The Most Likely Evolution of Diffusing and Vanishing Particles in the Spirit of Erwin Schrödinger:

Constructing bridges with unbalanced marginals

#### **Tryphon Georgiou**

University of California, Irvine

joint work with

Yongxin Chen and Georgia Tech And University of Padova

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, Berkeley Oct 25 – Oct 29, 2021

- Some context/motivation: interpolation of distributions (bridges)
- Optimal mass transport and Schrödinger's bridge problem
- Diffusing and vanishing Particles in the spirit of Schrödinger
  - Bridges between unbalanced marginals

## Interpolation of distributions *aka* Morphing













## Interpolation of distributions

#### Time-series analysis



#### Doppler frequency tracking

| - + + + + + + + + + + + + + + + + + + + |
|-----------------------------------------|
|                                         |
| Voice morphing                          |





Noninvasive temperature sensing - temperature field

## Interpolation of distributions – unbalanced marginals









#### G. Monge (1871)



L. Kantorovich (1942)

and then McCann, Ganbgo, Brenier, Benamou, Ambrosio,... (1990's on) Rachev-Ruschendorf, Villani, ...

#### Unbalanced marginals - before 2010



 $\mu_0(\Omega_0) \neq \mu_1(\Omega_1)$ 

$$\begin{aligned} d_{\text{mixed},\kappa}(\mu_0,\mu_1) &= \inf_{\hat{\mu}_0,\hat{\mu}_1} d_{\text{W}}(\hat{\mu}_0,\hat{\mu}_1) + \kappa \sum_{i=0}^1 \|\hat{\mu}_i - \mu_i\|_{\text{TV}} \\ &= \sup_f \left\{ \int f d(\mu_0 - \mu_1) \mid \|f\|_{\text{Lip}} \le 1, \|f\|_{\infty} \le \kappa \right\} \end{aligned}$$

 $\hat{\mu}_0, \hat{\mu}_1$ : noise-free measures  $\mu_i - \hat{\mu}_i$ : noise components e.g., see G-Karlsson-Takyar 2009

#### Unbalanced marginals - post 2010

$$\inf_{\rho,\nu,\tilde{\rho}_{1}} \int_{0}^{1} \int_{\mathbb{R}^{m}} \rho(t,x) \|v\|^{2} dx dt + \alpha \int_{\mathbb{R}^{m}} (\rho_{1}(x) - \tilde{\rho}_{1}(x))^{2} dx,$$
  
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0, \quad \rho(0,\cdot) = \rho_{0}(\cdot), \quad \rho(1,\cdot) = \tilde{\rho}_{1}(\cdot) \text{ (not necessarily } = \rho_{1}(\cdot)).$$

$$\inf_{\rho,\nu,s} \int_0^1 \int_{\mathbb{R}^m} \left\{ \rho(t,x) \|\nu\|^2 + \alpha s(t,x)^2 \right\} dx dt,$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \nu) = s, \ \rho(0,\cdot) = \rho_0(\cdot), \ \rho(1,\cdot) = \rho_1(\cdot).$$

$$\inf_{\rho,\nu,r} \int_0^1 \int_{\mathbb{R}^m} \left\{ \rho(t,x) \|\nu\|^2 + \alpha \frac{s^2}{\rho(t,x)} \right\} dx dt$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \nu) = s, \ \rho(0,\cdot) = \rho_0(\cdot), \ \rho(1,\cdot) = \rho_1(\cdot).$$

see Liero-Mielke-Savaré (arxiv.org/pdf/1508.07941), Peyré-Cuturi 2020, also Chen-G-Tannenbaum 2018

Chen-Georgiou-Pavon

Briges with unbalanced marginals

## Optimal Mass Transport regularization: Schrödinger's Bridge Problem (SBP)

Balanced marginals for now

A problem in large-deviations that leads to:

$$\begin{split} \inf_{(\rho,v)} & \int_{\mathbb{R}^n} \int_0^1 \rho(t,x) \|v(t,x)\|^2 dt dx, \\ & \frac{\partial \rho}{\partial t} + \nabla \cdot (v\rho) = \frac{1}{2} \Delta \rho \\ & \rho(0,x) = \rho_0(x), \quad \rho(1,y) = \rho_1(y) \end{split}$$

And a fluid-dynamic, time-symmetric, formulation:

$$\begin{split} &\inf_{(\rho,v)} \int_{\mathbb{R}^n} \int_0^1 \left[ \|v(t,x)\|^2 + \|\frac{1}{2} \nabla \log \rho(t,x)\|^2 \right] \rho(t,x) dt dx, \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0, \\ &\rho(0,x) = \rho_0(x), \quad \rho(1,y) = \rho_1(y). \end{split}$$

Blaquière, Dai Pra, Pavon-Wakolbinger, Filliger-Hongler-Streit, Mikami, Thieulien, Leonard, Chen-G-Pavon

Chen-Georgiou-Pavon



#### Erwin Schrödinger Schrödinger bridges 1931/32



 $\sim$  Nelson's stochastic mechanics

#### Consider:

- Cloud of N independent Brownian particles (N large)
- empirical distr.  $\rho_0(x)dx$  and  $\rho_1(y)dy$  at t = 0 and t = 1, resp.
- $ho_0$  and  $ho_1$  not compatible with transition mechanism

$$\rho_1(y) \neq \int_0^1 p(0, x, 1, y) \rho_0(x) dx,$$

where

$$p(s, y, t, x) = [2\pi(t-s)]^{-\frac{n}{2}} \exp\left[-\frac{|x-y|^2}{2(t-s)}\right], \quad s < t$$

Particles have been transported in an unlikely way

Schrödinger (1931): Of the many unlikely ways in which this could have happened, which one is the most likely?



Large deviations formulation

$$\min_{P} H(P|R) = \min_{P} E_{P} \left[ \log \frac{dP}{dR} \right]$$

over  $P \in \{\text{distributions on paths with marginals } \rho_0, \rho_1\};$  $H(\cdot|\cdot)$  is the relative entropy R reference Wiener measure

Föllmer 1988: SBP is a large deviations problem of the empirical distribution on paths  $\equiv$  maximum entropy problem via Sanov's thm

**Connection to stochastic control & OMT:** For prior the law of a diffusion: dX = vdt + dB, Girsanov's thm:

$$E_Q\left[\log\frac{dQ}{dR}\right] = E_Q\left[\frac{1}{2}\int_0^1 \|v\|^2 ds\right]$$

Stochastic control formulation & structure of solutions

• Girsanov's thm gives:

$$\inf_{(\rho,\nu)} \int_{\mathbb{R}^n} \int_0^1 \|\nu(t,x)\|^2 \rho(t,x) dt dx,$$
  
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\nu \rho) = \frac{1}{2} \Delta \rho$$
  
$$\rho(0,x) = \rho_0(x), \quad \rho(1,y) = \rho_1(y)$$

• min  $H(P|R) \Rightarrow \rho(t,x) = \varphi(t,x)\hat{\varphi}(t,x)$  (t-time marginal of P) where  $\varphi$  and  $\hat{\varphi}$  solve the Schrödinger's system:

$$\begin{split} \varphi(t,x) &= \int p(t,x,1,y)\varphi(1,y)dy, \quad \varphi(0,x)\hat{\varphi}(x,0) = \rho_0(x) \\ \hat{\varphi}(t,x) &= \int p(0,y,t,x)\hat{\varphi}(0,y)dy, \quad \varphi(1,x)\hat{\varphi}(1,x) = \rho_1(x). \end{split}$$



### SBP schematic - prior



## SBP schematic - prior vs. mismatched end-point marginal



### SBP schematic - Schrödinger bridge



## Schrödinger system



## For $dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t(\star)$ SBP theory outline $a(t, X) := \sigma(t, X)\sigma(t, X)' > 0$

#### Notation:

*R*: "prior" law of (\*) on paths *R<sub>t</sub>*, *R<sub>st</sub>*: marginals at times *t*, and jointly *t*, *s R<sup>xy</sup>*(·) law conditioned on  $X_0 = x$ ,  $X_1 = y$ disintegration of measure  $R(\cdot) = \int_x \int_y R^{xy}(\cdot)R_{01}(dxdy)$ 

#### SBP: Find

$$P^{\star} = \arg\min_{P} \{ H(P|R) \mid P_0 = \rho_0, P_1 = \rho_1 \}$$

 $H(P|R) = H(P_{01}|R_{01}) + \int H(P^{xy}|R^{xy})P_{01}(dxdy)$ Static SBP: Find

$$P_{01}^{\star} = \arg\min_{P_{01}} \{ H(P_{01}|R_{01}) \mid P_0 = \rho_0, \ P_1 = \rho_1 \}$$

Relation static-dynamic SBP:

$$P^{\star}(\cdot) = \int_{x} \int_{y} R^{xy}(\cdot) P^{\star}_{01}(dxdy)$$

#### Solution:

Under mild/natural assumptions,  $\exists f, g$  so that:

 $P_{01}^{\star} = f(X_0)g(X_1)R_{01}$ . These are solutions of the **Schrödinger system** 

$$\frac{d\rho_0}{dR_0}(x) = f(x)R(g(X_1) | X_0 = x), 
\frac{d\rho_1}{dR_1}(y) = g(y)R(f(X_0) | X_1 = y).$$

 $P^{\star}_{01} = f(X_0)g(X_1)R_{01} \Leftrightarrow P^{\star} = f(X_0)g(X_1)R.$ 

SBP theory outline

#### Solution:

for  $\hat{\varphi}(0,x) := f(x)R_0(x), \ \varphi(1,y) := g(y)$ 

$$\partial_t \hat{\varphi} = -\nabla \cdot (b\hat{\varphi}) + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij}\hat{\varphi})}{\partial x_i \partial x_j}$$
$$\partial_t \varphi = -b \cdot \nabla \varphi - \frac{1}{2} \sum_{i,j=1}^n a_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j}$$
$$\rho_0 = \varphi(0, \cdot) \hat{\varphi}(0, \cdot)$$
$$\rho_1 = \varphi(1, \cdot) \hat{\varphi}(1, \cdot).$$

Then,  $P_t^{\star} = \rho(t, \cdot) = \phi(t, \cdot)\hat{\phi}(t, \cdot)$  (t-time marginal) of the law of  $dX_t = (b(t, X_t) + a(t, X_t)\nabla \log \varphi(t, X_t))dt + \sigma(t, X_t)dW_t$ 

### Schrödinger's Bridge with losses most likely evolution of diffusing and vanishing particles

#### Consider:

- Cloud of N "tracer" particles (N large)
- empirical distr.  $\rho_0(x)dx$  and  $\rho_1(y)dy$  at t = 0 and t = 1, resp.
- $ho_0$  and  $ho_1$  not compatible with transition mechanism

$$\rho_1(y) \neq \int_0^1 p(t_0, x, t_1, y) \rho_0(x) dx,$$

Besides having been transported in an unlikely way, the particles remain in suspension for a duration of time, and thus, at t = 1 a random portion of the particles have been lost (sunk), and  $\int \rho_1 < \int \rho_0$ 

#### Question - in the spirit of Schrödinger:

What is the most likely evolution that accounts for losses?

5,02, 5,015, 6,015, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 0,05, 

22 / 30

Stochastic transport with losses – Prior:

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t (\star\star)$$
  
with killing rate  $V(t, x)$ 

State space:  $\mathcal{X} = \mathbb{R}^n \cup \{\mathfrak{c}\}$  with  $\mathfrak{c}$  a "coffin state"

Paths  $\Omega = D([0, 1], \mathcal{X})$  càdlàg ( $X_t$  on  $\mathbb{R}^n$  with killing)  $\equiv (\mathbf{X}_t$  on  $\mathcal{X}$  with a law on  $\mathcal{P}(\Omega)$ )

 $p_0, p_1$  natural augmentation of  $\rho_0, \rho_1$  so that  $p_0, p_1 \in \mathcal{P}(\mathcal{X})$ i.e., assuming  $\int \rho_1 = 1$ , set  $p_0 = (\rho_0(\cdot), 0)$ , and  $p_1 = (\rho_1(\cdot), 1 - \int \rho_1)$ 

$$\mathbf{P}^{\star} := \arg \min_{\mathbf{P} \in \mathcal{P}(\Omega)} \left\{ H(\mathbf{P} \mid \mathbf{R}) \mid \mathbf{P}_0 = p_0, \mathbf{P}_1 = p_1 \right\}.$$

# Schrödinger Bridge with losses unbalanced SBP – $\int \rho_0 > \int \rho_1$

**Prior**: Fokker-Planck equation for a diffusion with killing rate V(t, x)

$$\partial_t R_t + \nabla \cdot (bR_t) + VR_t = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij}R_t)}{\partial x_i \partial x_j}$$

**SB** with losses: "new  $\phi$ " = ( $\phi(t, \cdot), \psi(t)$ ) on  $\mathcal{X}$ , same for "new  $\psi$ ," via the Schrödinger system:

$$\begin{split} \partial_t \hat{\varphi} &= -\nabla \cdot (b\hat{\varphi}) - V\hat{\varphi} + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij}\hat{\varphi})}{\partial x_i \partial x_j} \\ \frac{d\hat{\psi}}{dt} &= \int V\hat{\varphi}(t, x) dx \\ \partial_t \varphi &= -b \cdot \nabla \varphi + V\varphi - \frac{1}{2} \sum_{i,j=1}^n a_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} - V\psi \\ \frac{d\psi}{dt} &= 0 \end{split}$$

with b.c.  

$$\rho_{0} = \varphi(0, \cdot)\hat{\varphi}(0, \cdot)$$

$$\rho_{1} = \varphi(1, \cdot)\hat{\varphi}(1, \cdot)$$

$$\hat{\psi}(0) = 0$$

$$\psi(1)\hat{\psi}(1) = 1 - \int \rho_{1}.$$

$$\Rightarrow \mathbf{P}^{*} = f(\mathbf{X}_{0})g(\mathbf{X}_{1})\mathbf{R}$$

$$\mathbf{P}^{\star} = (P_t^{\star}, q_t^{\star}), \ \mathbf{R} = (R_t, s_t)$$

24 / 30

 $\mathbf{P}^{\star}$  is the law of a diffusion

$$dX_t = (b(t, X_t) + a(t, X_t) 
abla \log arphi(t, X_t)) dt + \sigma(t, X_t) dW_t$$

with killing rate  $\psi V/\varphi$ , and Fokker-Planck equation

$$\partial_t P_t + \nabla \cdot ((b + a \nabla \log \varphi) P_t) = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij} P_t)}{\partial x_i \partial x_j} - \frac{\psi}{\varphi} V P_t.$$

mass q(t) on c:  $\frac{dq_t}{dt} = \psi(t) \int V \hat{\varphi}(t, x) dx = \int \frac{\psi}{\varphi} V P_t dx$ 

## Schrödinger Bridge with losses - fluid dynamic formulation

Contrast with original SB the added terms:

$$\begin{split} \min_{P_t(\cdot),u(t,\cdot)} \int_0^1 \int_{\mathbb{R}^n} [\frac{1}{2} \|u(t,x)\|^2 P_t + (\alpha \log \alpha - \alpha + 1) V P_t] dx dt \\ \partial_t P_t + \nabla \cdot ((b + \sigma u) P_t) + \alpha V P_t - \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 (a_{ij} P_t)}{\partial x_i \partial x_j} = 0 \\ P_0 = \rho_0, \quad P_1 = \rho_1. \end{split}$$

$$u^{\star}(t,x) = \sigma(t,x)' \nabla \log \varphi(t,x)$$
  
$$\alpha^{\star}(t,x) = \frac{\psi(t)}{\varphi(t,x)}$$

with marginals:  $P_t^{\star}(x) = \varphi(t, x)\hat{\varphi}(t, x)$  on  $\mathbb{R}^n$  $q_t = \psi(t)\hat{\psi}(t)$  on  $\mathfrak{c}$ 

## SBP on Feynman-Kac reweighed processes

Earlier attempts to "model" losses – Nagasawa, Wakolbinger, Leonard, Chen-G-Pavon, . . .

Feynman-Kac reweighing of the prior

$$\begin{split} \hat{R} &:= \exp\left(-\int_0^1 V(t, X_t) dt\right) R \quad \mapsto \quad \hat{P}^* = f(X_0) \exp\left(-\int_0^1 V(t, X_t) dt\right) g(X_1) R\\ \text{via} \\ \hat{P}^* &:= \min_{P \in \mathcal{P}(\Omega)} \left\{ H(P \mid \hat{R}) \mid P_0 = \rho_0, \ P_1 = \hat{\rho}_1 \right\}, \end{split}$$

with  $\hat{\rho}_1$  normalized distribution of survived particles

- upside: simpler Schrödinger system
- downside: not physical & inconsistent with Schrödinger's dictum

 $\rho_0$  distribution of all starting particles,  $\rho_1$  surviving particles starting distribution of survived partices in not knowable no mechanism to update V when  $\rho_1$  consistent with prior model and losses in V,  $\hat{P}^* \neq \hat{R}$ marginals of  $\hat{R}$  and  $\hat{P}^*$  have constant mass

Chen-Georgiou-Pavon

#### Numerical example

**Prior:** 

 $dX_t = \sigma dW_t$  with killing rate V(t, x) = 1.









#### Numerical example



#### survived mass



reweighed process, regardless of end-point mass

Chen-Georgiou-Pavon

Diffusing and Vanishing Particles in the Spirit of Schrödinger Bridges with unbalanced marginals





Yongxin Chen

Michele Pavon

## Thank you for your attention

CGP arxiv.org/abs/2108.02879