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Plan of the talk

Nonlocal transport equations with linear and nonlinear mobility

Deterministic particle approximation for nonlinear mobility

Deterministic particle approximation for linear mobility

Application to opinion dynamics
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N particles located at
positions x1(t), . . . , xN(t)

xi(t)

energetical setting:

nonlocal interaction potential W
depending on the relative distance
of the particles

no inertia (negligible in many
socio-biological phenomena)

ẋi (t) = − 1
N

∑
j 6=i ∇W (xi (t)− xj(t))

l
∂tρ = ∇ · (ρ∇W ∗ ρ)
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ẋi = − 1
N

∑
j 6=i ∇W (xi − xj)

l
∂tρ = ∇ · (ρ∇W ∗ ρ)

(non exaustive) Literature

[Bertozzi, Carrillo, Laurent, Rosado,
Brandman]
Lp theory

[Ambrosio, Gigli, Savaré]
optimal transport with smooth
potentials

[Carrillo, Choi, Di Francesco, Figalli,
Hauray, Laurent, Slepčev]
optimal transport with
midly-singular potentials
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Linear vs Nonlinear mobility

If the potential W is attractive then the
particles tend to concentrate (the density
ρ can blow up)

one way to prevent the overcrowding ef-
fect is to let the mobility depend also on
a velocity term that decreases where the
concentration is higher

v : R≥0 → R≥0 s.t. v ′ ≤ 0, spt v = [0,R]
(ex. v(ρ) = (1− ρ)+)

∂tρ = ∇ · (ρv(ρ)∇W ∗ ρ)
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state of the art in the scalar case

{
∂tρ = ∂x(ρv(ρ)W ′ ∗ ρ) [0,T ]× R
ρ(0, ·) = ρ0 ρ0 ∈ BV ∩ Pcmpt ∩ L∞(R)

We call ρi := 1
N(xi+1−xi ) the local reconstruction of the macroscopic density

Theorem (Di Francesco, Fagioli, R. 2019)

Let W ∈W 3,∞
loc (R) be even and attractive, i.e. W ′(x)x ≥ 0, then the

many particle limit of the system

ẋi = −N−1v(ρi−1)
∑
j<i

W ′(xi − xj
)
− N−1v(ρi )

∑
j>i

W ′(xi − xj
)

is the unique entropy solution of the Cauchy problem.
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Outlines of the proof:

Discrete Maximum Principle ρi ≤ ‖ρ0‖L∞

Density approximations

ρN(t, x) :=
N−1∑
i=0

ρi (t) 1[xi (t),xi+1(t))(x)

strong L1 compactness follows from

BV estimates
∫ T

0

(
|supp ρN(t, ·)|+ TV [ρN(t, ·)]

)
dt <∞

continuity in time W1(ρN(t, ·), ρN(s, ·)) ≤ C (TV [ρ0])|t − s|

Kruzkov entropy inequality holds for ρN up to an error vanishing in
the many particle limit

uniqueness follows by a stability result of Karlsen and Risebro
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state of the art in the scalar case

 ∂tρ = ∂x(ρv(ρ)W ′ ∗ ρ) + ∂xxφ(ρ) [0,T ]× [0, `]
ρ(0, ·) = ρ0 ρ0 ∈ BV ∩ L∞ ∩ P([0, `]), � 0
v(ρ)∂x(a(ρ) + W ∗ ρ) = 0 [0,T ]× ({0} ∪ {`})

through the relation φ(ρ) =
∫ ρ

0 ξv(ξ)a′(ξ)dξ,

Theorem (Fagioli, R. 2018)

Let W ∈W 3,∞
loc (R) be even and attractive, and φ ∈ Lip([0,∞), s.t.

φ(0) = 0 and φ′ ≥ 0, then the many particle limit of the system
ẋN = ẋ0 = 0 and ẋi = ẋdi + ẋnLi , where

ẋdi = N(φ(ρi−1)− φ(ρi ))

ẋnLi = −N−1v(ρi )
∑
j>i

W ′(xi − xj)− N−1v(ρi−1)
∑
j<i

W ′(xi − xj),

is the unique entropy solution of the Cauchy problem.
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state of the art in the scalar case

{
∂tρ = ∂x(ρv(ρ)V (x)) [0,T ]× R
ρ(0, ·) = ρ0 ρ0 ∈ BV ∩ Pcmpt ∩ L∞(R)

Theorem (Di Francesco, Stivaletta 2020)

Let V ∈W 2,∞(R) be

positive −→ ẋi = v(ρi )V (xi )

negative −→ ẋi = v(ρi−1)V (xi )

repulsive −→ ẋi = V (xi )v(ρi−1)1≤0(xi ) + V (xi )v(ρi )1>0(xi )

attractive −→ ẋi = V (xi )v(ρi )1≤0(xi ) + V (xi )v(ρi−1)1>0(xi )

Then the many particle limit of the corresponding system is the unique
entropy solution of the Cauchy problem.
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state of the art in the scalar case

{
∂tρ = ∂x(ρv(ρ)(W ′ ∗ ρ− V ′(x)) [0,T ]× R
ρ(0, ·) = ρ0 ρ0 ∈ BV ∩ Pcmpt ∩ L∞(R)

Theorem (Fagioli, Tse 2021)

Let V ∈ C 2(R) with V ′ having linear growth and W be a radially
symmetric interaction potential satisfying one of the following

W ∈ C 1(R) and W ′ ∈W 2,∞(R) with linear growth,

W (x) = ±|x |,
then the many particle limits of the system

ẋi (t) = v(ρi )U
+
i + v(ρi−1)U−i , Ui = −N−1

∑
j 6=i

W ′(xi − xj
)
− V ′(xi )

correspond to the unique entropy solution of the Cauchy problem.

E.Radici (EPFL) Deterministic particle approximation Berkeley, 29/10/2021 10 / 28



state of the art in the scalar case

{
∂tρ = ∂x(ρv(ρ)(W ′ ∗ ρ− V (t, x)) [0,T ]× R
ρ(0, ·) = ρ0 ρ0 ∈ BV ∩ Pcmpt ∩ L∞(R)

Theorem (R., Stra 2021)

Let W ∈ L1([0,T ],W 1,∞
loc (R) ∩W 3,∞

loc (R≶0)) and

V ∈ L1([0,T ],W 2,∞
loc (R)), then the many particle limits of the systems

ẋi (t) = −viN−1
∑

j 6=i W
′(t, xi − xj

)
+ viV (t, xi ) = vi Ûi (t)

ẋi (t) = −vi
∑N

j=0(ρj+1 − ρj)W (t, xi − xj) + viV (t, xi ) = vi Ūi (t)

where vi = v(ρi ) if Ui ≥ 0 and vi = v(ρi−1) if Ui ≤ 0, correspond to the
unique entropy solution of the Cauchy problem.
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Numerics

Pure aggregative regime

v(ρ) = (1− ρ)+, W = N (0, 1), ρ0(x) = 0.2 1[−0.5,0](x) + 0.6 1[0.5,1](x)
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Numerics

Non uniqueness of weak solutions

v(ρ) = (1− ρ)+, W = N (0, 1), ρ0(x) = 1[−0.5,0](x) + 1[0.5,1](x)
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Numerics

Aggregative and diffusive regime

v(ρ) = (1− ρ)+, W = N (0, 1), ρ0(x) =
3

4
(1− x2)1[−1,1](x)

a(ρ) =
1

20
ρ21[0, 2

5
)(ρ) +

1

125
1[ 2

5
, 3

5
)(ρ) +

[
1

125
+

1

20

(
ρ−

3

5

)2
]
1[ 3

5
,∞)(ρ)
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Numerics

New particle scheme

v(ρ) = (1− ρ)+, W (x) = −5 ln(|x |+ 1), V (t, x) = −(x − sin(3t))3,

ρ0(x) = 1[−1,−0.5](x) + 1[0,0.5](x), N = 80 vs N = 240
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Numerics

New particle scheme

v(ρ) = (1− ρ)+, W (x) = −5 ln(|x |+ 1), V (t, x) = −(x − sin(3t))3,

ρ0(x) = 1[−1,−0.5](x) + 1[0,0.5](x), sampled vs integrated
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Numerics

v(ρ) =
1

1 + ρ
, W (x) = 5 ln(|x |+ 1), V (t, x) = 0,

ρ0(x) ≈
1

2
+ oscillations, non vanishing v
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Comparison old scheme vs new scheme

v(ρ) = (1− ρ)+, W (x) = 5 ln(|x |+ 1), ρ0(x) = 1[−0.75,−0.25](x) + 1[0.25,0.75](x)
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diffusion in unbounded domains

{
∂tρ = ∂x(ρW ′ ∗ ρ) + ∂xxφ(ρ) [0,T ]× R
ρ(0, ·) = ρ0 ρ0 ∈ L∞ ∩ P1(R),

Theorem (Daneri, R., Runa 2021)

Let W ∈W 2,∞ ∩W 1,1(R≶0) ∩ C (R) be even, φ ∈ C 1(R) is a diffusion of
the form φ(ρ) = ρU ′(ρ)− U(ρ) for U ≥ 0 with suitable growth conditions
(including the class φ(ρ) = ρm, m ≥ 1), and ρ0 be an initial datum with
finite energy. Then the many particle limits of the systems

ẋLi = −N−1
∑
j 6=i

W ′(xi − xj) + N(φ(ρi−1)− φ(ρi ))

of the approximated problem on the torus TL converge to the unique
bounded weak solution of the Cauchy problem in L1([0,T ]× R).

E.Radici (EPFL) Deterministic particle approximation Berkeley, 29/10/2021 19 / 28



Linear mobility case

Outlines of the proof:

Gradient flow of

EL(ν) =
1

2

∫
TL×TL

W (x − y)dνdν +

∫
TL

U(ν)

Energy estimates along the density approximations

dEL(ρLN(t))

dt
≤ C (W ′,W ′′)

L√
N

Discrete Maximum Principle for φ(ρLN) and ρLN

L1 compactness on [0,T ]× TL and also on [0,T ]× R
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Opinion Dynamics

A further application of the deterministic particle approach concerns the theory of
opinion dynamics

∂tρ = ∂x

(
λ

2
D2(x)∂xφ(ρ) + ρP[ρ]

)
x ∈ [−1, 1], t ∈ [0,T ]

where

P[ρ](x , t) =

∫ 1

−1

P(x , y)(x − y)ρ(t, y)dy

0 ≤ P ≤ 1 models the local relevance of the compromise.
Standard choices are P(x1, x2) = 1 or P(x1, x2) = (1− x2

1 )1+α with α > 0

D models the diffusion of the single opinion.
Standard choice is D(x) = (1− x2)α/2 with α > 0

φ is some standard diffusion function, for example of porous medium type

λ is some positive constant that is obtained in deducing this PDE as limit of
the Bolzmann equation
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The corresponding particle scheme is

ẋi =
λ

2
ND2(xi )(φ(Ri−1)− φ(Ri )) +

1

N

N∑
j=0

P(xi , xj)(xi − xj) i = 1 . . . ,N − 1

with the boundary conditions ẋ0 = ẋN = 0. If we assume that

P is such that 0 ≤ P(·) ≤ 1 and P ′ is Lipschitz in the first component

D = (1− x2)α/2 for some α ≥ 1

φ : [0,∞)→∞ is Lipschitz, non-decreasing and φ(0) = 0

Theorem (Fagioli,R. 2020)

If the initial datum ρ0 is far from vacuum, we can prove that the sequence
ρN is well defined and it L1-converges to some density ρ satisfying∫ T

0

∫ 1

−1
ρ∂tϕ+ φ(ρ)∂x(D2(x)∂xϕ)− ρP[ρ]∂xϕ dx dt = 0

for every ϕ ∈ C∞c ((0,T )× (−1, 1)) with ∂xϕ(±1) = 0.
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One can generalize this approach to study the opinion dynamics of a
society which is composed by a populations of followers f , a red party r , a
blue party b. Then the corresponding system is



∂t f = ∂x

(
λf
2 D2∂xφf (f ) + f (Pf ,f [f ] + Pf ,r [r ] + Pf ,b[b])

)
∂tr = ∂x

(
λr
2 D2∂xφr (r) + r(Pr ,r [r ] + Pr ,b[b])

)
∂tb = ∂x

(
λb
2 D2∂xφb(b) + b(Pb,b[b] + Pb,r [r ])

)

E.Radici (EPFL) Deterministic particle approximation Berkeley, 29/10/2021 23 / 28



masses: mb = 0.5, mr = 0.4, mf = 1

Parameters: λi = 0.05, φf = φr = φb = u2

2 , Pf ,f = Pr ,r = Pb,b = 1,
Pr ,b = Pb,r = 1

2 (1− x2
r/b), Pf ,r = Pf ,b = 1

10 (1− x2
f )
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We can add even the dependece of an eventual population g of fake
followers owned by one of the parties (trolls). Then the corresponding
system is



∂t f = ∂x

(
λf
2 D2∂xφf (f ) + f (Pf ,f [f ] + Pf ,f [g ] + Pf ,r [r ] + Pf ,b[b])

)
∂tr = ∂x

(
λr
2 D2∂xφr (r) + r(Pr ,r [r ] + Pr ,b[b])

)
∂tb = ∂x

(
λb
2 D2∂xφb(b) + b(Pb,b[b] + +Pb,r [r ])

)
∂tg = ∂x (gPg ,b[b])
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Pg ,b = 1− (xg − xb)2

mf = 1,mr = 0.4,

mb = 0.2,mg = 0.1

mf = 1,mr = 0.4,

mb = 0.2,mg = 0.2
mf = 1,mr = 0.4,

mb = 0.2,mg = 0.3

E.Radici (EPFL) Deterministic particle approximation Berkeley, 29/10/2021 26 / 28



Comparison

mf = 1,mr = 0.4,

mb = 0.2,mg = 0.1

mf = 1,mr = 0.4,

mb = 0.2,mg = 0.2

mf = 1,mr = 0.4,

mb = 0.2,mg = 0.3
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Related open problems

1 diffusion & nonlinear mobility in unbounded domains with no box
constraint

2 Lennard-Jones type potentials

3 Deterministic particle approach for 1D systems with nonlinear mobility

4 Deterministic particle approach on networks and higher dimension

Thank you for your attention
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