{t}(x,y)|^{2}}{\theta\left(\frac{m_{t}(x)}{\pi(x)},\frac{m_{t}(y)}{\pi(y)}\right)} \, \mathrm{d}t : (m_{t},j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0},m_{1}) \right\}$$

$$\xleftarrow{\pi_{0}} \xrightarrow{\pi_{1}} \cdots \cdots \xrightarrow{\pi_{M-1}}$$

One-dimensional: \mathcal{W}_{θ} converges as $\varepsilon \to 0$ to $\mathbb{W}_{hom} = f_{hom}(1,1)\mathbb{W}_2$, where

$$f_{\mathsf{hom}}(\mu,\xi) = rac{|\xi|^2}{\mu} f_{\mathsf{hom}}(1,1), \quad f_{\mathsf{hom}}(1,1) = \inf\left\{\sum_{k=0}^{M-1} rac{|x_{k+1} - x_k|}{ heta\left(rac{m_k}{\pi_k},rac{m_{k+1}}{\pi_{k+1}}
ight)} \; : \; \|m\| = 1
ight\} \le 1.$$

Application: periodic finite-volume partitions.

$$\mathcal{W}_{\theta}(m_{0},m_{1})^{2} := \frac{1}{2} \inf \left\{ \int_{0}^{1} \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{g}}(x,y)} \frac{|j_{t}(x,y)|^{2}}{\theta\left(\frac{m_{t}(x)}{\pi(x)},\frac{m_{t}(y)}{\pi(y)}\right)} \, \mathrm{d}t : (m_{t},j_{t})_{t} \in \mathsf{CE}_{\mathcal{X}}(m_{0},m_{1}) \right\}$$

$$\xleftarrow{\pi_{0}} \xrightarrow{\pi_{1}} \cdots \cdots \xleftarrow{\pi_{M-1}}$$

One-dimensional: \mathcal{W}_{θ} converges as $\varepsilon \to 0$ to $\mathbb{W}_{hom} = f_{hom}(1,1)\mathbb{W}_2$, where

$$f_{ ext{hom}}(\mu,\xi) = rac{|\xi|^2}{\mu} f_{ ext{hom}}(1,1), \quad f_{ ext{hom}}(1,1) = \inf \left\{ \sum_{k=0}^{M-1} rac{|x_{k+1} - x_k|}{ heta \left(rac{m_k}{\pi_k}, rac{m_{k+1}}{\pi_{k+1}}
ight)} \; : \; \|m\| = 1
ight\} \leq 1.$$

Multidimensional: \mathcal{W}_{θ} converges as $\varepsilon \to 0$ to \mathbb{W}_{hom} , where

$$\mathbb{W}^2_{\mathsf{hom}}(\mu_0,\mu_1) = \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}(\mu_t,\xi_t) \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1) \right\}$$

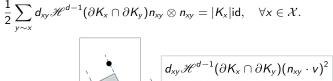
and $f_{\text{hom}}(\mu,\xi) = \frac{\|\xi\|_{\text{hom}}^2}{\mu} \leq \frac{|\xi|^2}{\mu}$ with $\mathbb{W}_{\text{hom}} = \mathbb{W}_2$ if and only if the mesh is isotropic.

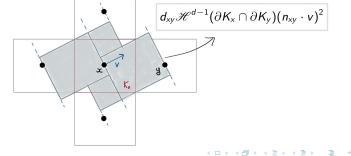
The role of isotropy in the periodic setting

Theorem (multidimensional): \mathcal{W}_{θ} converges as $\varepsilon \to 0$ to \mathbb{W}_{hom} , where

$$\mathbb{W}^2_{\mathsf{hom}}(\mu_0,\mu_1) = \left\{\int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}(\mu_t,\xi_t) \,\mathrm{d}x \,\mathrm{d}t \ : \ (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1)
ight\}, \quad \mathsf{where}$$

 $\circ~\mathbb{W}_{hom}=\mathbb{W}_2$ if and only if the mesh is isotropic: in the periodic setting, it reads





Possible future directions

- Discrete-to-continuum limits of (generalised) gradient flows.
- Adding randomness in the game: either at the level of the graph or of the energy.
- Beyond the periodic case and optimal transport on manifolds.

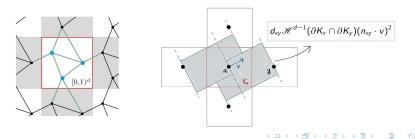
3

ヘロト ヘロト ヘヨト ヘヨト

Possible future directions

- Discrete-to-continuum limits of (generalised) gradient flows.
- Adding randomness in the game: either at the level of the graph or of the energy.
- Beyond the periodic case and optimal transport on manifolds.

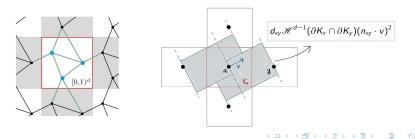
Thank you!



Possible future directions

- Discrete-to-continuum limits of (generalised) gradient flows.
- Adding randomness in the game: either at the level of the graph or of the energy.
- Beyond the periodic case and optimal transport on manifolds.

Thank you!



The role of isotropy in the periodic setting

Theorem (multidimensional): \mathcal{W}_{θ} converges as $\varepsilon \to 0$ to \mathbb{W}_{hom} , where

$$\mathbb{W}^2_{\mathsf{hom}}(\mu_0,\mu_1) = \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}(\mu_t,\xi_t) \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1) \right\}, \quad \mathsf{where}$$

• $f_{\text{hom}}(\mu,\xi) = \frac{\|\xi\|_{\text{hom}}^2}{\mu} \le \frac{|\xi|^2}{\mu}$, where $\|\cdot\|_{\text{hom}}$ is a norm (possibly not Riemannianian!)

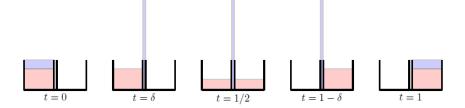


Figure: Strongly oscillating measures on the graph scale can be cheaper.

イロト 不得 トイヨト イヨト