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Tumor growth models

(
@t⇢�r · (⇢rp) = ⇢G (p),

p = e 0(⇢)
(1)

Models the growth of a tumor (or cell population) where the
main limitation to growth is a competition for space.
p = e 0(⇢) is the system pressure where e is a convex and
increasing function.
G is a decreasing function determining the growth rate.
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Hele Shaw limit (Perthame, Quirós, Vázquez 2014)

A common choice for the pressure is p = ⇢� for some � > 0.

Sending � ! 1, the pressure becomes a Lagrange multiplier
for the incompressibility constraint ⇢  1.

(
@t⇢�r · (⇢rp) = ⇢G (p),

p(1� ⇢) = 0
(2)

This is a free boundary problem with a sharp interface
between the occupied/empty regions i.e. ⇢ 2 {0, 1}.
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Challenges/Features

The tumor may undergo topological changes as it grows.
Pressure regularity can badly degenerate at topological
changes.
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Challenges/Features

The equation satisfies a comparison principle.
Not entirely obvious since smaller mass has a lower pressure
and hence faster growth rate.
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Goal

Can we design a numerical method to simulate this model that
satisfies the following properties?

Unconditionally stable.

Preserves the comparison principle.

Converges to the continuum PDE as the approximation
vanishes.

Very tempting to use a JKO (like) scheme!
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Recent previous works

(
@t⇢�r · (⇢rp) = ⇢G (p),

p = e 0(⇢)

View the equation as a gradient flow with respect to
unnormalized/unbalanced optimal transport (Chizat, Di
Marino 2018).

Use a splitting scheme to separately handle the right and left
hand sides of the equation (Gallouet, Laborde, Monsaingeon
2019).
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Is it really not a gradient flow?

Integrating the equation against the pressure gives the energy
“dissipation” inequality:

Z

⌦

e(⇢(t, x)) dx +

Z
t

0

Z

⌦

⇢(s, x)|rp(s, x)|2 dx ds


Z

⌦

e(⇢(0, x)) dx +

Z
t

0

Z

⌦

p(s, x)⇢(s, x)G (p(s, x)) dx ds

The space-time integral on the second line should not show
up in a W 2 gradient flow.

Energy is not necessarily being dissipated! We have to pay for
adding mass to the system.
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Modified JKO scheme (J., Kim, Tong 2021)

Given a time step ⌧ > 0 we iterate

⇢n+1 = argmin
⇢

min
↵

Z

⌦

e(⇢) + ⌧

Z

⌦

⇢nf (↵) +
1

2⌧
W 2

2 (⇢, ⇢
n(1 + ⌧↵))

(3)

No issue that ⇢n+1 and ⇢n have di↵erent mass since we are
matching ⇢n+1 to ⇢n(1 + ⌧↵n+1).

f is a convex term (linked to G) encouraging mass change
(can be taken to be spatially dependent).
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Duality and c-transforms

All of our analysis and numerics will be based on the dual
rather than the primal problem.
We will constantly use the following notation/results:

c-transform:

pc(y) := inf
x
p(x) +

|y � x |2

2⌧
.

conjugate c-transform:

qc̄(x) = sup
y

q(y)� |y � x |2

2⌧
.

Induced transport maps:

Tp(y) := argmin
x

p(x)+
|y � x |2

2⌧
, T̄q(x) := argmax

y

q(y)� |y � x |2

2⌧
.

c-transform variation:

lim
t!0+

(p + tu)c(y)� pc(y)

⌧
= u(Tp(y)).
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Minimax formulation

Using Kantorovich duality

1

2⌧
W 2

2 (⇢, ⇢
n(1 + ⌧↵)) =

Z

⌦

pc⇢n(1 + ⌧↵)� p⇢

We transform the original primal problem

min
↵,⇢

Z

⌦

e(⇢) + ⌧⇢nf (↵) +
1

2⌧
W 2

2 (⇢, ⇢
n(1 + ⌧↵))

into the minimax problem

min
⇢,↵

sup
p

Z

⌦

pc⇢n(1 + ⌧↵) + e(⇢)� p⇢+ ⌧⇢nf (↵)

Fixing p and minimizing over ⇢ we get

min
↵

sup
p

Z

⌦

pc⇢n(1 + ⌧↵)� e⇤(p) + ⌧⇢nf (↵)
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Determining the growth rate

If we fix p and minimize over ↵ in the minimax problem

min
↵

sup
p

Z

⌦

pc⇢n(1 + ⌧↵)� e⇤(p) + ⌧⇢nf (↵)

the optimality condition for ↵ requires

f 0(↵) + pc = 0 =) ↵ = f ⇤ 0(�pc).

Choosing f such that f ⇤ 0(�a) = G (a) allows us to obtain the
desired growth rate.

As long as G is decreasing there exists a convex function f
with this property.
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The dual problem

Plugging in the optimal choice for ↵, we obtain the maximization
problem

sup
p

Z

⌦

⇢n(pc + ⌧ Ḡ (pc))� e⇤(p) (4)

where Ḡ is an antiderivative of G .

In the case e(⇢) = 1

�+1
⇢�+1 we get the dual problem

sup
p

Z

⌦

⇢n(pc + ⌧ Ḡ (pc))� �

� + 1
max(p1+

1

� , 0)
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The dual problem

For any function p we have pcc̄  p and pc = pcc̄c .

e⇤ is always an increasing function therefore

sup
p

Z

⌦

⇢n(pc + ⌧ Ḡ (pc))� e⇤(p)

 sup
p

Z

⌦

⇢n(pcc̄c + ⌧ Ḡ (pcc̄c))� e⇤(pcc̄)

Any maximizer p̄ of the dual problem must be a c-concave
function i.e. p̄cc̄ = p̄.

If we let q = pc then we can write the dual problem in the
following equivalent way

sup
q

Z

⌦

⇢n(q + ⌧ Ḡ (q))� e⇤(qc̄)
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Optimality for the dual problem

pn+1 is a solution to the dual problem if

Tpn+1 #

⇣
⇢n(1 + ⌧G (pcn+1)) = e⇤ 0(pn+1)

If we choose

⇢̄ = Tpn+1 #

⇣
⇢n(1 + ⌧G (pcn+1)), ↵̄ = G (�pcn+1)

then
J(pn+1) = F (⇢̄, ↵̄)

where F and J denote the values of the primal and dual problems
respectively.
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Relations and the approximate equation

Combining our work the primal and dual variables satisfy the
equations

(
Tpn+1 #

⇣
⇢n(1 + ⌧G (pc

n+1
)) = ⇢n+1,

⇢n+1 = e⇤ 0(pn+1) () pn+1 = e 0(⇢n+1)

Rewriting
T�1

pn+1
⇢n+1 = ⇢n(1 + ⌧G (pcn+1))

we see that given a smooth test function '

Z

⌦

⇢n+1 � ⇢n

⌧
' =

Z

⌦

⇢n+1
'� ' � T�1

pn+1

⌧
+ '⇢nG (pcn+1)
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Relations and the approximate equation

Since
T�1

pn+1
= x + ⌧rpn+1,

We have

Z

⌦

⇢n+1
'� ' � T�1

pn+1

⌧
=

Z

⌦

�⇢n+1r' ·rpn+1

+O
�
⌧kD2'kL1(⌦)krpk2

L2(⌦)

�

As long as we can control krpn+1k2L2(⌦)
and prove the weak

convergence of the nonlinear terms e 0(⇢n+1), ⇢n+1rpn+1 and
G (pc

n+1
) then the scheme converges to a weak solution of the

tumor growth model.
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Comparison principle

Theorem (J., Kim, Tong 2021)

Given two densities ⇢0, ⇢1 let

⇢̄i = argmin
⇢

Z

⌦

e(⇢) + ⌧⇢i f (↵) +
1

2⌧
W 2

2 (⇢, ⇢i (1 + ⌧↵)).

If ⇢0  ⇢1 a.e., then ⇢̄0  ⇢̄1 a.e.

To prove this we work with the dual problem. If we let

p̄i = argmax
p

Z

⌦

⇢i (p
c + ⌧ Ḡ (pc))� e⇤(p)

then it will be enough to show that p̄0  p̄1 a.e.
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Key lemma

Recall that

Tp(y) = argmin
x

p(x) +
|y � x |2

2⌧

Lemma (J., Kim, Tong 2021)

Let p0, p1 be c-concave functions and let
U = {x 2 ⌦ : p0(x) > p1(x)}. If Tp0

(y) 2 U, then Tp1
(y) 2 U

and pc
1
(y)  pc

0
(y).

Remark: This doesn’t use any property of the quadratic cost
beyond existence of optimal maps.
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Comparison principle

Let � be the characteristic function of
U = {x 2 ⌦ : p̄0(x) > p̄1(x)}. Optimality of the p̄i implies that

Z

⌦

�e⇤ 0(p̄i ) =

Z

⌦

⇢i
�
1 + ⌧G (p̄ci )

�
� � Tp̄i

Therefore we have the chain of inequalities
Z

⌦

�e⇤ 0(p̄0) �
Z

⌦

�e⇤ 0(p̄1) =

Z

⌦

⇢1
�
1 + ⌧G (p̄c1)

�
� � Tp̄1

�
Z

⌦

⇢1
�
1+⌧G (p̄c0)

�
��Tp̄0

�
Z

⌦

⇢0
�
1+⌧G (p̄c0)

�
��Tp̄0

=

Z

⌦

�e⇤ 0(p̄0)
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Numerics (Back-and-Forth Method J. Léger 2020, J.
Léger, Lee 2021)

Evolve the scheme by solving the dual problem using BFM.

BFM performs alternating H1 gradient ascent on the two
equivalent dual problems:

Jn(p) =

Z

⌦

⇢n(pc+⌧ Ḡ (pc))�e⇤(p), In(q) =

Z

⌦

⇢n(q+⌧ Ḡ (q))�e⇤(qc̄)

Once we have recovered the optimal pressure pn+1 we can
recover the optimal density ⇢n+1 through either of the
relations

⇢n+1 = e⇤ 0(pn+1), ⇢n+1 = Tpn+1 #

⇣
⇢n(1 + ⌧G (pcn+1)

⌘
.
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BFM

Given an initial pressure p0 and step size � we iterate

pk+1/2 = pk + �rH1
Jn(p

k),

qk+1/2 = (pk+1/2)c ,

qk+1 = qk+1/2 + �rH1
In(q

k+1/2),

pk+1 = (qk+1)c̄ .

H1 gradient is equivalent to preconditioning the standard L2

gradient by (I ��)�1

rH1
Jn(p) = (I ��)�1

⇣
Tp#⇢

n
�
1 + ⌧G (pc)

�
� e⇤ 0(p)

⌘

rH1
In(q) = (I ��)�1

⇣
⇢n
�
1 + ⌧G (q)

�
� T̄q#e

⇤ 0(qc̄)
⌘

Matt Jacobs Extending the JKO scheme beyond gradient flows



BFM

H1 is the weakest inner product where I and J have a hope of
being L-smooth for some L < 1 (c-transform is not stable in
weaker norms).

Functions like max(p, 0) that are not L2 smooth are H1

smooth as long as @{p > 0} is nondegenerate (trace
inequality!)

Alternating between I and J is beneficial because their
Hessians are almost inverses of one another.

On a grid with N points the c/c̄-transforms as well as the
induced maps Tp and T̄q can be computed in O(N) time.
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Simulations
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