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Archetypal Analysis
Archetypal Analysis is an unsupervised learning method that uses a convex polytope to
summarize multivariate data.

Given k ∈ N and data XN = {xi}i∈[N] ⊂ Rd .

Find a cardinality k pointset
A = {a`}`∈[k] ⊂ Rd that solves

min
A⊂co(XN)

F(A)

where F(A)2 = 1
N

∑N
i=1 d2(xi, co(A)).

We refer to points in A? as archetype points and
co(A?) as the archetype polytope.

 

xcd.tnn A

Archetypal analysis with k = 3 and d = 2.
Data points (blue) are projected onto the convex
hull (red).

I Archetypal analysis was proposed in [Cutler and Breiman, Technometrics, 1994], where
they proved:
(i) If k = 1, then the archetype point is the mean of the data, XN .
(ii) For 1 < k < N, there exists an archetype pointset, A = {a`}`∈[k] and furthermore,
there exists an archetype pointset on the boundary of co(XN).
(iii) Finally for k ≥ N, the archetype pointset is given by A = XN , with value F(A) = 0.

I They demonstrated that archetypal analysis can be reformulated as a nonlinear least
squares problem and solved using an alternating minimization algorithm (small d, N, k).

I Archetypal analysis is also sometimes referred to as principal convex hull analysis,
although we don’t use this language here.
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Algebraic formulation of archetypal analysis

Given k ∈ N and data XN = {xi}i∈[N] ⊂ Rd .

Geometric formulation. Find a pointset A ∈ {co(XN)}k that solves

min
A∈{co(XN)}k

1
N

N∑
i=1

d2(xi, co(A))

Algebraic formulation. Write X = [x1, · · · , xN ] ∈ Rd×N . We can rewrite AA as the
non-negative matrix factorization problem,

min
A∈RN×k,B∈Rk×N

1
N
‖X− XAB‖2

F

s.t. A,B ≥ 0, AT 1 = 1, BT 1 = 1,

Here:
I the columns of XA ∈ Rd×k ∈ are the k archetype points and
I the columns of XAB ∈ Rd×N are the projection of the data points onto co(A).
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Comparison to other unsupervised learning methods
Given k ∈ N and XN = {xi}i∈[N] ⊂ Rd .

I Archetypal Analysis [extreme patterns]:

min
A∈{co(XN)}k

1
N

∑
i∈[N]

d2(xi, co(A)) ⇐⇒ min
A∈RN×k, B∈Rk×N

A,B≥0, AT 1=1, BT 1=1

1
N
‖X− XAB‖2

F

I K-Means [clustering]:

min
A∈{Rd}k

1
N

∑
i∈[N]

d2(xi,A).

I Principal Component Analysis (PCA) [dimensionality reduction]:

max
V∈Gr(k,d)

‖Cov(ProjV(XN))‖2
F ⇐⇒ min

U∈RN×k

UtU=I

‖X− XUUt‖2
F

Further comparison to other matrix factorization and clustering methods can be found in
[Mørup and Hansen, Neurocomputing, 2012].
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Example: Covid-19 pandemic in the US
There are 51 data points1 (50 states + D.C.), each corresponding to a time series of the (average)
positivity rates. The positivity rate on a day is calculated using the following formula:

Positivity rate =
Total # of positive cases by the day

Total # of tests by the day
× 100%.

The average positivity rate is taken as the 7-day moving average of positivity rates. The time
range is between May 20 and Sep 20, 2020.
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(Left) Plot of average positivity rates in 50 states + D.C. from May 20 to Sep 20.
(Right) Variances explained by the first five PCs of the dataset.

1https://covidtracking.com/data/api.
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Example: Covid-19 pandemic in the US
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Archetype ● 1 2 3

(Left) Archetypal analysis (k = 3) applied to the reduced data representations under the first
two PCs. The archetypes (red circles) are compared to the centers (green triangles) given by
k-means.
(Right) Visualization of the data in AA coordinates.
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Example: Covid-19 pandemic in the US
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Positivity rate curves of the states near three archetypes:

1. red dashed curves (First outbreak, steadily declining),

2. blue solid curves (Second outbreak, growing and gradually stabilizing) and

3. orange dotted curves (Consistently low-positivity rates).
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Consistency

Typically, a consistency result for an estimate
has the following components:

I A statistical assumption on the generation
of data.

I A mathematical object identified under the
assumption.

I A statement of how the estimate converges
to the object as the sample size tends to
infinity, i.e., a notion of convergence.

I If possible, an upper bound for the
convergence rate.

Many consistency results for unsupervised learning:

I K-Means Clustering: [Pollard, AOS, 1981; Pollard, AOP, 1982; Sun et al., EJS, 2012].
I PCA: Small dimension/large sample [Girshick, AOS, 1939]. Large dimension/fixed

sample [Jung and Marron, AOS, 2009]. Large dimension/large sample (under the random
matrix setup) [Baik et al., AOP, 2005; Baik et al., J. Multivar. Anal, 2006].
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Consistency of Archetypal Analysis
— joint work with Dong Wang, Yiming Xu, and Dominique Zosso

Suppose that x1, x2, . . . are independently sampled from the probability measure µ and denote
the first N points by XN = {xi}i∈[N].

For each N, let AN denote the optimal solution to the AA problem

min
A∈{co(XN)}k

F(A).

Is there a set A (depending on µ), such that AN → A as N →∞ in some sense?

To identify the limiting problem, it is useful to write

F(A)2 =
1
N

N∑
i=1

d2(xi, co(A)) =

∫
Rd

d2(x, co(A)) dµN(x).

where µN(x) = 1
N

∑
i∈[N] δxi (x) is the empirical measure associated with the data XN .

Since µN ⇀ µ as N →∞, It is natural to consider as a limiting problem

min
A∈{co(supp(µ))}k

Fµ(A), where Fµ(A)2 =

∫
Rd

d2(x, co(A)) dµ(x).
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Consistency of AA: Bounded Support

Theorem (O., Wang, Xu, Zosso, 2021)

Fix k ∈ N. Let µ be a probability measure on Rd with compact support and a density. Suppose

XN := {xi}i∈[N]
iid∼ µ. Then,

I For each N, the AA problem has at least one solution AN .
I AN → A? (along a subsequence) in the Hausdorff distance, where

A? ∈ arg min
A∈{co(supp(µ))}k

Fµ(A), Fµ(A) =

[∫
Rd

d2(x,A) dµ(x)

]1/2

.

proof: Compactness + Triangle inequality
I If supp(µ) is convex2, then for large N, with probability at least 1− N−2,

Fµ(AN)− Fµ(A?) .

(
log N

N

)1/d

.

proof: Random geometry + Dudley’s inequality

2The convexity assumption can be relaxed [Brunel, Bernoulli, 2019].
10/ 25



Example illustrating consistency

Theorem (O., Wang, Xu, Zosso, 2021)
When d = 2, k ≥ 3, and µ is the uniform distribution on the unit disk, the solutions are the
regular k-gons inscribed in the disk.

I The solution is non-unique.

(Left) AA applied to a dataset iid sampled from a uniform distribution on the unit disk.
(Right) The convergence of the solution to an equilateral triangle as N →∞.
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Probability Measures with Unbounded Support
Variance-regularized AA: To prevent dispersion of the archetypes, we introduce a variance
regularization term

Fν,α(A) =
1
N

∑
i∈[N]

d2(xi, co(A)) +
α

k

∑
`∈[k]
‖a` − ā‖2

2,

where ā is the mean of {a`}`∈[k] and α > 0 is fixed.

I We prove a consistency result for this modified version.
I For large α, max

a∈A(α)
?
‖a− x̄‖2 . α−1/4, where x̄ =

∫
Rd x dµ(x).

Variance-regularized AA applied to a dataset with increasing parameter α.
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A practical challenge: computational complexity
— joint work with Ruijian Han, Dong Wang, and Yiming Xu

Computational complexity limits the applicability of AA to large-scale data analysis, as it
requires the solution to the following optimization problem

min
A∈RN×k

cs
B∈Rk×N

cs

1
√

N
‖X − XAB‖F, X = [x1, · · · , xN ] ∈ Rd×N .

An alternating minimization algorithm can be used to update A and B recursively:

Algorithm 1: Alternating Minimization (AM)
1: Initialize XA
2: while not converged do
3: B← argmin

B′∈Rk×N
cs
‖X − XAB′‖2

F (N k-dimensional QPs)

4: A← argmin
A′∈RN×k

cs
‖X − XA′B‖2

F (k N-dimensional QPs)

5: end while
6: final update for B: B← argmin

B′∈Rk×N
cs
‖X − XAB′‖2

F

7: return A, B

Complexity:
I Step 3 ∼ N · C(k)

I Step 4 ∼ k · C(N),

where C(∗) is the complexity for solving an ∗ dimensional QP.
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Acceleration for AA
Previous work: Improved QP optimization methods
I Feasible optimization: projected gradients [Mørup and Hansen, Neurocomputing, 2012],

active-subset [Chen et al., CVPR, 2014], Frank-Wolfe [Bauckhage et al., NCNC, 2015].
I Relaxation: decoupling [Mei et al., ECCV, 2018], sparse projection [Abrol and P. Sharma,

ICML, 2020].

Previous work: Inherent complexity
I Sparse representation: random projections [Thurau et al., KAIS, 2011], NNLS [Mair et al.,

ICML, 2017] (acceleration for Step 4, empirical results only with no theoretical
guarantee).

I Coreset [Mair and Brefeld, NeurIPS, 2019] (acceleration for Step 3, both empirical results
and theoretical guarantee).

Our approach: We combine two approaches to reduce the inherent complexity:

1. Reduce data dimensionality via randomized low-rank approximation (data preprocessing)

2. Reduce representation cardinality via approximate convex hulls (acceleration for Step 4)

I Both approaches have theoretical guarantees
I Our approach can be further combined with both the improved QP optimization methods

and the coreset method above

14/ 25



1. Data dimensionality reduction

Main idea: Find a low-dimensional representation X̃ for X
First solution: A truncated SVD

Problem: Expensive when both d and N are large: O(dN min{d,N}).

Second solution: An approximate truncated SVD

Theorem (Han, O., Wang, Xu, 2021)
Denote the optimal objective value of AA as opt(X). Suppose X̃p = ŨpΣ̃pṼp is a 2-rank-p
approximation3 to X, and denote X̃ = Σ̃pṼp. Let (Ã, B̃) be a solution to the following AA for
the approximate SVD representation for X:

min
A∈RN×k

cs ,B∈Rk×N
cs

1
√

N

∥∥∥X̃ − X̃AB
∥∥∥

F
.

Then,

1
√

N
‖X − XÃB̃‖F ≤ opt(X) + 8σp+1,

where σi is the i-th largest singular value of X.

3rank(X̃p) ≤ p and ‖X − X̃p‖2 ≤ 2 minrank(Xp)≤p ‖X − Xp‖2 .
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Computation of X̃p

X̃p can be found with high probability by applying a randomized block Krylov method [Musco
and Musco, NIPS, 2015].

Implementation: Given s, p ∈ N,

I generate p random initializations S ∈ RN×p, Sij ∼ N (0, 1)

I construct the Krylov subspace: K = [XS, (XXT)XS, · · · , (XXT)s−1XS] ∈ Rd×(sp)

I compute the QR decomposition of K: K = QR
I compute the SVD of XT Q: XT Q = UemdΣemdVT

emd

I compute X̃p: X̃p = LLT X, with L = QVemd[:, 1 : p]

Lemma (Musco and Musco, NIPS, 2015)
For δ > 0, if p & log(1/δ) and s & log(N/δ), then with probability at least 1− δ,

P
[

X̃p is a 2-rank-p approximation to X
]
≥ 1− δ.

Consequence: X̃ can be computed within timeO(dN log Np).
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2. Representation cardinality reduction

Main idea: Use the extreme points of X as a dictionary

Problem: Expensive if X has a large number of extreme points

Solution: Select a few ‘important’ extreme points for representation

Theorem (Han, O., Wang, Xu, 2021)
Denote the optimal objective value of AA as opt(X). For T ⊂ [N], suppose XT satisfies

dH(co(XT), co(X)) ≤ opt(X) · ε,

where dH is the Hausdorff distance. Consider the following AA optimization problem
constrained to co(XT):

min
A∈R|T|×k

cs ,B∈Rk×N
cs

1
√

N
‖X − XT AB‖F.

Then,

min
A∈R|T|×k

cs ,B∈Rk×N
cs

1
√

N
‖X − XT AB‖F ≤ (1 + ε)opt(X).
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Computation of XT

XT can be found via random projections [Graham and Oberman, arXiv., 2017].
Idea: points that are more likely to be sampled are also more ‘important’.

Implementation: Given η > 0 and M ∈ N,

I Draw M iid (uniform) random vectors {vi}i∈[M] on Sd−1

I For vi, find the column in X giving the largest vi-projected value
I For i ∈ [N], count the frequency fi of X[:, i] being maximum, and rearrange fi in

decreasing order fτ1 ≥ · · · ≥ fτN

I Choose T = {τj}j∈[L], where L = (d + 1) ∨min{` :
∑

j≤` fτj ≥ 1− η/3}

Theorem (Han, O., Wang, Xu, 2021)
For i ∈ [N], denote κi the curvature of xi: κi := σre({v ∈ Sd−1 : vT xi > vT xj, j 6= i}). Denote
q as the smallest integer such that

∑
i∈[q] κi ≥ 1− η/18, and the truncation gap

∆ = κq − κq+1. Under suitable conditions, if ∆ > 0 and

M ≥ max

{
324q2

η2
,

4
∆2

}
log

(
3N
√
δ

)
,

then with probability at least 1− δ, |T| ≤ max{q, p + 1} and

dH(co(XT), co(X)) ≤ min

{√
2πη

1
d−1 , 2

}
·max

i∈[N]
‖xi‖ (curse of dimensionality)
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Approximate archetypal analysis (AAA) )

Algorithm 2: Approximate Archetypal Analysis (AAA)

Input: {xi}i∈[N]: dataset, k: number of archetypes, p: approximation rank, s: Krylov
subspace parameter, M: number of projections, η: approximation accuracy

Output: a solution to AA
1: generate p random initializations: S ∈ RN×p, Sij ∼ N (0, 1)

2: construct the Krylov subspace: K = [XS, (XXT)XS, · · · , (XXT)s−1XS] ∈ Rd×(brown)

3: compute the QR decomposition of K: K = QR
4: compute the SVD of XT Q: XT Q = UemdΣemdVT

emd
5: form approximate SVD representation: X̃ = Σemd[1 : p, 1 : p](Uemd[:, 1 : p])T

6: apply random projections to X̃ with parameters (M, η) to find X̃T
7: solve the reduced archetypal analysis problem:

(Ã?, B̃?) ∈ arg min
Ã∈R|T|×k

cs ,B̃∈Rk×N
cs

1
√

N
‖X̃ − X̃T ÃB̃‖F,

8: extend Ã? to an RN×k matrix by first creating a zero matrix Anull ∈ RN×k , then
Anull[T, :]← Ã?, and finally Ã? ← Anull

9: return (Ã?, B̃?)
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Theoretical guarantee for AAA

Theorem (Han, O., Wang, Xu, 2021)
Assuming p & log(1/δ), if

s & log

(
N
δ

)
η =

(
opt(X)ε

√
2πmaxi∈[N] ‖xi‖

)p−1

M & max

{
q2

η2
,

1
∆2

}
log

(
N
δ

)
,

then with probability at least 1− 2δ, |T| ≤ max{q, p + 1}, and the approximate archetypes
XÃ? as well as the coefficient matrix B̃? returned by AAA satisfy

1
√

N
‖X − XÃ?B̃?‖F ≤ (1 + ε)opt(X) + 8σp+1,

where σi is the i-th largest singular value of X.

Remark: Data preprocessing has complexityO(dN log Np + ε−2(p−1)N log2 Npq). AM has
complexity equal to solving an p× |T|, |T| ≤ max{p + 1, q} size AA. The overall complexity
for AAA is small if both p, q are small. In other words, X is approximately low-rank and has
most of the curvature concentrated on a small subset of extreme points.
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Numerical Example: S&P 500 stocks

572 S&P 500 stocks from 2011 to 2018 4. Each data point corresponds to the cumulative
log-return (CLR) of the stock of a company from Jan 2011 to Dec 2018 (2012 days).
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Cumulative log-return (CLR) of 572 S&P 500 stocks from January 2011 to December 2018.
Orange curves are the centers of the K-means applied to X with k = 5.

Fix k = 5. Three different methods are applied to compute the archetypes: SVD-AA, AAA
(with p = 50,M = 104, η = 0.003) and a package function archetypes in R for archetypal
analysis. Each experiment is repeated 50 times.

4This dataset is provided to us by Yu Zhu, a Ph.D. Student at the David Eccles Business School, University of Utah
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Numerical Example: S&P 500 stocks
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6 Instances of the computed archetypes by SVD-AA, AAA, and archetypes.
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Numerical Example: S&P 500 stocks
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Boxplots of the running times (Left) and residuals (Right) of SVD-AA, AAA and archetypes
for 50 experiments.
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(Left) Variances explained by the first 8 principal components of X.
(Right) Scatterplot of the reduced representation of X with respect to the first two PCs and its
convex hull. The red triangles are the reduced representation of five archetypes
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Numerical Example: Intel Image

Intel Image5 is a public dataset consisting of 24000 images representing 6 different categories
of scene: Buildings, Forest, Glacier, Mountain, Sea and Street. Each data point is a 150× 150
pixel color image. We randomly select 3000 samples in Intel Image and apply AAA to extract
k = 10 representative patterns. The input parameters for AAA are chosen as p = 10, M = 105

and η = 0.003.

Ten archetypes computed by AAA, which account for 44% of the total variance of the dataset.
The computation time is 348.784s (85.012s for data dimensionality reduction, 4.715s for
representation cardinality reduction and 259.057s for solving the reduced problem using AM).

5https://www.kaggle.com/puneet6060/intel-image-classification
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Discussion

I For bounded distributions, we identified a continuum problem of archetypal analysis and
established a consistency result including the convergence rate.

I For unbounded distributions, we introduced a variance-regularized problem and
established a consistency result. We also investigated how the solutions depend on the
regularization parameter.

I Devised an approximate algorithm for large-scale AA which enjoys theoretical guarantees

Thanks! Questions? Email: osting@math.utah.edu

B. Osting, D. Wang, Y. Xu, and D. Zosso, Consistency of archetypal analysis, SIAM Journal on
Mathematics of Data Science (2021) https://arxiv.org/abs/2010.08148

R. Han, B. Osting, D. Wang, and Y. Xu, Probabilistic methods for approximate archetypal analysis,
submitted (2021) http://arxiv.org/abs/2108.05767
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