NGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	0000000

Training Wasserstein generative adversarial networks without gradient penalties

Dohyun Kwon

Department of Mathematics,

University of Wisconsin-Madison

October 24, 2021

This is Joint Work with Guido Montúfar (UCLA / Max Planck Institute), Yeoneung Kim and Insoon Yang (Seoul National University)

WGANs	Motivations	Comparison based training algorithm	Remarks on objective functions

Overview

1 Wasserstein Generative Adversarial Networks

2 Motivations

Omparison based training algorithm

Experiments

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
00000	000000	0000	000000000	000000

Overview

1 Wasserstein Generative Adversarial Networks

2 Motivations

3 Comparison based training algorithm

4 Experiments

5 Remarks on objective functions

• Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have seen remarkable success in generating synthetic images. The generator *G* and the discriminator *D* compete with each other:

Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, $V(G, D) = E_{x \sim \text{data}}[log(D(x))] + E_{z \sim \text{noise}}[log(1 - D(G(z))].$

 In the Wasserstein GAN framework proposed by Arjovsky, Chintala, and Bottou (2017), the training objective for the generator network is the Wasserstein distance to the target distribution.

• Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have seen remarkable success in generating synthetic images. The generator *G* and the discriminator *D* compete with each other:

Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, $V(G,D) = E_{x \sim \text{data}}[log(D(x))] + E_{z \sim \text{noise}}[log(1 - D(G(z)))].$

 In the Wasserstein GAN framework proposed by Arjovsky, Chintala, and Bottou (2017), the training objective for the generator network is the Wasserstein distance to the target distribution.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

The main objective of WGANs

For $0 < m \ll n$, let $\mu \in \mathscr{P}(\mathbb{R}^n)$ be a target distribution and $\rho \in \mathscr{P}(\mathbb{R}^m)$ be a source distribution. Find a parametrized generator $G_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$ so that

$$W_{\rho}(\mu, G_{\theta} \# \rho) \approx 0.$$

 For μ, ν ∈ 𝒫_p(Ω), the p-Wasserstein distance between two probability measures μ and ν in 𝒫(Ω) is defined as

$$W_p(\mu,
u) := \min\left\{\int_{\Omega imes\Omega} |x-y|^p \mathsf{d}\gamma: \gamma\in \Pi(\mu,
u)
ight\}.$$

• Computing the Wasserstein distance has been a difficult task.

A non-exhaustive list:

[Benamou-Brenier, Numer. Math. 2000] The Benamou-Brenier formula [Cuturi, NIPS 2013] Sinkhorn distances

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

[Jacobs-Leger, Numer. Math. 2020] The back-and-forth method

and much more...

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

The main objective of WGANs

For $0 < m \ll n$, let $\mu \in \mathscr{P}(\mathbb{R}^n)$ be a target distribution and $\rho \in \mathscr{P}(\mathbb{R}^m)$ be a source distribution. Find a parametrized generator $G_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$ so that

$$W_{\rho}(\mu, G_{\theta} \# \rho) \approx 0.$$

 For μ, ν ∈ 𝒫_p(Ω), the p-Wasserstein distance between two probability measures μ and ν in 𝒫(Ω) is defined as

$$W_p(\mu,
u) := \min \left\{ \int_{\Omega imes \Omega} |x - y|^p \mathsf{d}\gamma : \gamma \in \Pi(\mu,
u)
ight\}.$$

• Computing the Wasserstein distance has been a difficult task.

A non-exhaustive list:

[Benamou-Brenier, Numer. Math. 2000] The Benamou-Brenier formula [Cuturi, NIPS 2013] Sinkhorn distances [Benamou-Froese-Oberman, JCP 2014] The Monge-Ampére equation [Jacobs-Leger, Numer. Math. 2020] The back-and-forth method

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

and much more...

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Training WGANs if p = 1

• If p = 1, then $\phi^c = -\phi$ for all $\phi \in Lip_1$ and thus

$$W_1(\mu,
u) = \sup\left\{\int_\Omega \phi(\mathrm{d}\mu - \mathrm{d}
u): \phi \in Lip_1(\Omega)
ight\}.$$

WGAN-WC [Arjovsky-Chintala-Bottou, 2017]

 \bullet clamp all the weights in the network of ϕ to a fixed box,

• but this can overly restrict the class of functions

WGAN-GP [Gulrajani-Ahmed-Arjovsky, 2017]

$$\inf_{\theta} \sup_{\eta} \left\{ \int_{\Omega} \phi_{\eta} (\mathrm{d}\mu - \mathrm{d}G_{\theta} \# \rho) + \lambda \int_{\Omega} (|D\phi_{\eta}| - 1)^2 \, \mathrm{d}\omega \right\}$$

- $\|D\phi\| = 1$ is not necessarily satisfied globally,
- applying the gradient penalty only at sample points is insufficient [Wei et al., 2018],

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• WGAN-GP computes the minimum of a different optimal transport problem related to the congested transport [Milne-Nachman, 2021]

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Training WGANs if p = 1

• If p = 1, then $\phi^c = -\phi$ for all $\phi \in Lip_1$ and thus

$$W_1(\mu,
u) = \sup\left\{\int_\Omega \phi(\mathrm{d}\mu - \mathrm{d}
u): \phi \in Lip_1(\Omega)
ight\}.$$

WGAN-WC [Arjovsky-Chintala-Bottou, 2017]

- clamp all the weights in the network of ϕ to a fixed box,
- but this can overly restrict the class of functions

WGAN-GP [Gulrajani-Ahmed-Arjovsky, 2017]

$$\inf_{\theta} \sup_{\eta} \left\{ \int_{\Omega} \phi_{\eta} (\mathrm{d}\mu - \mathrm{d}G_{\theta} \# \rho) + \lambda \int_{\Omega} (|D\phi_{\eta}| - 1)^2 \, \mathrm{d}\omega \right\}$$

- $\|D\phi\| = 1$ is not necessarily satisfied globally,
- applying the gradient penalty only at sample points is insufficient [Wei et al., 2018],

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

• WGAN-GP computes the minimum of a different optimal transport problem related to the congested transport [Milne-Nachman, 2021]

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Training WGANs if p = 1

• If
$$p = 1$$
, then $\phi^c = -\phi$ for all $\phi \in Lip_1$ and thus

$$W_1(\mu,
u) = \sup\left\{\int_\Omega \phi(\mathrm{d}\mu - \mathrm{d}
u): \phi \in Lip_1(\Omega)
ight\}.$$

WGAN-WC [Arjovsky-Chintala-Bottou, 2017]

- \bullet clamp all the weights in the network of ϕ to a fixed box,
- but this can overly restrict the class of functions

WGAN-GP [Gulrajani-Ahmed-Arjovsky, 2017]

$$\inf_{\theta} \sup_{\eta} \left\{ \int_{\Omega} \phi_{\eta} (\mathrm{d}\mu - \mathrm{d}G_{\theta} \# \rho) + \lambda \int_{\Omega} (|D\phi_{\eta}| - 1)^2 \, \mathrm{d}\omega \right\}$$

- $\|D\phi\| = 1$ is not necessarily satisfied globally,
- applying the gradient penalty only at sample points is insufficient [Wei et al., 2018],
- WGAN-GP computes the minimum of a different optimal transport problem related to the congested transport [Milne-Nachman, 2021]

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000				

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

Our main questions

How to

- estimate the Wasserstein distance
- make an algorithm perform well in the generative setting
- enforce the Lipschitz constraint efficiently

WGANs	Motivations	Comparison based training algorithm		Remarks on objective functions
000000	0000000	0000	000000000	0000000

A partial list of WGANs

WGAN-LP (Lipschitz Penalty) [Petzka-Fischer-Lukovnikov, 2018]

$$\inf_{\theta} \sup_{\eta} \left\{ \int_{\Omega} \phi_{\eta} (\mathrm{d}\mu - \mathcal{G}_{\theta} \# \rho) + \int_{\Omega} \left(\max \left\{ 0, |D\phi_{\eta}|^{2} - 1 \right\} \right)^{2} d\omega \right\}$$

CT-GAN [Wei et al, 2018]

WGANs based c-transform:

$$\int_{\Omega}\phi \mathsf{d}\mu + \int_{\Omega}\phi^{\mathsf{c}}\mathsf{d}\nu$$

• This method allows for a more accurate estimation of the true Wasserstein metric, but it does not perform well in the generative setting [Mallasto-Montúfar-Gerolin, 2019].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□► ◇Q?

WORWS	Comparison based training algorithm	Experiments	Remarks on objective functions
000000 000000			

Overview

Wasserstein Generative Adversarial Networks

2 Motivations

Omparison based training algorithm

4 Experiments

5 Remarks on objective functions

WGANs	Motivations	Comparison based training algorithm		Remarks on objective functions
000000	000000	0000	000000000	000000

Revisit of the admissible condition (1/2)

Recall

$$W_1(\mu, \nu) = \sup \left\{ \int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) : \phi \in Lip_1(\Omega)
ight\}.$$

- The maximizer φ can take any values at x ∈ (supp (μ) ∪ supp (ν))^c as long as φ ∈ Lip₁(Ω).
- Instead of the Lipschitz condition, we consider the following admissible condition:

$$\phi(x) - \phi(y) \le |x - y|$$
 for all $(x, y) \in \operatorname{supp}(\mu) \times \operatorname{supp}(\nu)$, (A)

- If both supp(μ) and supp(ν) are equal to Ω, then (A) is equivalent to the 1-Lipschitzness on Ω, which rarely happens in real-world data.
- Using (A) is more efficient if supp (μ), supp (ν) ⊂ M for some manifold M such that dim(M) << dim(ℝⁿ) = n.

◇◇◇ 単則 → 曲▼ → 曲▼ → ●

WGANs	Motivations	Comparison based training algorithm		Remarks on objective functions
000000	000000	0000	000000000	000000

Revisit of the admissible condition (1/2)

Recall

$$W_1(\mu,
u) = \sup \left\{ \int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}
u) : \phi \in Lip_1(\Omega)
ight\}.$$

- The maximizer φ can take any values at x ∈ (supp (μ) ∪ supp (ν))^c as long as φ ∈ Lip₁(Ω).
- Instead of the Lipschitz condition, we consider the following admissible condition:

$$\phi(x) - \phi(y) \le |x - y|$$
 for all $(x, y) \in \operatorname{supp}(\mu) \times \operatorname{supp}(\nu)$, (A)

- If both supp(μ) and supp(ν) are equal to Ω, then (A) is equivalent to the 1-Lipschitzness on Ω, which rarely happens in real-world data.
- Using (A) is more efficient if supp (μ), supp (ν) ⊂ M for some manifold M such that dim(M) << dim(ℝⁿ) = n.

4日 + 4回 + 4目 + 4目 + 4日 - 900

WGANs	Motivations	Comparison based training algorithm		Remarks on objective functions
000000	000000	0000	000000000	000000

Revisit of the admissible condition (1/2)

Recall

$$W_1(\mu, \nu) = \sup \left\{ \int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) : \phi \in Lip_1(\Omega)
ight\}.$$

- The maximizer φ can take any values at x ∈ (supp (μ) ∪ supp (ν))^c as long as φ ∈ Lip₁(Ω).
- Instead of the Lipschitz condition, we consider the following admissible condition:

$$\phi(x) - \phi(y) \le |x - y|$$
 for all $(x, y) \in \operatorname{supp}(\mu) \times \operatorname{supp}(\nu)$, (A)

- If both supp(μ) and supp(ν) are equal to Ω, then (A) is equivalent to the 1-Lipschitzness on Ω, which rarely happens in real-world data.
- Using (A) is more efficient if supp (μ), supp (ν) ⊂ M for some manifold M such that dim(M) << dim(ℝⁿ) = n.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

Revisit of the admissible condition (2/2)

• For ϕ satisfies (A) and a transport plan γ satisfying $\gamma(A \times \Omega) = \mu(A)$ and $\gamma(\Omega \times A) = \nu(A)$ for all measurable subsets $A \subset \Omega$,

$$\int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) = \int_{\Omega \times \Omega} \phi(x) - \phi(y) \mathrm{d}\gamma \leq \int_{\Omega \times \Omega} |x - y| \mathrm{d}\gamma$$

• As a consequence,

$$\begin{split} \sup \left\{ \int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) : \phi \text{ satisfies (A)} \right\} \\ &\leq \inf_{\gamma \in \Pi(\mu,\nu)} \left\{ \int_{\Omega \times \Omega} |x - y| \mathrm{d}\gamma \right\} = W_1(\mu,\nu) \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	0000000

Revisit of the admissible condition (2/2)

• For ϕ satisfies (A) and a transport plan γ satisfying $\gamma(A \times \Omega) = \mu(A)$ and $\gamma(\Omega \times A) = \nu(A)$ for all measurable subsets $A \subset \Omega$,

$$\int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) = \int_{\Omega \times \Omega} \phi(x) - \phi(y) \mathrm{d}\gamma \leq \int_{\Omega \times \Omega} |x - y| \mathrm{d}\gamma$$

As a consequence,

$$\begin{split} \sup \left\{ \int_{\Omega} \phi(\mathrm{d}\mu - \mathrm{d}\nu) : \phi \text{ satisfies (A)} \right\} \\ &\leq \inf_{\gamma \in \Pi(\mu,\nu)} \left\{ \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma \right\} = W_1(\mu,\nu) \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

c-transform on mini-batch

 In practice, one does not have access to the true distribution, but rather to mini-batches that are sampled from the available training data set.

$$\phi^{\mathsf{c}}(y;\mu_n):=\inf_{x\in \mathsf{supp}(\mu_n)}\left\{|x-y|-\phi(x)
ight\} ext{ for } y\in \Omega.$$

Here, μ_n is an empirical measures based on *n* i.i.d. observations X_1 , X_2 , ..., X_n distributed according to μ .

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

• We use the *c*-transform on the support of η : for $\eta \in \mathcal{P}(\Omega)$, a function $\phi^c(\cdot; \eta) : \Omega \to \mathbb{R}$ is given by

$$\phi^{c}(y;\eta) := \inf_{x \in \mathsf{supp}(\eta)} \{|x - y| - \phi(x)\} \text{ for } y \in \Omega$$

• Note that the original *c*-transform is defined as

$$\phi^{c}(y) := \inf_{x \in \Omega} \{ |x - y| - \phi(x) \}.$$

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

c-transform on mini-batch

 In practice, one does not have access to the true distribution, but rather to mini-batches that are sampled from the available training data set.

$$\phi^{\mathsf{c}}(y;\mu_n):=\inf_{x\in \mathsf{supp}(\mu_n)}\left\{|x-y|-\phi(x)
ight\} ext{ for } y\in \Omega.$$

Here, μ_n is an empirical measures based on *n* i.i.d. observations X_1 , X_2 , ..., X_n distributed according to μ .

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

• We use the *c*-transform on the support of η : for $\eta \in \mathcal{P}(\Omega)$, a function $\phi^c(\cdot; \eta) : \Omega \to \mathbb{R}$ is given by

$$\phi^c(y;\eta):=\inf_{x\in ext{supp}(\eta)}\left\{|x-y|-\phi(x)
ight\} ext{ for } y\in \Omega.$$

• Note that the original *c*-transform is defined as

$$\phi^{c}(y) := \inf_{x \in \Omega} \{ |x - y| - \phi(x) \}.$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

c-transform on mini-batch

 In practice, one does not have access to the true distribution, but rather to mini-batches that are sampled from the available training data set.

$$\phi^{\mathsf{c}}(y;\mu_n):=\inf_{x\in \mathsf{supp}(\mu_n)}\left\{|x-y|-\phi(x)
ight\} ext{ for } y\in \Omega.$$

Here, μ_n is an empirical measures based on *n* i.i.d. observations X_1 , X_2 , ..., X_n distributed according to μ .

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

• We use the *c*-transform on the support of η : for $\eta \in \mathcal{P}(\Omega)$, a function $\phi^c(\cdot; \eta) : \Omega \to \mathbb{R}$ is given by

$$\phi^c(y;\eta) := \inf_{x \in \mathsf{supp}(\eta)} \{ |x-y| - \phi(x) \} \text{ for } y \in \Omega.$$

• Note that the original *c*-transform is defined as

$$\phi^{c}(y) := \inf_{\mathbf{x} \in \Omega} \left\{ |\mathbf{x} - y| - \phi(\mathbf{x}) \right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Comparison between objective functions (1/2)

For two empirical measures $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$,

$$\begin{split} \mathcal{J}_{1}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathcal{J}_{2}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} \phi^{\mathsf{c}}(\cdot;\mu_{n}) d\nu_{n}, \\ \mathcal{J}_{3}(\phi) &:= \int_{\Omega} (-\phi)^{\mathsf{c}}(\cdot;\nu_{n}) d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathcal{J}_{4}(\phi) &:= \int_{\Omega} (-\phi)^{\mathsf{c}}(\cdot;\nu_{n}) d\mu_{n} + \int_{\Omega} \phi^{\mathsf{c}}(\cdot;\mu_{n}) d\nu_{n}. \end{split}$$

If ϕ satisfies the admissibility condition (A), then

$$-\phi(\mathbf{y}) \leq \phi^{c}(\cdot;\mu_{n})$$

for all $y \in \text{supp}(\nu)$.

Lemma

If ϕ satisfies the admissibility condition (A), then we have

 $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi) \leq \mathcal{J}_4(\phi) \text{ and } \mathcal{J}_1(\phi) \leq \mathcal{J}_3(\phi) \leq \mathcal{J}_4(\phi).$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Comparison between objective functions (1/2)

For two empirical measures $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$,

$$\begin{split} \mathcal{J}_{1}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathcal{J}_{2}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} \phi^{\mathsf{c}}(\cdot;\mu_{n}) d\nu_{n}, \\ \mathcal{J}_{3}(\phi) &:= \int_{\Omega} (-\phi)^{\mathsf{c}}(\cdot;\nu_{n}) d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathcal{J}_{4}(\phi) &:= \int_{\Omega} (-\phi)^{\mathsf{c}}(\cdot;\nu_{n}) d\mu_{n} + \int_{\Omega} \phi^{\mathsf{c}}(\cdot;\mu_{n}) d\nu_{n}. \end{split}$$

If ϕ satisfies the admissibility condition (A), then

$$-\phi(\mathbf{y}) \leq \phi^{c}(\cdot;\mu_{n})$$

for all $y \in \text{supp}(\nu)$.

Lemma

If ϕ satisfies the admissibility condition (A), then we have

 $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi) \leq \mathcal{J}_4(\phi) \text{ and } \mathcal{J}_1(\phi) \leq \mathcal{J}_3(\phi) \leq \mathcal{J}_4(\phi).$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Comparison between objective functions (2/2)

Lemma

If ϕ satisfies the admissibility property (A), then we have

 $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi) \leq \mathcal{J}_4(\phi) \text{ and } \mathcal{J}_1(\phi) \leq \mathcal{J}_3(\phi) \leq \mathcal{J}_4(\phi).$

• Equivalently, if $\mathcal{J}_1 > \mathcal{J}_2$ or $\mathcal{J}_1 > \mathcal{J}_3$, then ϕ does not satisfy (A).

Lemma

If $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi)$ for all μ_n and ν_n , then ϕ satisfies the admissibility property (A). Here, μ_n and ν_n are empirical measures from μ and ν .

$$\begin{split} \mathcal{J}_1(\phi) &:= \int_{\Omega} \phi d\mu_{\alpha} + \int_{\Omega} (-\phi) d\nu_{\alpha}, \\ \mathcal{J}_2(\phi) &:= \int_{\Omega} \phi d\mu_{\alpha} + \int_{\Omega} \phi^{\varsigma}(\cdot;\mu_{\alpha}) d\nu_{\alpha}, \\ \mathcal{J}_3(\phi) &:= \int_{\Omega} (-\phi)^{\varsigma}(\cdot;\nu_{\alpha}) d\mu_{\alpha} + \int_{\Omega} (-\phi) d\nu_{\alpha}, \\ \mathcal{J}_4(\phi) &:= \int_{\Omega} (-\phi)^{\varsigma}(\cdot;\nu_{\alpha}) d\mu_{\alpha} + \int_{\Omega} \phi^{\varsigma}(\cdot;\mu_{\alpha}) d\nu_{\alpha}. \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Comparison between objective functions (2/2)

Lemm<u>a</u>

If ϕ satisfies the admissibility property (A), then we have

 $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi) \leq \mathcal{J}_4(\phi) \text{ and } \mathcal{J}_1(\phi) \leq \mathcal{J}_3(\phi) \leq \mathcal{J}_4(\phi).$

• Equivalently, if $\mathcal{J}_1 > \mathcal{J}_2$ or $\mathcal{J}_1 > \mathcal{J}_3$, then ϕ does not satisfy (A).

Lemma

If $\mathcal{J}_1(\phi) \leq \mathcal{J}_2(\phi)$ for all μ_n and ν_n , then ϕ satisfies the admissibility property (A). Here, μ_n and ν_n are empirical measures from μ and ν .

$$\begin{split} \mathcal{J}_1(\phi) &:= \int_{\Omega} \phi d\mu_n + \int_{\Omega} (-\phi) d\nu_n, \\ \mathcal{J}_2(\phi) &:= \int_{\Omega} \phi d\mu_n + \int_{\Omega} \phi^c(;\mu_n) d\nu_n, \\ \mathcal{J}_3(\phi) &:= \int_{\Omega} (-\phi)^c(;\nu_n) d\mu_n + \int_{\Omega} (-\phi) d\nu_n, \\ \mathcal{J}_4(\phi) &:= \int_{\Omega} (-\phi)^c(;\nu_n) d\mu_n + \int_{\Omega} \phi^c(;\mu_n) d\nu_n \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

The orignal c-transform vs c-transform on mini-batch

• In fact, if ϕ is Lipschitz continuous, then $\phi^c = -\phi$. Therefore,

$$W_1(\mu,
ho) = \sup_{\phi\in Lip_1} \mathcal{I}_1 = \sup_{\phi} \mathcal{I}_2 = \sup_{\phi} \mathcal{I}_3 = \sup_{\phi} \mathcal{I}_4.$$

where

$$\begin{split} \mathcal{I}_1(\phi) &= \int_{\Omega} \phi \mathsf{d}\mu + \int_{\Omega} (-\phi) \mathsf{d}\nu, \qquad \mathcal{I}_2(\phi) = \int_{\Omega} \phi \mathsf{d}\mu + \int_{\Omega} \phi^c \mathsf{d}\nu, \\ \mathcal{I}_3(\phi) &= \int_{\Omega} (-\phi)^c \mathsf{d}\mu + \int_{\Omega} (-\phi) \mathsf{d}\nu, \qquad \mathcal{I}_4(\phi) = \int_{\Omega} (-\phi)^c \mathsf{d}\mu + \int_{\Omega} \phi^c \mathsf{d}\nu. \end{split}$$

- However, the relation $\phi^c \leq -\phi$ does not hold for $\phi^c(\cdot; \eta)$ in general.
- As a consequence, $\phi^c(\cdot; \eta)$ is not necessarily equal to $-\phi$ even if ϕ is a 1-Lipschitz function.
- Similarly, J₁ is not necessarily equal to J₂ or J₃ even though our discriminator is optimal.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
		0000		

Overview

Wasserstein Generative Adversarial Networks

2 Motivations

Omparison based training algorithm

4 Experiments

5 Remarks on objective functions

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

 $\inf_{\nu \in P(\Omega)} W_1(\mu, \nu)$ $\sup\left\{\int_{\Omega}\phi(\mathrm{d}\mu-\mathrm{d}\nu):\phi\in Lip_{1}(\Omega)\right\}$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

 $\inf_{\nu \in P(\Omega)} W_1(\mu, \nu)$ $\sup\left\{\int_{\Omega}\phi(\mathrm{d}\mu-\mathrm{d}\nu):\phi\in Lip_{1}(\Omega)\right\}$ 2 $\sup\left\{\int_{\Omega}\phi(d\mu-d\nu):\phi \text{ satisfies (A)}\right\}$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

 $\inf_{\nu \in P(\Omega)} W_1(\mu, \nu)$ $\sup\left\{\int_{\Omega}\phi(\mathrm{d}\mu-\mathrm{d}\nu):\phi\in Lip_{1}(\Omega)\right\}$ 2 $\sup \left\{ \int_{a} \phi(d\mu - d\nu) : \phi \text{ satisfies (A)} \right\}$ 3 $\sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \phi \text{ satisfies (A)} \}$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

 $\inf_{\nu \in P(\Omega)} W_1(\mu, \nu)$ $\sup\left\{\int_{\Omega}\phi(\mathrm{d}\mu-\mathrm{d}\nu):\phi\in Lip_1(\Omega)\right\}$ 2 $\sup \left\{ \int_{a} \phi(d\mu - d\nu) : \phi \text{ satisfies (A)} \right\}$ 3 $\sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \phi \text{ satisfies (A)} \}$ 4 $\sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] :$ $\mathcal{J}_1(\phi; f_n, g_n) \leq \mathcal{J}_2(\phi; f_n, g_n)$ and $\mathcal{J}_1(\phi; f_n, g_n) \leq \mathcal{J}_3(\phi; f_n, g_n)$ for all empirical measures $f_n \sim \mu, g_n \sim \nu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

$$\begin{split} \inf_{\nu \in P(\Omega)} \sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_2(\phi; f_n, g_n) \text{ and} \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_3(\phi; f_n, g_n) \text{ for all empirical measures } f_n \sim \mu, g_n \sim \nu \} \end{split}$$

Algorithm 1: CoWGAN

for iter of training iterations do for iter of training iterations do for $t = 1, 2, ..., N_{critic}$ do if $\mathcal{J}_2 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_2(\phi)$; increase \mathcal{J}_2 else if $\mathcal{J}_3 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_3(\phi)$; increase \mathcal{J}_3 else $\lfloor \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_1(\phi)$; increase \mathcal{J}_1

$$\begin{split} \mathcal{J}_{1}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathcal{J}_{2}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} \phi^{c}(\cdot;\mu_{n}) d\nu_{n}, \\ & \mathcal{J}_{3}(\phi) &:= \int (-\phi)^{c}(\cdot;\nu_{n}) d\mu_{n} + \int (-\phi) d\nu_{n}, \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

$$\begin{split} \inf_{\nu \in \mathcal{P}(\Omega)} \sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_2(\phi; f_n, g_n) \text{ and} \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_3(\phi; f_n, g_n) \text{ for all empirical measures } f_n \sim \mu, g_n \sim \nu \} \end{split}$$

Algorithm 1: CoWGAN

for iter of training iterations do
for iter 1, 2, ..., N_{critic} do
if
$$\mathcal{J}_2 < \mathcal{J}_1$$
 then
 $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_2(\phi)$; increase $\mathcal{J}_2 \leftarrow 1$
else if $\mathcal{J}_3 < \mathcal{J}_1$ then
 $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_3(\phi)$; increase $\mathcal{J}_3 \leftarrow 1$
else
 $\perp \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_1(\phi)$; increase \mathcal{J}_1
 $\nu \leftarrow \nu - \tau \nabla_{\nu} \mathcal{J}_1$; decrease \mathcal{J}_1

Step 1: Enforcing the admissible condition

$$\begin{split} \mathcal{J}_1(\phi) &:= \int_{\Omega} \phi d\mu_n + \int_{\Omega} (-\phi) d\nu_n, \\ \mathbb{I} \quad \mathcal{J}_2(\phi) &:= \int_{\Omega} \phi d\mu_n + \int_{\Omega} \phi^c(\cdot;\mu_n) d\nu_n, \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

$$\begin{split} \inf_{\nu \in P(\Omega)} \sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_2(\phi; f_n, g_n) \text{ and} \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_3(\phi; f_n, g_n) \text{ for all empirical measures } f_n \sim \mu, g_n \sim \nu \} \end{split}$$

Algorithm 1: CoWGAN

for iter of training iterations do for iter of training iterations do for $t = 1, 2, ..., N_{critic}$ do if $\mathcal{J}_2 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_2(\phi)$; increase \mathcal{J}_2 else if $\mathcal{J}_3 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_3(\phi)$; increase \mathcal{J}_3 else $\lfloor \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_1(\phi)$; increase $\mathcal{J}_1 \leftarrow 2$ $\nu \leftarrow \nu - \tau \nabla_{\nu} \mathcal{J}_1$; decrease \mathcal{J}_1

Step 2: Solving the maximization problem $\mathsf{sup}_\phi\,\mathcal{J}_1$

$$\begin{split} \mathcal{J}_{1}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} (-\phi) d\nu_{n}, \\ \mathbb{I}_{2}(\phi) &:= \int_{\Omega} \phi d\mu_{n} + \int_{\Omega} \phi^{c}(\cdot;\mu_{n}) d\nu_{n}, \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

$$\begin{split} \inf_{\nu \in P(\Omega)} \sup_{\phi} \{ \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [\mathcal{J}_1] : \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_2(\phi; f_n, g_n) \text{ and} \\ \mathcal{J}_1(\phi; f_n, g_n) &\leq \mathcal{J}_3(\phi; f_n, g_n) \text{ for all empirical measures } f_n \sim \mu, g_n \sim \nu \} \end{split}$$

Algorithm 1: CoWGAN

for iter of training iterations do for iter of training iterations do for $t = 1, 2, ..., N_{critic}$ do if $\mathcal{J}_2 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_2(\phi)$; increase \mathcal{J}_2 else if $\mathcal{J}_3 < \mathcal{J}_1$ then $| \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_3(\phi)$; increase \mathcal{J}_3 else $\perp \phi \leftarrow \phi + \tau \nabla_{\phi} \mathcal{J}_1(\phi)$; increase \mathcal{J}_1 $\nu \leftarrow \nu - \tau \nabla_{\nu} \mathcal{J}_1$; decrease $\mathcal{J}_1 \leftarrow 3$

Step 3: Solving the minimization problem w.r.t. $\boldsymbol{\nu}$

$$\begin{split} \mathcal{J}_1(\phi) &:= \int_{\Omega} \phi \mathrm{d} \mu_n + \int_{\Omega} (-\phi) \mathrm{d} \nu_n, \\ \mathbb{I}_2(\phi) &:= \int_{\Omega} \phi \mathrm{d} \mu_n + \int_{\Omega} \phi^c(\cdot;\mu_n) \mathrm{d} \nu_n, \end{split}$$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	0000000

$$\inf_{\theta} W_1(\mu, G_{\theta} \# \rho) = \inf_{\theta} \sup_{\eta} \left\{ \int_{\Omega} \phi_{\eta} \mathsf{d}(\mu - G_{\theta} \# \rho) : \phi_{\eta} \text{ satisfies (A)} \right\}$$

Algorithm 2: CoWGAN

for iter of training iterations do
for
$$t = 1, 2, ..., N_{critic}$$
 do
if $\mathcal{J}_2 < \mathcal{J}_1$ then
 $\mid \eta \leftarrow \operatorname{Adam}(-\mathcal{J}_2, \eta)$
else if $\mathcal{J}_3 < \mathcal{J}_1$ then
 $\mid \eta \leftarrow \operatorname{Adam}(-\mathcal{J}_3, \eta)$
else
 $\perp \eta \leftarrow \operatorname{Adam}(-\mathcal{J}_1, \eta)$
 $\theta \leftarrow \operatorname{Adam}(\mathcal{J}_1, \theta)$

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
			●000000000	

Overview

Wasserstein Generative Adversarial Networks

2 Motivations

3 Comparison based training algorithm

4 Experiments

5 Remarks on objective functions

Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

Figure: The Kantorovich potential ϕ for two mixtures of 4 Gaussians (samples shown as green and yellow dots) after 2000 iterations with different methods and mini-batch size 256.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

Figure: The discriminator ϕ after 10,000 iterations with mini-batches of size 256.

Figure: Shown is $||D\phi||$ after 10,000 iterations with mini-batches of size 256.

Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

Figure: The \mathcal{J}_i 's and the true Wasserstein distance (W).

Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

Figure: The discriminator ϕ after 10,000 iterations with mini-batches of size 8.

Figure: Shown is $||D\phi||$ after 10,000 iterations with mini-batches of size 8.

Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

Figure: The $\mathcal{J}_i{\,}'s$ and the true Wasserstein distance (W) after 10,000 iterations with mini-batches of size 8

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	0000000000	0000000

Task 1: Estimate the Wasserstein metric (MNIST)

We sampled 5,000 images of digit 1 and 5,000 images of digit 2 from the MNIST dataset.

Figure: The \mathcal{J}_i 's and the true Wasserstein distance (W) for the MNIST dataset.

 WGANs
 Motivations
 Comparison based training algorithm

 000000
 000000
 0000

Experiments

Remarks on objective functions

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Task 2: Perform well in the generative setting

Figure: From left to right the training data was MNIST, F-MNIST, and CIFAR-10. Visually, the generated images are of similar quality, but our algorithm runs six times faster in wall-clock time.
 WGANs
 Motivations
 Comparison based training algorithm
 Experiments
 Remarks on objective fu

 000000
 0000000
 0000000
 0000000
 0000000
 0000000

Task 2: Perform well in the generative setting

Figure: From left to right the training data was MNIST, F-MNIST, and CIFAR-10. Visually, the generated images are of similar quality, but our algorithm runs six times faster in wall-clock time.

Task 2: Perform well in the generative setting

The Fréchet inception distance (FID): the squared Wasserstein metric between two multidimensional Gaussian distributions

Figure: FID; MNIST (left), F-MNIST(middle) and CIFAR10 (right).

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	000000	0000	000000000	000000

Task 3: Enforce the Lipschitz constraint

Figure: Lipschitz constant; MNIST (left), F-MNIST(middle) and CIFAR10 (right)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
				●000000

Overview

Wasserstein Generative Adversarial Networks

2 Motivations

3 Comparison based training algorithm

Experiments

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
				000000

Which J_i 's should be minimize?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
				000000

Which J_i 's should be minimize?

$$\inf_{\nu \in P(\Omega)} \mathbb{E}_{\mu_n \sim \mu, \nu_n \sim \nu} [W_1(\mu_n, \nu_n)].$$

• The question is if an optimal ν is similar with the given probability measure μ .

• The answer is no as illustrated in the following lemma.

Lemma

Assume that d = n = 1 and $\mu \in \mathcal{P}_m(\Omega)$ for m > 1. Then, for any median y of μ , $\nu = \delta_y$ is a global minimizer of the above problem.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
				000000

Which J_i 's should be minimize?

$$\inf_{\nu\in P(\Omega)} \mathbb{E}_{\mu_n\sim\mu,\nu_n\sim\nu}[W_1(\mu_n,\nu_n)].$$

- The question is if an optimal ν is similar with the given probability measure $\mu.$
- The answer is no as illustrated in the following lemma.

Lemma

Assume that d = n = 1 and $\mu \in \mathcal{P}_m(\Omega)$ for m > 1. Then, for any median y of μ , $\nu = \delta_y$ is a global minimizer of the above problem.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	0000000

Controlling the centrality

For $\epsilon \in (0, 1)$, consider

$$\inf_{\nu \in \mathcal{P}(\Omega)} \sup_{\phi \in \mathcal{A}} E_{\mu_n \sim \mu, \nu_n \sim \nu} \left[(1 - \epsilon) \mathcal{J}_1 + \epsilon \mathcal{J}_2 \right]$$

Here, ϵ is a parameter controlling the centrality of points according to a new probability measure $\nu.$

$$\inf_{\nu \in P(\Omega)} \sup_{\phi \in \mathcal{A}} E_{\mu_n \sim \mu, \nu_n \sim \nu} \left[\mathcal{J}_1 \right]$$

Figure: CoWGAN; $\epsilon = 0$

$$\inf_{\nu \in P(\Omega)} \sup_{\phi \in \mathcal{A}} E_{\mu_n \sim \mu, \nu_n \sim \nu} \left[\mathcal{J}_2 \right]$$

Figure: Using \mathcal{J}_2 and \mathcal{J}_3 only; $\epsilon = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
				0000000

WGANs with the 2-Wasserstein distance

- Using the 2-Wasserstein distance has many advantages in theoretical perspectives as well as applications.
- For instance, the optimal map can be recovered from ϕ . This also can be useful when computing the Wasserstein gradient flow.
- However, in the generative setting it does not perform as good as the one with the 1-Wasserstein distance.

Figure: The optimal map from yellow points to green points (middle), the optimal map from green points to yellow points (right)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

WGANs	Motivations	Comparison based training algorithm	Remarks on objective functions
			0000000

Summary

- Our comparison based WGAN training algorithm enforces a 1-Lipschitz bound without the need of introducing a gradient penalty.
- Consequently, no hyperparameter tuning for such a penalty is needed.
- Our new algorithm generates realistic synthetic images and works well with various types of data. Concretely, 8-Gaussians, MNIST, Fashion MNIST and CIFAR-10.

WGANs	Motivations	Comparison based training algorithm	Experiments	Remarks on objective functions
000000	0000000	0000	000000000	000000

Thank you for your attention!

Kantorovich duality, p = 2

Recall

$$W_{2}(\mu,\rho) = \inf_{T} \sup_{\phi} \left\{ \int_{\Omega} |x - T(x)|^{2} d\rho(x) + \int_{\Omega} \phi d\mu - \int_{\Omega} \phi \circ T d\rho \right\},$$

$$= \sup_{\phi} \inf_{T} \left\{ \int_{\Omega} |x - T(x)|^{2} d\rho(x) + \int_{\Omega} \phi d\mu - \int_{\Omega} \phi \circ T d\rho \right\},$$

$$= \sup_{\phi} \left\{ \int_{\Omega} \phi d\mu + \int_{\Omega} \inf_{T} \left\{ |x - T(x)|^{2} - \phi \circ T \right\} d\rho(x) \right\}.$$

• Consequently,

$$W_{2}(\mu,\rho) = \sup_{\phi} \left\{ \int_{\Omega} \phi \mathrm{d}\mu + \int_{\Omega} \phi^{c} \mathrm{d}\nu \right\}$$

where ϕ^{c} is the *c*-transform of ϕ defined as

$$\phi^{c}(y) := \inf_{x \in \Omega} \left\{ \left| x - y \right|^{2} - \phi(x) \right\}.$$

• ϕ^c is also not easy to compute.

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ 3000</p>

Kantorovich duality, p = 2

Recall

$$W_{2}(\mu,\rho) = \inf_{T} \sup_{\phi} \left\{ \int_{\Omega} |x - T(x)|^{2} d\rho(x) + \int_{\Omega} \phi d\mu - \int_{\Omega} \phi \circ T d\rho \right\},$$

$$= \sup_{\phi} \inf_{T} \left\{ \int_{\Omega} |x - T(x)|^{2} d\rho(x) + \int_{\Omega} \phi d\mu - \int_{\Omega} \phi \circ T d\rho \right\},$$

$$= \sup_{\phi} \left\{ \int_{\Omega} \phi d\mu + \int_{\Omega} \inf_{T} \left\{ |x - T(x)|^{2} - \phi \circ T \right\} d\rho(x) \right\}.$$

Consequently,

$$W_2(\mu, \rho) = \sup_{\phi} \left\{ \int_{\Omega} \phi \mathrm{d}\mu + \int_{\Omega} \phi^c \mathrm{d}\nu \right\}$$

where ϕ^{c} is the c-transform of ϕ defined as

$$\phi^{\mathsf{c}}(y) := \inf_{x \in \Omega} \left\{ |x - y|^2 - \phi(x) \right\}.$$

• ϕ^c is also not easy to compute.

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ 3000</p>