A Particle Method for Degenerate Diffusion, and Applications to Robotic Swarming

Olga Turanova
Michigan State University

October 29, 2021

Outline

- Intro - the PDE
- Robotic swarms
- Numerical method
- Proof ideas
- Back to swarms
- Conclusion

Introduction

- Fix $\Omega \subset \mathbb{R}^{d}$ and $\bar{\rho}: \Omega \rightarrow \mathbb{R}^{+}$, both nice.
- We focus on:

$$
\left\{\begin{array}{l}
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \text { in } \Omega \times(0, \infty), \tag{D}\\
\partial_{\nu}\left(\frac{\rho}{\bar{\rho}}\right)=0 \text { on }(\partial \Omega) \times(0, \infty)
\end{array}\right.
$$

- If $\bar{\rho} \equiv 1$, then the diffusion term becomes,

$$
\operatorname{div}(\rho \nabla \rho)=\frac{1}{2} \operatorname{div}\left(\nabla \rho^{2}\right)=\frac{1}{2} \Delta\left(\rho^{2}\right) .
$$

So this PDE is an inhomogeneous porous medium equation.

- Observation: as $t \rightarrow \infty$, the solutions $\rho(x, t)$ converges to $\bar{\rho}(x)$.

Application

Seek to pollinate a field of flowers using robotic bees.

- Each bee:
- can sense whether it is over a flower;
- can sense whether there are other bees nearby;
- can change its velocity based on this info.
- Bees cannot communicate with each other or with a central hub.

Modeling:

- $\Omega \subset \mathbb{R}^{2}$ represents the field.
- $\bar{\rho}: \Omega \rightarrow \mathbb{R}^{+}$represents the distribution of flowers in Ω.
- Note: $\bar{\rho}$ is not known to the bees.

Goal:

- Get the bees to come to the flowers, i.e.

$$
\text { density of swarm } \approx \bar{\rho} \text {. }
$$

Numerical method

$$
\begin{equation*}
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \text { in } \Omega \times(0, \infty) \tag{D}
\end{equation*}
$$

- Solutions to (D) are Wasserstein gradient flows of the energy:

$$
\mathcal{E}[\rho]=\frac{1}{2} \int_{\Omega} \frac{\rho}{\bar{\rho}} d \rho
$$

(under an additional assumption on $\bar{\rho}$.)

- Main idea:

$$
\text { approximate the energy } \mathcal{E} \text {, }
$$

in a way that ensures "particles remain particles."

- This idea originates from Carillo, Craig, Patacchini, 2019 ($\bar{\rho} \equiv 1$).

Approximating the energy

$$
\mathcal{E}[\rho]=\frac{1}{2} \int_{\Omega} \frac{\rho}{\bar{\rho}} d \rho=\frac{1}{2} \int_{\Omega} \frac{\rho^{2}}{\bar{\rho}} d x
$$

- Let ζ be a mollifier "like the Gaussian."
- We define,

$$
\mathcal{E}_{\varepsilon}[\rho]=\frac{1}{2} \int_{\Omega} \frac{\left(\rho * \zeta_{\varepsilon}\right)^{2}}{\bar{\rho}} d x .
$$

- Wasserstein GF of $\mathcal{E}_{\varepsilon}$ are solutions of the continuity equation,

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla \frac{\partial \mathcal{E}_{\varepsilon}}{\partial \rho}\right)=0
$$

where

$$
\frac{\partial \mathcal{E}_{\varepsilon}}{\partial \rho}=\zeta_{\varepsilon} *\left(\frac{\zeta_{\varepsilon} * \rho}{\bar{\rho}}\right) .
$$

- Key point: solution to this equation with particle initial data remains so.

The approximate continuity equation

Lemma: Let $\rho_{N, \varepsilon}$ denote the (distributional) solution to the continuity equation

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\zeta_{\varepsilon} *\left(\frac{\zeta_{\varepsilon} * \rho}{\bar{\rho}}\right)\right)\right)=0
$$

with initial data $\sum_{i=1}^{N} m_{i} \delta_{X_{i}^{0}}$. We have, for $t>0$,

$$
\rho_{N, \varepsilon}(x, t)=\sum_{i=1}^{N} m_{i} \delta_{X_{i}(t)}
$$

where the X_{i} evolve via the system of ODEs associated to the continuity equation:

$$
\frac{d}{d t} X_{j}(t)=-V_{\varepsilon}^{(j)}\left(X_{1}(t), \ldots, X_{N}(t)\right), \quad X_{j}(0)=X_{j}^{0}
$$

where V_{ε} is given by,

$$
V_{\varepsilon}^{(i)}\left(y_{1}, \ldots, y_{N}\right)=\sum_{j=1}^{N} m_{j} \int_{\mathbb{R}^{d}} \nabla \zeta_{\varepsilon}\left(y_{i}-z\right) \zeta_{\varepsilon}\left(z-y_{j}\right) \frac{1}{\bar{\rho}(z)} d z .
$$

Numerical method

- Discretize initial data into particles: $\rho_{0} \approx \sum_{i=1}^{N} m_{i} \delta_{X_{i}^{0}}$.
- Let the particles evolve via the ODE system:

$$
\frac{d}{d t} X_{j}(t)=-V_{\varepsilon}^{(j)}\left(X_{1}(t), \ldots, X_{N}(t)\right), \quad X_{j}(0)=X_{j}^{0}
$$

- Let

$$
\rho_{N, \varepsilon}(x, t)=\sum_{i=1}^{N} m_{i} \delta_{X_{i}(t)} .
$$

- Consider "blobs" over each particle:

$$
\tilde{\rho}_{N, \varepsilon}(x, t)=\sum_{i=1}^{N} m_{i} \zeta_{\varepsilon}\left(x-X_{i}(t)\right)=\left(\zeta_{\varepsilon} * \rho_{N, \varepsilon}\right)(x, t) .
$$

- This $\tilde{\rho}_{N, \varepsilon}$ is our approximate solution.

Numerical method

Videos.

Rigorous results

Craig, Elamvazhuthi, Haberland, T, 2021
Assumptions on $\bar{\rho}$:
(1) $\bar{\rho} \in C^{1}(\Omega)$ is bounded from above and away from zero on Ω;
(2) $\bar{\rho}$ log-concave, i.e $\bar{\rho}(x)=e^{V(x)}$ for some concave V.

Also some assumptions on initial data.

Theorem

Let ρ solve the PDE (D). Then as $\varepsilon \rightarrow 0$ and $N \rightarrow \infty$,

$$
\rho_{N, \varepsilon} \rightarrow \rho \text { and } \tilde{\rho}_{N, \varepsilon} \rightarrow \rho \text { narrowly. }
$$

Follows from:

Theorem

Let ρ_{ε} be the Wasserstein gradient flow of $\mathcal{E}_{\varepsilon}$ with initial data ρ_{0}. Then the ρ_{ε} narrowly converge to ρ, where ρ is the gradient flow of \mathcal{E} with initial data ρ_{0}.

Elements of the proof

- When $\bar{\rho}$ is log-concave, the energy \mathcal{E} is a standard "internal energy", so we already know GFs for \mathcal{E} are well-defined (Ambrosio, Gigli, Savaré).
- Convexity of $\mathcal{E}_{\varepsilon}$:
- $\mathcal{E}_{\varepsilon}$ is λ_{ε}-convex along generalized geodesics in Wasserstein space (where $\lambda_{\varepsilon}<0$ and $\lambda_{\varepsilon} \rightarrow-\infty$ as $\varepsilon \rightarrow 0$).
- Does not require log-concavity assumption.
- So, GF for $\mathcal{E}_{\varepsilon}$ is well-defined.
- Γ-convergence of $\mathcal{E}_{\varepsilon}$ to \mathcal{E}.
- Obtain an estimate on an " H^{1}-like norm" for GFs of $\mathcal{E}_{\varepsilon}$.
- formally: play with the ε-PDE.
- rigorously: flow interchange method of Matthes, McCann, Savaré.
- Does not require log-concavity assumption.
- Prove that metric slopes for $\mathcal{E}_{\varepsilon}$ converge to those for \mathcal{E}.
- Conclude via a general result of Serfaty.

Back to robots

Recall: goal was to get the bees to come to the flowers, i.e.

$$
\text { density of swarm } \approx \bar{\rho} \text {. }
$$

- Let X_{i}^{0} be the initial bee locations.
- Define $X_{i}(t)$ to be solutions of that same ODE system.
- Let

$$
\tilde{\rho}_{N, \varepsilon}(x, t)=\sum_{i=1}^{N} m_{i} \zeta_{\varepsilon}\left(x-X_{i}(t)\right) .
$$

- (Here ε represents "pollination radius.")

So, for "small ε ", "large N ", and "large t ",

$$
\tilde{\rho}_{N, \varepsilon}(x, t) \approx \rho(x, t) \approx \bar{\rho}(x) .
$$

Great!

Future work

- Rate of convergence
- Numerical observation: convergence is of rate $1 / N$ (or better!)
- Remove log-concave assumption
- Numerical observation: everything still works
- Compact mollifier
- More general diffusion

Thank you!

