An optimal transport problem with bulk/interface interactions

Léonard Monsaingeon IECL Nancy & GFM Lisbon

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, Berkeley

October 26th, 2021

Grupo de Física Matemática da Universidade de Lisboa

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

● ∃ absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro Souza '21]

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

● ∃ absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro Souza '21]

Need for an adapted bulk/interface geometry!

(but failed in the end)

In this talk $\Omega \subset \mathbb{R}^d$ is compact and $\partial \Omega \subset \Omega$

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |v_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t v_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |\mathbf{v}_t(\mathbf{x})|^2 \mathrm{d}\rho_t(\mathbf{x}) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t \mathbf{v}_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

mass conservative, based on horizontal displacements

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |v_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t v_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

$$\rho_t = \delta_{x_t}$$

mass conservative, based on horizontal displacements

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |v_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t v_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$, interpolate $x_t = (1 - t)x_0 + tx_1$

$$\rho_t = \delta_{x_t} \qquad \qquad \underbrace{ \begin{array}{c} & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & \\ & & \\$$

mass conservative, based on horizontal displacements

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |\mathbf{v}_t(\mathbf{x})|^2 \mathrm{d}\rho_t(\mathbf{x}) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t \mathbf{v}_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

mass conservative, based on horizontal displacements

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |\mathbf{v}_t(\mathbf{x})|^2 \mathrm{d}\rho_t(\mathbf{x}) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t \mathbf{v}_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

mass conservative, based on horizontal displacements

Theorem (Benamou-Brenier '00)

For $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$\mathcal{W}^2(\rho_0,\rho_1) = \min_{\rho,\nu} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |v_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad s.t. \quad \partial_t \rho_t + \mathsf{div}(\rho_t v_t) = \mathbf{0} \right\}$$

with $\rho|_{t=0,1} = \rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

mass conservative, based on horizontal displacements

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

$$ho_t = \left[(1-t)\sqrt{
ho_0} + t\sqrt{
ho_1}
ight]^2$$

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_{\Omega} \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

$$ho_t = \left[(1-t)\sqrt{
ho_0} + t\sqrt{
ho_1}
ight]^2$$

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

$$\rho_t = \left[(1-t)\sqrt{\rho_0} + t\sqrt{\rho_1} \right]^2 \qquad \qquad \underbrace{ \begin{array}{c} \bullet \\ \bullet \\ x_0 \end{array}}_{X_0} \qquad \underbrace{ \begin{array}{c} \bullet \\ x_1 \end{array}}_{X_1}$$

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

$$\rho_t = \left[(1-t)\sqrt{\rho_0} + t\sqrt{\rho_1} \right]^2$$

Definition (Fisher-Rao)

For $\rho_0, \rho_1 \in \mathcal{M}^+(\Omega)$ with possibly $|\rho_0| \neq |\rho_1|$

$$\mathcal{FR}^2(\rho_0,\rho_1) = \min_{\rho,r} \left\{ \int_0^1 \int_\Omega \frac{1}{2} |r_t(x)|^2 \mathrm{d}\rho_t(x) \,\mathrm{d}t \quad \text{s.t.} \quad \partial_t \rho_t = \rho_t r_t \right\}$$

popular in statistics and geometric information theory \rightsquigarrow Fisher information metric

Fundamental example: $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$

Unbalanced OT

Infimal convolution between horizontal Wasserstein and vertical Fisher-Rao

Some convex analysis

$$\partial_t \rho_t + \operatorname{div}(\rho_t v_t) = \rho_t r_t \qquad \int_0^1 \int_\Omega \frac{1}{2} \left(|v_t(x)|^2 + \kappa^2 |r_t(x)|^2 \right) \mathrm{d}\rho_t(x) \, \mathrm{d}t$$

• mass/momentum variables, convex 1-homogeneous action

$$(\rho, G, f) = (\rho, \rho v, \rho r)$$
 and $(|v|^2 + \kappa^2 r^2)\rho = \frac{|G|^2 + \kappa^2 |f|^2}{\rho}$

• convex constraint/functional over measures $(\rho, G, f) \in \mathcal{M}^+ imes \mathcal{M}^d imes \mathcal{M}$

$$\partial_t \rho_t + \operatorname{div} G_t = f_t$$
 $\frac{1}{2} \int_0^1 \int_\Omega \frac{|G_t|^2 + \kappa^2 |f_t|^2}{\rho_t} \mathrm{d}t$

The bulk/interface setup

(AKA the ring-road)

Key ingredients:

- \checkmark transport in the city
- $\checkmark\,$ transport on the road
- $\checkmark~$ a toll cost $\kappa>0$

 $\Omega=\mbox{downtown},\,\Gamma=\partial\Omega=\mbox{ring-road}$

Bulk/interface interactions

Think $\omega = \text{cars}$ in the city Ω , and $\gamma = \text{cars}$ on the road Γ

$$\mathcal{P}^\oplus(\Omega):=\left\{
ho=(\omega,\gamma)\in\mathcal{M}^+(\Omega) imes\mathcal{M}^+(\Gamma)\quad ext{s.t.}\quad |\omega|+|\gamma|=1
ight\}$$

The ring-road distance

Definition/theorem [M '20] For $\rho_0, \rho_1 \in \mathcal{P}^{\oplus}(\Omega)$ $\mathcal{W}^2_{\kappa}(\rho_0, \rho_1) = \min\left\{\int_0^1 \int_{\Omega} \frac{|F_t|^2}{2\omega_t} dt + \int_0^1 \int_{\Gamma} \frac{|G_t|^2 + \kappa^2 |f_t|^2}{2\gamma_t} dt$ s.t. $\frac{\partial_t \omega_t + \operatorname{div}(F_t) = 0}{F_t \cdot n = f_t}$ in Ω and $\partial_t \gamma_t + \operatorname{div}(G_t) = f_t$ in $\Gamma\right\}$ is a distance on $\mathcal{P}^{\oplus}(\Omega)$, and minimizing geodesics $t \mapsto \rho_t$ always exist with $\rho_t = \omega_t + \gamma_t \in \mathcal{P}(\Omega).$

- only coupled through the flux condition
- weak formulation allows $f \neq 0$ even if F = 0
- local stoichiometry $\omega \rightleftharpoons \gamma$ with rate $\partial_t \gamma = f = -\partial_t \omega$

Step 1: pure Wasserstein transport inside Ω with f = 0, G = 0

 $\text{finite cost} ~~ \mathcal{W}_\Omega^2 < \infty$

Step 1: pure Wasserstein transport inside Ω with f = 0, G = 0

 $\text{finite cost} \quad \ \mathcal{W}^2_\Omega < \infty$

Step 2: pure Wasserstein transport along Γ with F = 0, f = 0

finite cost $\mathcal{W}_{\Gamma}^2 < \infty$

Step 2: pure Wasserstein transport along Γ with F = 0, f = 0

finite cost $\mathcal{W}_{\Gamma}^2 < \infty$

Step 3: pure Fisher-Rao reaction $\omega \rightleftharpoons \gamma$ with F = 0, G = 0 and f > 0

finite cost $\mathcal{FR}^2_\kappa < \infty$

Step 3: pure Fisher-Rao reaction $\omega \rightleftharpoons \gamma$ with F = 0, G = 0 and f > 0

finite cost $\mathcal{FR}^2_\kappa < \infty$

<u>Conclusion</u>: we just connected any arbitrary ρ_0 to $\rho^* = (0, \delta_{x^*})$ with finite cost.

Existence by Fenchel-Rockafellar (von Neumann min-max)

 $\inf_{(\omega,\gamma)\in L}\mathcal{A}$

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$\inf_{(\omega,\gamma)\in L}\mathcal{A}=\inf_{\omega,\gamma}\sup_{\phi,\psi}\{\mathcal{A}+\mathcal{L}\}$$

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$\inf_{(\omega,\gamma)\in L}\mathcal{A}=\inf_{\omega,\gamma}\sup_{\phi,\psi}\{\mathcal{A}+\mathcal{L}\}=\sup_{\phi,\psi}\inf_{\omega,\gamma}\{\mathcal{A}+\mathcal{L}\}$$

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$\inf_{(\omega,\gamma)\in L}\mathcal{A} = \inf_{\omega,\gamma} \sup_{\phi,\psi} \{\mathcal{A} + \mathcal{L}\} = \sup_{\phi,\psi} \inf_{\omega,\gamma} \{\mathcal{A} + \mathcal{L}\}$$

Proposition (Hamilton-Jacobi duality)

$$\begin{split} \mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1}) &= \sup_{\phi,\psi} \left\{ \int_{\Omega} \phi_{1}\omega_{1} - \phi_{0}\omega_{0} + \int_{\Gamma} \psi_{1}\gamma_{1} - \psi_{0}\gamma_{0} \quad \text{s.t. } \phi,\psi \in \mathsf{C}^{1} \text{ and} \\ & \left\{ \frac{\partial_{t}\phi + \frac{1}{2}|\nabla\phi|^{2} \leq 0}{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0} \quad \text{in } (0,1) \times \Omega \\ & \left\{ \frac{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0}{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0} \right\} \end{split}$$

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$\inf_{(\omega,\gamma)\in L}\mathcal{A} = \inf_{\omega,\gamma} \sup_{\phi,\psi} \{\mathcal{A} + \mathcal{L}\} = \sup_{\phi,\psi} \inf_{\omega,\gamma} \{\mathcal{A} + \mathcal{L}\}$$

Proposition (Hamilton-Jacobi duality)

$$\begin{split} \mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1}) &= \sup_{\phi,\psi} \left\{ \int_{\Omega} \phi_{1}\omega_{1} - \phi_{0}\omega_{0} + \int_{\Gamma} \psi_{1}\gamma_{1} - \psi_{0}\gamma_{0} \quad \text{s.t. } \phi,\psi \in \mathsf{C}^{1} \text{ and} \\ & \left\{ \frac{\partial_{t}\phi + \frac{1}{2}|\nabla\phi|^{2} \leq 0}{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0} \quad \text{in } (0,1) \times \Omega \\ \frac{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0}{\partial_{t}\psi + \frac{1}{2}|\nabla\psi|^{2} + \frac{1}{2\kappa^{2}}|\psi - \phi|^{2} \leq 0} \quad \text{in } (0,1) \times \Gamma \\ \end{split} \right\}$$

Corollary

For fixed ρ_0, ρ_1 the map $\kappa \mapsto \mathcal{W}_{\kappa}(\rho_0, \rho_1)$ is monotone \uparrow

<u>Proof</u>: $S_{\kappa'} \subset S_{\kappa}$ for $\kappa' < \kappa$.

Optimality and geodesics

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1}) = \sup\left\{\int_{\Omega}\phi_{1}\omega_{1} - \phi_{0}\omega_{0} + \int_{\Gamma}\psi_{1}\gamma_{1} - \psi_{0}\gamma_{0} \quad \text{s.t.} \ (\phi,\psi) \text{ subsolutions}
ight\}$$

Hopf-Lax monotonicity suggests saturating HJ inequalities

Theorem (certification)

$$\underbrace{\mathbf{If}}_{\partial_t \psi + \operatorname{div}(\omega \nabla \phi) = 0} \left\{ \begin{array}{ll} \partial_t \psi + \frac{1}{2} |\nabla \phi|^2 = 0 & \omega - \mathrm{a.e.} \\ \partial_t \psi + \operatorname{div}(\gamma \nabla \psi) = \gamma \frac{\psi - \phi}{\kappa^2} & \text{with} \end{array} \right. \left\{ \begin{array}{ll} \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 = 0 & \omega - \mathrm{a.e.} \\ \partial_t \psi + \frac{1}{2} |\nabla \psi|^2 + \frac{1}{2\kappa^2} |\psi - \phi|^2 = 0 & \gamma - \mathrm{a.e.} \end{array} \right.$$

then $t \mapsto \rho_t = (\omega_t, \gamma_t) \in \mathcal{P}^{\oplus}$ is a minimizing geodesic between ρ_0, ρ_1 .

- allows to check optimality of possible ansatz
- determines the built-in Riemannian structure à la Otto

One-point geodesics

In classical OT, Eulerian/Lagrangian duality $d^2(x_0, x_1) = \mathcal{W}^2(\delta_{x_0}, \delta_{x_1})$

One-point geodesics

Question

Compute the \mathcal{W}_{κ} distance and geodesic between $\rho_0 = (\delta_{x_0}, 0)$ and $\rho_1 = (0, \delta_{x_R})$?

- clearly a 1D problem along I, coordinate $r \in [0, R]$ with $R = |x_R x_0|$
- cannot simply be a traveling Dirac (∞ cost)

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(\mathcal{R}^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = \alpha \left(rac{Rt}{r}
ight)^lpha rac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^lpha$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(R^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = \alpha \left(\frac{Rt}{r}\right)^{lpha} \frac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^{lpha}$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(R^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = \alpha \left(\frac{Rt}{r}\right)^{lpha} \frac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^{lpha}$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(R^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = lpha \left(rac{Rt}{r}
ight)^lpha rac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^lpha$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(R^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = \alpha \left(\frac{Rt}{r}\right)^{lpha} \frac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^{lpha}$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(\rho_{0},\rho_{1})=rac{1}{2}rac{lpha}{lpha-1}\left(\mathcal{R}^{2}+lpha\kappa^{2}
ight)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

$$\omega_t = \alpha \left(rac{Rt}{r}
ight)^lpha rac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^lpha$$

For $\rho_0 = (\delta_0, 0)$ and $\rho_1 = (0, \delta_R)$ we have

$$\mathcal{W}_{\kappa}^{2}(
ho_{0},
ho_{1})=rac{1}{2}rac{lpha}{lpha-1}ig(R^{2}+lpha\kappa^{2}ig)$$

$$\alpha = 1 + \sqrt{1 + \frac{R^2}{\kappa^2}} > 2$$

and the geodesic is

$$\omega_t = \alpha \left(rac{Rt}{r}
ight)^lpha rac{1}{r} \chi_{[Rt,R]}(r) \mathrm{d}r \qquad ext{and} \qquad \gamma_t = t^lpha$$

• Mass splitting and unbounded speeds \neq classical OT

•
$$\mathcal{W}^2_{\kappa}(\rho_0,\rho_1) \xrightarrow{\kappa \to \infty} +\infty$$
 and $\mathcal{W}^2_{\kappa}(\rho_0,\rho_1) \xrightarrow{\kappa \to 0} \frac{1}{2}R^2$

● superposition of Lagrangian particles (X^y_t)_{y∈[0,1]} with mass dy
 ● constant speeds, only keep y ∈ [0, Y_t]

$$\omega_t(ullet) = \int_0^{Y_t} \delta_{X_t^y}(ullet) \, \mathrm{d} y \qquad ext{and} \qquad rac{d}{dt} X_t^y = U(y)$$

③ optimize with respect to $U(\cdot)$

$$\operatorname{cost} = \int_0^1 \int_0^{\tau(y)} \frac{1}{2} \mathrm{d}y |U(y)|^2 \mathrm{d}t + \text{``reaction''}$$

Geometrical/topological properties

Theorem

Writing $\varrho_i = \omega_i + \gamma_i \in \mathcal{P}(\Omega)$, there holds

$$\mathcal{W}^{2}_{\Omega}(\varrho_{0},\varrho_{1}) \leq \underbrace{\mathcal{W}^{2}_{\kappa}(\rho_{0},\rho_{1})}_{\uparrow in \kappa} \leq \mathcal{W}^{2}_{\Omega}(\omega_{0},\omega_{1}) + \mathcal{W}^{2}_{\Gamma}(\gamma_{0},\gamma_{1})$$

Moreover

$$\mathcal{W}_{\kappa}(\rho_n,\rho) \to 0 \quad iff \quad \omega_n \stackrel{*}{\rightharpoonup} \omega \text{ and } \gamma_n \stackrel{*}{\rightharpoonup} \gamma$$

and $(\mathcal{P}^{\oplus}, \mathcal{W}_{\kappa})$ is complete.

Remarks:

- Completeness needed for the "Italian voodoo" [AGS '08]
- For fixed κ all inequalities are sharp but can be strict
- In (1) the r.h.s. can be $+\infty$ if $|\omega_0| \neq |\omega_1|$ or $|\gamma_0| \neq |\gamma_1|$

(1)

The small- and large-toll limits

Theorem

There holds

$$\lim_{\kappa \to 0} \mathcal{W}_{\kappa}^{2}(\rho_{0}, \rho_{1}) = \mathcal{W}_{\Omega}^{2}(\varrho_{0}, \varrho_{1}) \qquad \text{with} \qquad \varrho = \omega + \gamma$$

and

$$\lim_{\kappa \to +\infty} \mathcal{W}^2_{\kappa}(\rho_0, \rho_1) = \mathcal{W}^2_{\Omega}(\omega_0, \omega_1) + \mathcal{W}^2_{\Gamma}(\gamma_0, \gamma_1) \qquad \qquad \in [0, +\infty]$$

and geodesics converge as well (Gamma-limit).

Interpretation:

- As $\kappa \to 0$ the (ω,γ) cars need not be distinguished and superpose into $\varrho=\omega+\gamma$
- As $\kappa \to +\infty$ transfer of mass becomes infinitely expensive, hence independent OT problems in Ω, Γ

Perspectives

- static formulation ??
- gradient-flows and PDEs
- dynamical evolution of interfaces [Cancès-Merlet?]
- complex structures, different flux costs

$$\kappa^2 rac{|f|^2}{ heta(\omega,\gamma)}$$
 e.g. $heta(\omega,\gamma) = [\omega-\gamma]^+$

• numerics, with T. Gallouët and M. Laborde (ALG2-JKO)

Thank you for listening

