Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit

Joint works with F. S. Patacchini, A. Schlichting, and D. Slepčev

Antonio Esposito

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, Berkeley, October 25 - 29, 2021

Main motivation: data science

Main motivation: data science

Data have the form of point clouds \Longrightarrow graphs associated to them

Main motivation: data science

Data have the form of point clouds \Longrightarrow graphs associated to them

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ random sample i.i.d. according to $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$
\Rightarrow empirical measure $\mu^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$

Main motivation: data science

Data have the form of point clouds \Longrightarrow graphs associated to them

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ random sample i.i.d. according to $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$
\Rightarrow empirical measure $\mu^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$
- a symmetric weight function $\eta: D \rightarrow[0, \infty)$ with $D:=\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \backslash\{x=y\}$ $\Rightarrow\left(\mu^{n}, \eta\right)$ defines an undirected discrete weighted graph

Dynamics driven by interaction energies on graphs

Video

Dynamics driven by interaction energies on graphs

$$
\begin{equation*}
\mathcal{E}_{X}(\rho)=\frac{1}{2} \sum_{x \in X} \sum_{y \in X} K_{x, y} \rho_{x} \rho_{y} \tag{1}
\end{equation*}
$$

On \mathbb{R}^{d}

$$
\begin{equation*}
\dot{x}_{i}=-\sum_{j=1}^{n} \rho_{j} \nabla_{x} K\left(x_{i}, x_{j}\right) \tag{2}
\end{equation*}
$$

On finite graphs

$$
\begin{align*}
\frac{d \rho_{x}}{d t} & =-\sum_{y \in X} j_{x, y} \eta(x, y) \tag{3}\\
j_{x, y} & =I\left(\rho_{x}, \rho_{y}\right) v_{x, y} \tag{4}
\end{align*}
$$

Goals

- Define gradient flow of interaction energy on graph (μ, η)
- Dynamics stable under graph limit $n \rightarrow \infty$ (discrete-to-continuum)
- Dynamics stable for local limit: $\mu=\operatorname{Leb}\left(\mathbb{R}^{d}\right), \eta^{\varepsilon}(x, y)=\varepsilon^{-d} \eta\left(\frac{x-y}{\varepsilon}\right)$ \Rightarrow limit $\varepsilon \rightarrow 0$ should give $\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$

Dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.

Dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.
Continuum setting: NLIE $\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$ is a Wasserstein gradient flow for \mathcal{E}^{a}

[^0]
Dynamics driven by interaction energies on graphs

General framework

- \mathbb{R}^{d} set of possible vertices, $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\}$ set of possible edges
- $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \rightarrow[0, \infty)$ symmetric weight function
- $G:=\left\{\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{x=y\} \mid \eta(x, y)>0\right\}$ set of edges
- $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ set of vertices
- $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ distribution of mass

Evolution of interest
Gradient descent of the energy $\mathcal{E}: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

where $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is symmetric.
Continuum setting: NLIE
$\partial_{t} \rho=\nabla \cdot(\rho \nabla K * \rho)$ is a Wasserstein gradient flow for \mathcal{E}^{a}

[^1]What is the analogue of the NLIE on a graph?

Related Literature (not exhaustive!)

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
- [Erbar '14] Jump processes $-(-\Delta)^{\alpha / 2}$ for $\alpha \in(0,2)$
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Trillos '19] Gromov-Hausdorff convergence of random point clouds

Related Literature (not exhaustive!)

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
- [Erbar '14] Jump processes $-(-\Delta)^{\alpha / 2}$ for $\alpha \in(0,2)$
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Trillos '19] Gromov-Hausdorff convergence of random point clouds

Gradient flows for free energies/(relative) entropies:

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \rho(x) \log \rho(x) d x+\frac{1}{2} \iint K(x, y) d \rho(x) d \rho(y)
$$

Related Literature (not exhaustive!)

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Diffusion on graphs as gradient flows of the entropy \Rightarrow Wassertein metric on a finite graph
- [Erbar '14] Jump processes $-(-\Delta)^{\alpha / 2}$ for $\alpha \in(0,2)$
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure for McKean-Vlasov on discrete spaces
- [Trillos '19] Gromov-Hausdorff convergence of random point clouds

Gradient flows for free energies/(relative) entropies:

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \rho(x) \log \rho(x) d x+\frac{1}{2} \iint K(x, y) d \rho(x) d \rho(y)
$$

What if $\sigma=0$?
Nonlocal metrics introduced above do not have a clear/well-defined limit for $\sigma \rightarrow 0$!
What is a suitable metric for gradient structure of interaction energies?

Nonlocal continuity equation

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x)=\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0
$$

Flux: defined on the edges!
Velocity: jump rate $\Rightarrow v_{t}: G \rightarrow \mathbb{R}$ nonlocal (antisymmetric) vector field [edge-based quantity]
Density: vertex-based quantity

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x)=\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0
$$

Flux: defined on the edges!
Velocity: jump rate $\Rightarrow v_{t}: G \rightarrow \mathbb{R}$ nonlocal (antisymmetric) vector field [edge-based quantity]
Density: vertex-based quantity
What is the flux j_{t} ?

$$
j_{t}(x, y)=I\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
$$

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x)=\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0
$$

Flux: defined on the edges!
Velocity: jump rate $\Rightarrow v_{t}: G \rightarrow \mathbb{R}$ nonlocal (antisymmetric) vector field [edge-based quantity]
Density: vertex-based quantity
What is the flux j_{t} ?

$$
j_{t}(x, y)=I\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
$$

E. g. $I(r, s)=(r-s) /(\ln r-\ln s) \Rightarrow$ not reasonable for the resulting dynamics

Nonlocal continuity equation

Continuity equation

$$
\partial_{t} \rho_{t}+\nabla \cdot j_{t}=0 \quad \text { where } \quad j_{t}(x):=\rho_{t}(x) v_{t}(x)
$$

On Graphs

$$
\partial_{t} \rho_{t}(x)+\left(\bar{\nabla} \cdot j_{t}\right)(x)=\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}} j_{t}(x, y) \eta(x, y) d y=0
$$

Flux: defined on the edges!
Velocity: jump rate $\Rightarrow v_{t}: G \rightarrow \mathbb{R}$ nonlocal (antisymmetric) vector field [edge-based quantity]
Density: vertex-based quantity
What is the flux j_{t} ?

$$
j_{t}(x, y)=I\left(\rho_{t}(x), \rho_{t}(y)\right) v_{t}(x, y)
$$

E. g. $I(r, s)=(r-s) /(\ln r-\ln s) \Rightarrow$ not reasonable for the resulting dynamics

Upwind interpolation: density along edges = density at the source
Set $(a)_{+}=\max \{0, a\}$ and $(a)_{-}=\max \{0,-a\}$ and define

$$
j_{t}(x, y)=\rho(x) v_{t}(x, y)_{+}-\rho(y) v_{t}(x, y)_{-}
$$

Nonlocal continuity equation
For $\rho_{t} \ll \mu$

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0
$$

Nonlocal continuity equation
For $\rho_{t} \ll \mu$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Benamou-Brenier

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf \left\{\left.\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t \right\rvert\,\left(\rho_{t}, v_{t}\right) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)\right\}
$$

Nonlocal continuity equation
For $\rho_{t} \ll \mu$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Upwind nonlocal transportation metric: Benamou-Brenier
$\inf _{(\rho, v) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)}\left\{\frac{1}{2} \int_{0}^{1} \iint_{G}\left(\left|v_{t}(x, y)_{+}\right|^{2} \rho_{t}(x)+\left|v_{t}(x, y)-\right|^{2} \rho_{t}(y)\right) \eta(x, y) d \mu(x) d \mu(y) d t\right\}$

Nonlocal continuity equation
For $\rho_{t} \ll \mu$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Upwind nonlocal transportation metric: Benamou-Brenier

$$
\inf _{(\rho, v) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)}\left\{\frac{1}{2} \int_{0}^{1} \iint_{G}\left(\left|v_{t}(x, y)_{+}\right|^{2} \rho_{t}(x)+\left|v_{t}(x, y)_{-}\right|^{2} \rho_{t}(y)\right) \eta(x, y) d \mu(x) d \mu(y) d t\right\}
$$

Nonlocal interaction equation on graphs: $\mathrm{NL}^{2} \mathrm{IE}$ If $v_{t}=-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}=-\bar{\nabla} K * \rho_{t}$

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

Nonlocal continuity equation
For $\rho_{t} \ll \mu$

$$
\begin{equation*}
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) v_{t}(x, y)_{+}-\rho_{t}(y) v_{t}(x, y)_{-}\right) \eta(x, y) d \mu(y)=0 \tag{NCE}
\end{equation*}
$$

Upwind nonlocal transportation metric: Benamou-Brenier

$$
\inf _{(\rho, v) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)}\left\{\frac{1}{2} \int_{0}^{1} \iint_{G}\left(\left|v_{t}(x, y)_{+}\right|^{2} \rho_{t}(x)+\left|v_{t}(x, y)_{-}\right|^{2} \rho_{t}(y)\right) \eta(x, y) d \mu(x) d \mu(y) d t\right\}
$$

Nonlocal interaction equation on graphs: $\mathrm{NL}^{2} \mathrm{IE}$ If $v_{t}=-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}=-\bar{\nabla} K * \rho_{t}$

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

Note that:

- ρ might contain atoms, even if μ is Lebesgue!
\Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in $\left(\rho_{t}, v_{t}\right)$ \Rightarrow flux variables

Action

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$, consider $\lambda \in \mathcal{M}(G)$ such that $\rho \otimes \mu, \mu \otimes \rho,|\boldsymbol{j}| \ll|\lambda|$. We define

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\alpha\left(\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\rho \otimes \mu)}{d|\lambda|}\right)+\alpha\left(-\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\mu \otimes \rho)}{d|\lambda|}\right)\right) \eta d|\lambda| . \tag{1}
\end{equation*}
$$

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function $\alpha: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is defined, for all $j \in \mathbb{R}$ and $r \geq 0$, by

$$
\alpha(j, r):= \begin{cases}\frac{\left(j_{+}\right)^{2}}{r} & \text { if } r>0 \tag{2}\\ 0 & \text { if } j \leq 0 \text { and } r=0 \\ \infty & \text { if } j>0 \text { and } r=0\end{cases}
$$

with $j_{+}=\max \{0, j\}$. If the measure μ is clear from the context, we write $\mathcal{A}(\rho, \boldsymbol{j})$ for $\mathcal{A}(\mu ; \rho, \boldsymbol{j})$.

Action

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$, consider $\lambda \in \mathcal{M}(G)$ such that $\rho \otimes \mu, \mu \otimes \rho,|\boldsymbol{j}| \ll|\lambda|$. We define

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\alpha\left(\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\rho \otimes \mu)}{d|\lambda|}\right)+\alpha\left(-\frac{d \boldsymbol{j}}{d|\lambda|}, \frac{d(\mu \otimes \rho)}{d|\lambda|}\right)\right) \eta d|\lambda| . \tag{1}
\end{equation*}
$$

Hereby, the lower semicontinuous, convex, and positively one-homogeneous function $\alpha: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is defined, for all $j \in \mathbb{R}$ and $r \geq 0$, by

$$
\alpha(j, r):= \begin{cases}\frac{\left(j_{+}\right)^{2}}{r} & \text { if } r>0 \tag{2}\\ 0 & \text { if } j \leq 0 \text { and } r=0 \\ \infty & \text { if } j>0 \text { and } r=0\end{cases}
$$

with $j_{+}=\max \{0, j\}$. If the measure μ is clear from the context, we write $\mathcal{A}(\rho, \boldsymbol{j})$ for $\mathcal{A}(\mu ; \rho, \boldsymbol{j})$.
If $\rho \ll \mu$ and $j \ll \mu \otimes \mu$

$$
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\frac{\left(j(x, y)_{+}\right)^{2}}{\rho(x)}+\frac{\left(j(x, y)_{-}\right)^{2}}{\rho(y)}\right) \eta(x, y) d \mu(x) d \mu(y)
$$

Lemma (Finite action \Rightarrow upwind flux)
Let $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ be such that $\mathcal{A}(\mu ; \rho, \boldsymbol{j})<\infty$. Then there exists a measurable $v: G \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
d \boldsymbol{j}(x, y)=v(x, y)_{+} d \rho(x) d \mu(y)-v(x, y)_{-} d \mu(x) d \rho(y) \tag{3}
\end{equation*}
$$

and it holds

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\left|v(x, y)_{+}\right|^{2}+\left|v(y, x)_{-}\right|^{2}\right) \eta(x, y) d \rho(x) d \mu(y) \tag{4}
\end{equation*}
$$

In particular, if $v \in \mathcal{V}^{\text {as }}$, then

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\iint_{G}\left|v(x, y)_{+}\right|^{2} \eta(x, y) d \rho(x) d \mu(y) \tag{5}
\end{equation*}
$$

Lemma (Finite action \Rightarrow upwind flux)
Let $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ be such that $\mathcal{A}(\mu ; \rho, \boldsymbol{j})<\infty$. Then there exists a measurable $v: G \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
d \boldsymbol{j}(x, y)=v(x, y)_{+} d \rho(x) d \mu(y)-v(x, y)_{-} d \mu(x) d \rho(y) \tag{3}
\end{equation*}
$$

and it holds

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\left|v(x, y)_{+}\right|^{2}+\left|v(y, x)_{-}\right|^{2}\right) \eta(x, y) d \rho(x) d \mu(y) \tag{4}
\end{equation*}
$$

In particular, if $v \in \mathcal{V}^{\text {as }}$, then

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\iint_{G}\left|v(x, y)_{+}\right|^{2} \eta(x, y) d \rho(x) d \mu(y) \tag{5}
\end{equation*}
$$

Corollary (Antisymmetric vector fields have lower action) Let $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ be such that $\mathcal{A}(\mu ; \rho, \boldsymbol{j})<\infty$. Then there exists an antisymmetric flux $\boldsymbol{j}^{\text {as }} \in \mathcal{M}_{\eta \gamma_{1}}^{\text {as }}$ such that

$$
\bar{\nabla} \cdot \boldsymbol{j}=\bar{\nabla} \cdot \boldsymbol{j}^{\mathrm{as}}
$$

with lower action:

$$
\mathcal{A}\left(\mu ; \rho, \boldsymbol{j}^{\text {as }}\right) \leq \mathcal{A}(\mu ; \rho, \boldsymbol{j})
$$

Lemma (Finite action \Rightarrow upwind flux)
Let $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ be such that $\mathcal{A}(\mu ; \rho, \boldsymbol{j})<\infty$. Then there exists a measurable $v: G \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
d \boldsymbol{j}(x, y)=v(x, y)_{+} d \rho(x) d \mu(y)-v(x, y)_{-} d \mu(x) d \rho(y) \tag{3}
\end{equation*}
$$

and it holds

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\frac{1}{2} \iint_{G}\left(\left|v(x, y)_{+}\right|^{2}+\left|v(y, x)_{-}\right|^{2}\right) \eta(x, y) d \rho(x) d \mu(y) \tag{4}
\end{equation*}
$$

In particular, if $v \in \mathcal{V}^{\text {as }}$, then

$$
\begin{equation*}
\mathcal{A}(\mu ; \rho, \boldsymbol{j})=\iint_{G}\left|v(x, y)_{+}\right|^{2} \eta(x, y) d \rho(x) d \mu(y) \tag{5}
\end{equation*}
$$

Corollary (Antisymmetric vector fields have lower action) Let $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right), \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ be such that $\mathcal{A}(\mu ; \rho, \boldsymbol{j})<\infty$. Then there exists an antisymmetric flux $\boldsymbol{j}^{\text {as }} \in \mathcal{M}_{\eta \gamma_{1}}^{\text {as }}$ such that

$$
\bar{\nabla} \cdot \boldsymbol{j}=\bar{\nabla} \cdot \boldsymbol{j}^{\mathrm{as}}
$$

with lower action:

$$
\mathcal{A}\left(\mu ; \rho, \boldsymbol{j}^{\text {as }}\right) \leq \mathcal{A}(\mu ; \rho, \boldsymbol{j})
$$

Lemma (Lower semicontinuity of the action)
The action is lower semicontinuous with respect to the narrow convergence in $\mathcal{N}^{+}\left(\mathbb{R}^{d}\right) \times \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$.
That is, if $\mu^{n} \rightharpoonup \mu$ in $\mathcal{M}\left(\mathbb{R}^{d}\right), \rho^{n} \rightharpoonup \rho$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$, and $\boldsymbol{j}^{n} \rightharpoonup \boldsymbol{j}$ in $\mathcal{M}(G)$, then

$$
\liminf _{n \rightarrow \infty} \mathcal{A}\left(\mu^{n} ; \rho^{n}, \boldsymbol{j}^{n}\right) \geq \mathcal{A}(\mu ; \rho, \boldsymbol{j})
$$

Nonlocal continuity equation: measure-valued flux form

A pair $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ iff $\left(\rho_{t}, \boldsymbol{j}_{t}\right) \in \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$ for all $t \in[0, T]$ satisfies

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right)
$$

i.e.

$$
\int_{0}^{T} \int_{\Omega} \partial_{t} \varphi_{t}(x) d \rho_{t}(x) d t+\frac{1}{2} \int_{0}^{T} \iint_{G} \bar{\nabla} \varphi_{t}(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y) d t=0
$$

Nonlocal continuity equation: measure-valued flux form

A pair $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ iff $\left(\rho_{t}, \boldsymbol{j}_{t}\right) \in \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$ for all $t \in[0, T]$ satisfies

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right)
$$

i.e.

$$
\int_{0}^{T} \int_{\Omega} \partial_{t} \varphi_{t}(x) d \rho_{t}(x) d t+\frac{1}{2} \int_{0}^{T} \iint_{G} \bar{\nabla} \varphi_{t}(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y) d t=0
$$

$|\bar{\nabla} \varphi(x, y)| \leq\|\varphi\|_{C^{1}(\Omega)}(2 \wedge|x-y|) \Rightarrow$ well-defined under integrability condition

$$
\begin{equation*}
\int_{0}^{T} \iint_{G}(2 \wedge|x-y|) \eta(x, y) d\left|\boldsymbol{j}_{t}\right|(x, y) d t<+\infty \tag{IC}
\end{equation*}
$$

Nonlocal continuity equation: measure-valued flux form

A pair $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ iff $\left(\rho_{t}, \boldsymbol{j}_{t}\right) \in \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$ for all $t \in[0, T]$ satisfies

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right)
$$

i.e.

$$
\int_{0}^{T} \int_{\Omega} \partial_{t} \varphi_{t}(x) d \rho_{t}(x) d t+\frac{1}{2} \int_{0}^{T} \iint_{G} \bar{\nabla} \varphi_{t}(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y) d t=0
$$

$|\bar{\nabla} \varphi(x, y)| \leq\|\varphi\|_{C^{1}(\Omega)}(2 \wedge|x-y|) \Rightarrow$ well-defined under integrability condition

$$
\begin{equation*}
\int_{0}^{T} \iint_{G}(2 \wedge|x-y|) \eta(x, y) d\left|\boldsymbol{j}_{t}\right|(x, y) d t<+\infty \tag{IC}
\end{equation*}
$$

Assuming moment bound

$$
\cdot \iint_{G}(2 \wedge|x-y|) \eta(x, y) d|\boldsymbol{j}|(x, y) \leq \sqrt{C_{\eta} \mathcal{A}(\mu ; \rho, \boldsymbol{j})}
$$

Nonlocal continuity equation: measure-valued flux form

A pair $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ iff $\left(\rho_{t}, \boldsymbol{j}_{t}\right) \in \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$ for all $t \in[0, T]$ satisfies

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right)
$$

i.e.

$$
\int_{0}^{T} \int_{\Omega} \partial_{t} \varphi_{t}(x) d \rho_{t}(x) d t+\frac{1}{2} \int_{0}^{T} \iint_{G} \bar{\nabla} \varphi_{t}(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y) d t=0
$$

$|\bar{\nabla} \varphi(x, y)| \leq\|\varphi\|_{C^{1}(\Omega)}(2 \wedge|x-y|) \Rightarrow$ well-defined under integrability condition

$$
\begin{equation*}
\int_{0}^{T} \iint_{G}(2 \wedge|x-y|) \eta(x, y) d\left|\boldsymbol{j}_{t}\right|(x, y) d t<+\infty \tag{IC}
\end{equation*}
$$

Assuming moment bound

- $\iint_{G}(2 \wedge|x-y|) \eta(x, y) d|\boldsymbol{j}|(x, y) \leq \sqrt{C_{\eta} \mathcal{A}(\mu ; \rho, \boldsymbol{j})} \Rightarrow(\mathrm{IC})$ if $\int_{0}^{T} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t<\infty$

Nonlocal continuity equation: measure-valued flux form

A pair $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ iff $\left(\rho_{t}, \boldsymbol{j}_{t}\right) \in \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathcal{M}(G)$ for all $t \in[0, T]$ satisfies

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right),
$$

i.e.

$$
\int_{0}^{T} \int_{\Omega} \partial_{t} \varphi_{t}(x) d \rho_{t}(x) d t+\frac{1}{2} \int_{0}^{T} \iint_{G} \bar{\nabla} \varphi_{t}(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y) d t=0
$$

$|\bar{\nabla} \varphi(x, y)| \leq\|\varphi\|_{C^{1}(\Omega)}(2 \wedge|x-y|) \Rightarrow$ well-defined under integrability condition

$$
\begin{equation*}
\int_{0}^{T} \iint_{G}(2 \wedge|x-y|) \eta(x, y) d\left|\boldsymbol{j}_{t}\right|(x, y) d t<+\infty \tag{IC}
\end{equation*}
$$

Assuming moment bound

- $\iint_{G}(2 \wedge|x-y|) \eta(x, y) d|\boldsymbol{j}|(x, y) \leq \sqrt{C_{\eta} \mathcal{A}(\mu ; \rho, \boldsymbol{j})} \Rightarrow(\mathrm{IC})$ if $\int_{0}^{T} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t<\infty$
- Existence of measure valued narrowly continuous solutions
- Uniformly boundedness of second order moments

Compactness

Compactness of solutions to NCE

Let μ^{n} satisfy moment bound and local blow-up control and $\mu^{n} \rightharpoonup \mu$. Let $\left(\rho^{n}, \boldsymbol{j}^{n}\right) \in$ CE_{T} for each $n \in \mathbb{N}$ such that

$$
\sup _{n \in \mathbb{N}} M_{2}\left(\rho_{0}^{n}\right)<\infty \quad \text { and } \quad \sup _{n} \int_{0}^{T} \mathcal{A}\left(\mu^{n} ; \rho_{t}^{n}, \boldsymbol{j}_{t}^{n}\right) d t<+\infty
$$

Then, there exists $(\rho, \boldsymbol{j}) \in \mathrm{CE}_{T}$ such that, up to pass to a subsequence,

$$
\begin{array}{ll}
\rho_{t}^{n} \rightharpoonup \rho_{t} & \text { for all } t \in[0, T] \\
\boldsymbol{j}^{n} \rightharpoonup \boldsymbol{j} & \text { in } \mathcal{M}_{\mathrm{loc}}(G \times[0, T]),
\end{array}
$$

with $\rho_{t} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ for any $t \in[0, T]$. Moreover, the action is lower semicontinuous

$$
\liminf _{n \rightarrow \infty} \int_{0}^{T} \mathcal{A}\left(\mu^{n} ; \rho_{t}^{n}, \boldsymbol{j}_{t}^{n}\right) d t \geq \int_{0}^{T} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t
$$

Nonlocal upwind transportation quasi-metric

Definition
For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$
\Rightarrow topology is stronger than W_{1}

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$
\Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$
\Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous
- \mathcal{T} is a quasi-metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: non-symmetric!

Nonlocal upwind transportation quasi-metric

Definition

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$
\Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous
- \mathcal{T} is a quasi-metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: non-symmetric!
- $\left\{\rho_{t}\right\}_{t \in[0, T]} \in \mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ iff $\exists\left(\boldsymbol{j}_{t}\right)_{t \in[0, T]}$ such that $(\rho, \boldsymbol{j}) \in \mathrm{CE}_{T}$ and $\int_{0}^{T} \sqrt{\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)} d t<\infty$

Nonlocal upwind transportation quasi-metric

Definition
For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying Assumptions moment bound and local blow-up control, and $\rho_{0}, \rho_{1} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the nonlocal upwind transportation cost between ρ_{0} and ρ_{1} is defined by

$$
\begin{equation*}
\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right) d t:(\rho, \boldsymbol{j}) \in \mathrm{CE}\left(\rho_{0}, \rho_{1}\right)\right\} \tag{6}
\end{equation*}
$$

If μ is clear from the context, the notation \mathcal{T} is used in place of \mathcal{T}_{μ}.

Properties (see Dejan's talk)

- The infimum is attained for $(\rho, \boldsymbol{j}) \in \operatorname{CE}\left(\rho_{0}, \rho_{1}\right)$ with $\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)=\mathcal{T}_{\mu}\left(\rho_{0}, \rho_{1}\right)^{2}$
- Comparison with Wasserstein $W_{1}\left(\rho^{0}, \rho^{1}\right) \leq \sqrt{2 C_{\eta}} \sqrt{\mathcal{T}\left(\rho^{0}, \rho^{1}\right)}$
\Rightarrow topology is stronger than W_{1}
- \mathcal{T}_{μ} is narrowly lower semicontinuous
- \mathcal{T} is a quasi-metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: non-symmetric!
- $\left\{\rho_{t}\right\}_{t \in[0, T]} \in \mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ iff $\exists\left(\boldsymbol{j}_{t}\right)_{t \in[0, T]}$ such that $(\rho, \boldsymbol{j}) \in \mathrm{CE}_{T}$ and $\int_{0}^{T} \sqrt{\mathcal{A}\left(\mu ; \rho_{t}, \boldsymbol{j}_{t}\right)} d t<\infty$
- For $\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ it holds that $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ if and only if $\boldsymbol{j}^{+} \ll \gamma_{1}, \boldsymbol{j}^{-} \ll \gamma_{2}$, and $v^{+}:=\frac{d \boldsymbol{j}^{+}}{d \gamma_{1}}$ and $v^{-}:=\frac{d \boldsymbol{j}^{-}}{d \gamma_{2}}$ satisfy, for $v:=v^{+}-v^{-}$, the relation

Two-point space

$\Omega:=\{0,1\}$, with $\eta(0,1)=\eta(1,0)=\alpha>0, \mu(0)=p>0$ and $\mu(1)=q>0$. Let $\rho, \nu \in \mathcal{P}_{2}(\Omega)$ such that $\rho=\rho_{0} \delta_{0}+\rho_{1} \delta_{1}$ and $\nu=\nu_{0} \delta_{0}+\nu_{1} \delta_{1}$. It holds

$$
\mathcal{T}(\rho, \nu)= \begin{cases}\frac{2}{\sqrt{\alpha p}}\left(\sqrt{\rho_{1}}-\sqrt{\nu_{1}}\right) & \text { if } \rho_{0}<\nu_{0} \\ \frac{2}{\sqrt{\alpha q}}\left(\sqrt{\rho_{0}}-\sqrt{\nu_{0}}\right) & \text { if } \nu_{0}<\rho_{0}\end{cases}
$$

($\mathrm{NL}^{2} \mathrm{IE}$) as gradient flow w.r.t. the quasi-metric \mathcal{T}

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho \ll \mu$,

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

($\mathrm{NL}^{2} \mathrm{IE}$) as gradient flow w.r.t. the quasi-metric \mathcal{T}

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho \ll \mu$,

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

A curve $\rho:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if, for the flux $\boldsymbol{j}:[0, T] \rightarrow$ $\mathcal{M}(G)$ defined by

$$
d \boldsymbol{j}_{t}(x, y)=\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{-} d \rho_{t}(x) d \mu(y)-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{+} d \rho_{t}(y) d \mu(x)
$$

the pair (ρ, \boldsymbol{j}) is a weak solution to the continuity equation

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { on }[0, T] \times \mathbb{R}^{d}
$$

(NL ${ }^{2} \mathrm{IE}$) as gradient flow w.r.t. the quasi-metric \mathcal{T}

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho \ll \mu$,

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

A curve $\rho:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if, for the flux $\boldsymbol{j}:[0, T] \rightarrow$ $\mathcal{M}(G)$ defined by

$$
d \boldsymbol{j}_{t}(x, y)=\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{-} d \rho_{t}(x) d \mu(y)-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{+} d \rho_{t}(y) d \mu(x)
$$

the pair (ρ, \boldsymbol{j}) is a weak solution to the continuity equation

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { on }[0, T] \times \mathbb{R}^{d}
$$

Nonlocal-interaction energy

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

(NL ${ }^{2} \mathrm{IE}$) as gradient flow w.r.t. the quasi-metric \mathcal{T}

For $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ satisfying moment bound and local blow-up control, and $\rho \ll \mu$,

$$
\partial_{t} \rho_{t}(x)+\int_{\mathbb{R}^{d}}\left(\rho_{t}(x) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{-}-\rho_{t}(y) \bar{\nabla}\left(K * \rho_{t}\right)(x, y)_{+}\right) \eta(x, y) d \mu(y)=0
$$

A curve $\rho:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if, for the flux $\boldsymbol{j}:[0, T] \rightarrow$ $\mathcal{M}(G)$ defined by

$$
d \boldsymbol{j}_{t}(x, y)=\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{-} d \rho_{t}(x) d \mu(y)-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}(x, y)_{+} d \rho_{t}(y) d \mu(x)
$$

the pair (ρ, \boldsymbol{j}) is a weak solution to the continuity equation

$$
\partial_{t} \rho_{t}+\bar{\nabla} \cdot \boldsymbol{j}_{t}=0 \quad \text { on }[0, T] \times \mathbb{R}^{d}
$$

Nonlocal-interaction energy

$$
\mathcal{E}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho(x) d \rho(y),
$$

\mathcal{T} is a quasi-metric \Rightarrow underlying structure of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is Finslerian $\Rightarrow T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is not a Euclidean space, but rather a manifold in its own right!

Gradient descent in Finsler geometry ${ }^{1}$

'[Ohta-Sturm '09, '12] and [Agueh '12]

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, \boldsymbol{j}}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

'[Ohta-Sturm '09, '12] and [Agueh '12]

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, \boldsymbol{j}}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

Goal: direction of steepest discent from ρ !
'[Ohta-Sturm '09, '12] and [Agueh '12]

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, j}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

Goal: direction of steepest discent from ρ !
Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad} \mathcal{E}(\rho)}(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
'[Ohta-Sturm '09, '12] and [Agueh '12]

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, \boldsymbol{j}}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

Goal: direction of steepest discent from ρ !
Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad} \mathcal{E}(\rho)}(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t.

$$
-\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}^{-}} \varepsilon(\rho)\left(\operatorname{grad}^{-} \mathcal{E}(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

'[Ohta-Sturm '09, '12] and [Agueh '12]

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, \boldsymbol{j}}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

Goal: direction of steepest discent from ρ !
Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad} \mathcal{E}(\rho)}(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t.

$$
-\operatorname{Diff}_{\rho} \mathcal{\varepsilon}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}^{-}} \varepsilon(\rho)\left(\operatorname{grad}^{-} \mathcal{E}(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Gradient flows in $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right): \partial_{t} \rho_{t}=\bar{\nabla} \cdot \operatorname{grad}^{-} \mathcal{E}(\rho)$

Gradient descent in Finsler geometry ${ }^{1}$

Inner product
$\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, we define an inner product $g_{\rho, j}: T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ by

$$
g_{\rho, \boldsymbol{j}}\left(\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right)=\frac{1}{2} \iint_{G} j_{1}(x, y) j_{2}(x, y) \eta(x, y)\left(\frac{\chi_{\{j>0\}}(x, y)}{\rho(x)}+\frac{\chi_{\{j<0\}}(x, y)}{\rho(y)}\right) d \mu(x) d \mu(y)
$$

Goal: direction of steepest discent from ρ !
Gradient vector: $\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad} \mathcal{E}(\rho)}(\operatorname{grad} \mathcal{E}(\rho), \boldsymbol{j}) \quad$ for all $\boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
Direction steepest descent is in general NOT $-\operatorname{grad} \mathcal{E}(\rho)$
It is the tangent flux denoted by $\operatorname{grad}^{-} \mathcal{E}(\rho) \mathrm{s}$. t.

$$
-\operatorname{Diff}_{\rho} \mathcal{E}[\boldsymbol{j}]=g_{\rho, \operatorname{grad}^{-}} \varepsilon(\rho)\left(\operatorname{grad}^{-} \mathcal{E}(\rho), \boldsymbol{j}\right) \quad \forall \boldsymbol{j} \in T_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)
$$

Gradient flows in $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right): \partial_{t} \rho_{t}=\bar{\nabla} \cdot \operatorname{grad}^{-} \mathcal{E}(\rho)$
Nonlocal interaction energy

$$
\operatorname{grad}^{-} \mathcal{E}(\rho)(x, y)=-\bar{\nabla}(K * \rho)(x, y)\left(\rho(x) \chi_{\{-\bar{\nabla} K * \rho>0\}}(x, y)+\rho(y) \chi_{\{-\bar{\nabla} K * \rho<0\}}(x, y)\right)
$$

'[Ohta-Sturm '09, '12] and [Agueh '12]

Towards the variational characterisation for ($\mathrm{NL}^{2} \mathrm{IE}$)

Towards the variational characterisation for ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

Euclidean case: $\dot{x}(t)=-\nabla_{x} F(x(t))$

$$
\begin{aligned}
F(x(s))-F(x(t)) & =\int_{s}^{t}-\nabla F(x(z)) \cdot x^{\prime}(z) d z \leq \int_{s}^{t}|\nabla F(x(z))| \cdot\left|x^{\prime}(z)\right| d z \\
& \leq \int_{s}^{t}\left(\frac{1}{2}|\nabla F(x(z))|^{2}+\frac{1}{2}\left|x^{\prime}(z)\right|^{2}\right) d z
\end{aligned}
$$

Towards the variational characterisation for ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right), \quad \exists$! antisymmetric $\left(w_{t}\right)_{t \in[0, T]}$ such that $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ and

$$
d \boldsymbol{j}_{t}(x, y)=w_{t}(x, y)_{+} d \rho(x) d \mu(y)-w_{t}(x, y)_{-} d \mu(x) d \rho(y)
$$

Towards the variational characterisation for ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right), \quad \exists$! antisymmetric $\left(w_{t}\right)_{t \in[0, T]}$ such that $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ and

$$
d \boldsymbol{j}_{t}(x, y)=w_{t}(x, y)_{+} d \rho(x) d \mu(y)-w_{t}(x, y)_{-} d \mu(x) d \rho(y)
$$

Finsler product

$$
\widehat{g}_{\rho, w}(u, v)=\frac{1}{2} \iint_{G} u(x, y) v(x, y) \eta(x, y)\left(\chi_{\{w>0\}}(x, y) d \gamma_{1}(x, y)+\chi_{\{w<0\}}(x, y) d \gamma_{2}(x, y)\right)
$$

Towards the variational characterisation for ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right), \quad \exists$! antisymmetric $\left(w_{t}\right)_{t \in[0, T]}$ such that $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ and

$$
d \boldsymbol{j}_{t}(x, y)=w_{t}(x, y)_{+} d \rho(x) d \mu(y)-w_{t}(x, y)_{-} d \mu(x) d \rho(y)
$$

Finsler product

$$
\widehat{g}_{\rho, w}(u, v)=\frac{1}{2} \iint_{G} u(x, y) v(x, y) \eta(x, y)\left(\chi_{\{w>0\}}(x, y) d \gamma_{1}(x, y)+\chi_{\{w<0\}}(x, y) d \gamma_{2}(x, y)\right) .
$$

Chain rule from CE

$$
\frac{d}{d t} \int \varphi(x) d \rho_{t}(x)=\frac{1}{2} \iint \bar{\nabla} \varphi(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y)=\widehat{g}_{\rho_{t}, w_{t}}\left(w_{t}, \bar{\nabla} \varphi\right)
$$

Towards the variational characterisation for ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right), \quad \exists$! antisymmetric $\left(w_{t}\right)_{t \in[0, T]}$ such that $\left(\rho_{t}, \boldsymbol{j}_{t}\right)_{t \in[0, T]} \in \mathrm{CE}_{T}$ and

$$
d \boldsymbol{j}_{t}(x, y)=w_{t}(x, y)_{+} d \rho(x) d \mu(y)-w_{t}(x, y)_{-} d \mu(x) d \rho(y)
$$

Finsler product

$$
\widehat{g}_{\rho, w}(u, v)=\frac{1}{2} \iint_{G} u(x, y) v(x, y) \eta(x, y)\left(\chi_{\{w>0\}}(x, y) d \gamma_{1}(x, y)+\chi_{\{w<0\}}(x, y) d \gamma_{2}(x, y)\right) .
$$

Chain rule from CE

$$
\frac{d}{d t} \int \varphi(x) d \rho_{t}(x)=\frac{1}{2} \iint \bar{\nabla} \varphi(x, y) \eta(x, y) d \boldsymbol{j}_{t}(x, y)=\widehat{g}_{\rho_{t}, w_{t}}\left(w_{t}, \bar{\nabla} \varphi\right)
$$

One-sided Cauchy-Schwarz inequality

$$
\widehat{g}_{\rho, w}(w, v) \leq \sqrt{\widehat{g}_{\rho, v}(v, v) \widehat{g}_{\rho, w}(w, w)}
$$

Chain rule

Interaction potential
(K1) $K \in C\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$;
(K2) K is symmetric, i.e., $K(x, y)=K(y, x)$ for all $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$;
(K3) $\left|K(x, y)-K\left(x^{\prime}, y^{\prime}\right)\right| \leq L\left(\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right| \vee\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|^{2}\right)$.

Chain rule

Interaction potential
(K1) $K \in C\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$;
(K2) K is symmetric, i.e., $K(x, y)=K(y, x)$ for all $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$;
(K3) $\left|K(x, y)-K\left(x^{\prime}, y^{\prime}\right)\right| \leq L\left(\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right| \vee\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|^{2}\right)$.

Proposition

For all $\rho \in \mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$ and $0 \leq s \leq t \leq T$ we have the chain-rule identity

$$
\begin{aligned}
\mathcal{E}\left(\rho_{t}\right)-\mathcal{E}\left(\rho_{s}\right) & =\frac{1}{2} \int_{s}^{t} \iint_{G} \bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)(x, y) \eta(x, y) d \boldsymbol{j}_{\tau}(x, y) d \tau \\
& =\int_{s}^{t} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau}, \bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau
\end{aligned}
$$

where $\left(w_{t}\right)_{t \in[0, T]}$ is the antisymmetric vector field associated to $(\rho, \boldsymbol{j}) \in \mathrm{CE}_{T}$.

Curve of maximal slope

$$
\begin{aligned}
\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right) & =\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau}, \bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau=-\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau \\
& \geq-\int_{0}^{T} \sqrt{\widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right)} \sqrt{\widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right)} d \tau \\
& \geq-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) d \tau-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right) d \tau
\end{aligned}
$$

Curve of maximal slope

$$
\begin{aligned}
\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right) & =\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau}, \bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau=-\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau \\
& \geq-\int_{0}^{T} \sqrt{\widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right)} \sqrt{\widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right)} d \tau \\
& \geq-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) d \tau-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right) d \tau
\end{aligned}
$$

Local slope \& De Giorgi Functional

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$, the De Giorgi functional at ρ is defined as

$$
\mathcal{G}_{T}(\rho):=\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}\left(\rho_{\tau}\right)+\left|\rho_{\tau}^{\prime}\right|^{2}\right) d \tau \geq 0
$$

Curve of maximal slope

$$
\begin{aligned}
\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right) & =\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau}, \bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau=-\int_{0}^{T} \widehat{g}_{\rho_{\tau}, w_{\tau}}\left(w_{\tau},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\left(\rho_{\tau}\right)\right) d \tau \\
& \geq-\int_{0}^{T} \sqrt{\widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right)} \sqrt{\widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right)} d \tau \\
& \geq-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}\right) d \tau-\frac{1}{2} \int_{0}^{T} \widehat{g}_{\rho_{t}, w_{\tau}}\left(w_{\tau}, w_{\tau}\right) d \tau
\end{aligned}
$$

Local slope \& De Giorgi Functional

For any $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$, the De Giorgi functional at ρ is defined as

$$
\begin{aligned}
\mathcal{G}_{T}(\rho): & =\mathcal{E}\left(\rho_{T}\right)-\mathcal{E}\left(\rho_{0}\right)+\frac{1}{2} \int_{0}^{T}\left(\mathcal{D}\left(\rho_{\tau}\right)+\left|\rho_{\tau}^{\prime}\right|^{2}\right) d \tau \geq 0 \\
\mathcal{D}(\rho) & :=\widehat{g}_{\rho,-\bar{\nabla} \frac{\delta \varepsilon}{\delta \rho}}\left(-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho},-\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) \\
& =-\iint_{G}\left|\bar{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y)_{-}\right|^{2} \eta(x, y) d \rho_{\tau}(x) d \mu(y)
\end{aligned}
$$

Variational characterisation of ($\mathrm{NL}^{2} \mathrm{IE}$)

Nonlocal-nonlocal interaction equation

$$
\partial_{t} \rho+\bar{\nabla} \cdot \boldsymbol{j}=0
$$

where the flux \boldsymbol{j} is given by

$$
d \boldsymbol{j}(x, y)=\bar{\nabla}(K * \rho)(x, y)_{-} \eta(x, y) d \rho(x) d \mu(y)-\bar{\nabla}(K * \rho)(x, y)_{+} \eta(x, y) d \rho(y) d \mu(x)
$$

Theorem
A curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if and only if ρ belongs to $\mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$ and is a curve of maximal slope for \mathcal{E} with respect to $\sqrt{\mathcal{D}}$, that is, satisfies

$$
\mathcal{G}_{T}(\rho)=0 .
$$

Variational characterisation of ($\mathrm{NL}^{2} \mathrm{IE}$)

Nonlocal-nonlocal interaction equation

$$
\partial_{t} \rho+\bar{\nabla} \cdot \boldsymbol{j}=0
$$

where the flux \boldsymbol{j} is given by

$$
d \boldsymbol{j}(x, y)=\bar{\nabla}(K * \rho)(x, y)_{-} \eta(x, y) d \rho(x) d \mu(y)-\bar{\nabla}(K * \rho)(x, y)_{+} \eta(x, y) d \rho(y) d \mu(x)
$$

Theorem
A curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is a weak solution to $\left(\mathrm{NL}^{2} \mathrm{IE}\right)$ if and only if ρ belongs to $\mathrm{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}\right)\right)$ and is a curve of maximal slope for \mathcal{E} with respect to $\sqrt{\mathcal{D}}$, that is, satisfies

$$
\mathcal{G}_{T}(\rho)=0 .
$$

What about existence?

- Minimisers exist by direct method, however not necessarily global!
- Possibility: minimising movement scheme in quasi-metric spaces
- Instead: Show existence via finite-dimensional approximation and stability

Stability with respect to graph approximations

Stability of gradient flows
Let $\left(\mu^{n}\right)_{n} \subset \mathcal{N}^{+}\left(\mathbb{R}^{d}\right)$ and suppose that $\left(\mu^{n}\right)_{n}$ narrowly converges to μ. Assume that the base measures μ^{n} and μ satisfy (MB) and (LBC) uniformly in n, and let the interaction potential K satisfy (K1)-(K3). Suppose that ρ^{n} is a gradient flow of \mathcal{E} with respect to μ^{n} for all $n \in \mathbb{N}$, that is,

$$
\mathcal{G}_{T}\left(\mu^{n} ; \rho^{n}\right)=0 \quad \text { for all } n \in \mathbb{N}
$$

such that $\left(\rho_{0}^{n}\right)_{n}$ satisfies $\sup _{n \in \mathbb{N}} M_{2}\left(\rho_{0}^{n}\right)<\infty$ and $\rho_{t}^{n} \rightharpoonup \rho_{t}$ as $n \rightarrow \infty$ for all $t \in[0, T]$ for some curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ and ρ is a gradient flow of \mathcal{E} with respect to μ, that is,

$$
\mathcal{G}_{T}(\mu ; \rho)=0 .
$$

Stability with respect to graph approximations

Stability of gradient flows
Let $\left(\mu^{n}\right)_{n} \subset \mathcal{N}^{+}\left(\mathbb{R}^{d}\right)$ and suppose that $\left(\mu^{n}\right)_{n}$ narrowly converges to μ. Assume that the base measures μ^{n} and μ satisfy (MB) and (LBC) uniformly in n, and let the interaction potential K satisfy (K1)-(K3). Suppose that ρ^{n} is a gradient flow of \mathcal{E} with respect to μ^{n} for all $n \in \mathbb{N}$, that is,

$$
\mathcal{G}_{T}\left(\mu^{n} ; \rho^{n}\right)=0 \quad \text { for all } n \in \mathbb{N}
$$

such that $\left(\rho_{0}^{n}\right)_{n}$ satisfies $\sup _{n \in \mathbb{N}} M_{2}\left(\rho_{0}^{n}\right)<\infty$ and $\rho_{t}^{n} \rightharpoonup \rho_{t}$ as $n \rightarrow \infty$ for all $t \in[0, T]$ for some curve $\left(\rho_{t}\right)_{t \in[0, T]} \subset \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\rho \in \operatorname{AC}\left([0, T] ;\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \mathcal{T}_{\mu}\right)\right)$ and ρ is a gradient flow of \mathcal{E} with respect to μ, that is,

$$
\mathcal{G}_{T}(\mu ; \rho)=0 .
$$

Corollary
Existence of weak solution to ($\left.\mathrm{NL}^{2} \mathrm{IE}\right)$ via finite-dimensional approximation.

Strong measure solutions and nonlocal conservation laws

More general flux

$$
\begin{equation*}
\mathrm{d} j^{\Phi}[\mu ; \rho, v]=\Phi\left(\frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d} \lambda}, \frac{\mathrm{~d}(\mu \otimes \rho)}{\mathrm{d} \lambda} ; v\right) \mathrm{d} \lambda \tag{7}
\end{equation*}
$$

Nonlocal conservation law
A curve $\rho:[0, T] \rightarrow \mathcal{M}_{T V}^{+}\left(\mathbb{R}^{d}\right)$ is said to be a strong solution to the nonlocal conservation law

$$
\begin{equation*}
\partial_{t} \rho+\bar{\nabla} \cdot \boldsymbol{j}^{\Phi}[\mu ; \rho, v(\rho)]=0 \tag{NCL}
\end{equation*}
$$

provided that, for any $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, it holds that

1. $\left(\rho_{t}\right)_{t \in[0, T]} \in \mathrm{AC}\left([0, T] ; \mathcal{M}_{T V}\left(\mathbb{R}^{d}\right)\right)$;
2. $t \mapsto \bar{\nabla} \cdot \boldsymbol{j}^{\Phi}\left[\mu ; \rho_{t}, v_{t}\left(\rho_{t}\right)\right][A] \in L^{1}([0, T])$;
3. ρ satisfies

$$
\begin{equation*}
\rho_{t}[A]+\int_{0}^{t} \bar{\nabla} \cdot \boldsymbol{j}^{\Phi}\left[\mu ; \rho_{s}, v_{s}\left(\rho_{s}\right)\right][A] \mathbf{d} s=\rho_{0}[A] \quad \text { for all } t \in[0, T] . \tag{8}
\end{equation*}
$$

\Longrightarrow fixed point argument

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \rightarrow \infty$ and $\delta \rightarrow 0$ to obtain even different PDEs

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \rightarrow \infty$ and $\delta \rightarrow 0$ to obtain even different PDEs
- minimising movement schemes (JKO)
\Rightarrow extend classical theory to quasi-metric setting and beyond

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \rightarrow \infty$ and $\delta \rightarrow 0$ to obtain even different PDEs
- minimising movement schemes (JKO)
\Rightarrow extend classical theory to quasi-metric setting and beyond
- Free energies including entropies

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \log \rho(x) d \rho(x)+\frac{1}{2} \int K(x, y) d \rho(x) d \rho(y)
$$

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \rightarrow \infty$ and $\delta \rightarrow 0$ to obtain even different PDEs
- minimising movement schemes (JKO)
\Rightarrow extend classical theory to quasi-metric setting and beyond
- Free energies including entropies

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \log \rho(x) d \rho(x)+\frac{1}{2} \int K(x, y) d \rho(x) d \rho(y)
$$

- strong measure-valued solutions

Final remarks: open questions / future works

- convexity - contractivity - stability
\Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \rightarrow \infty$ and $\delta \rightarrow 0$ to obtain even different PDEs
- minimising movement schemes (JKO)
\Rightarrow extend classical theory to quasi-metric setting and beyond
- Free energies including entropies

$$
\mathcal{F}^{\sigma}(\rho)=\sigma \int \log \rho(x) d \rho(x)+\frac{1}{2} \int K(x, y) d \rho(x) d \rho(y)
$$

- strong measure-valued solutions
- A. E., F. S. Patacchini, A. Schlichting, D. Slepčev, Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit - ARMA (2021).
- A. E., F. S. Patacchini, A. Schlichting, D. Slepčev, Strong solutions to nonlocal conservation laws on graphs - in preparation.

Thank you for your attention!

[^0]:

[^1]:

