An optimal transport problem with bulk/interface interactions

Léonard Monsaingeon
IECL Nancy \& GFM Lisbon

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, Berkeley

October 26th, 2021

Grupo de
Física Matemática
da Universidade de Lisboa

Motivation

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

Motivation

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

(a)

(b)

(c)
Moran process $i \in \llbracket 0, N \rrbracket$

$$
\xrightarrow{N \rightarrow \infty} \quad \begin{gathered}
\mathrm{d} X_{t}=\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} \\
\text { or } \\
\end{gathered} \begin{gathered}
\text { or } \rho=\Delta(x(1-x) \rho)
\end{gathered}
$$

Kimura eq. $x \in[0,1]$

Motivation

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

(a)

(b)

(c)
Moran process $i \in \llbracket 0, N \rrbracket$

$$
\xrightarrow{N \rightarrow \infty} \quad \begin{array}{r}
\begin{array}{c}
\mathrm{d} X_{t}=\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} \\
\text { or } \\
\partial_{t} \rho=\Delta(x(1-x) \rho)
\end{array}
\end{array}
$$

$$
\text { Kimura eq. } x \in[0,1]
$$

- \exists absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro Souza '21]

Motivation

- [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry
- [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for irreducible reversible Markov processes

(a)

(b)

(c)
$\xrightarrow{N \rightarrow \infty}$

$$
\begin{gathered}
\mathrm{d} X_{t}=\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} \\
\quad \text { or } \\
\partial_{t} \rho=\Delta(x(1-x) \rho)
\end{gathered}
$$

Moran process $i \in \llbracket 0, N \rrbracket$
Kimura eq. $x \in[0,1]$

- \exists absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro Souza '21]

Need for an adapted bulk/interface geometry!
(but failed in the end)

In this talk $\Omega \subset \mathbb{R}^{d}$ is compact and $\partial \Omega \subset \Omega$

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical OT

Theorem (Benamou-Brenier '00)

For $\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega)$ the Wasserstein distance

$$
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, v}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0\right\}
$$

with $\left.\rho\right|_{t=0,1}=\rho_{0,1}$ and no-flux boundary conditions on $\partial \Omega$

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$, interpolate $x_{t}=(1-t) x_{0}+t x_{1}$

$$
\rho_{t}=\delta_{x_{t}}
$$

mass conservative, based on horizontal displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Dynamical reaction

Definition (Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ with possibly $\left|\rho_{0}\right| \neq\left|\rho_{1}\right|$

$$
\mathcal{F} \mathcal{R}^{2}\left(\rho_{0}, \rho_{1}\right)=\min _{\rho, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|r_{t}(x)\right|^{2} \mathrm{~d} \rho_{t}(x) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho_{t}=\rho_{t} r_{t}\right\}
$$

popular in statistics and geometric information theory \leadsto Fisher information metric

Fundamental example: $\rho_{0}=\delta_{x_{0}}, \rho_{1}=\delta_{x_{1}}$

$$
\rho_{t}=\left[(1-t) \sqrt{\rho_{0}}+t \sqrt{\rho_{1}}\right]^{2}
$$

mass variations, based on vertical displacements

Unbalanced OT

Definition/theorem (Wasserstein-Fisher-Rao)

For $\rho_{0}, \rho_{1} \in \mathcal{M}^{+}(\Omega)$ and $\kappa>0$

$$
\mathcal{W} \mathcal{F} \mathcal{R}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right):=\min _{\rho, v, r}\left\{\int_{0}^{1} \int_{\Omega} \frac{1}{2}\left(\left|v_{t}(x)\right|^{2}+\kappa^{2}\left|r_{t}(x)\right|^{2}\right) \mathrm{d} \rho_{t}(x) \mathrm{d} t\right.
$$

$$
\text { s.t. } \left.\quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=\rho_{t} r_{t}\right\}
$$

is a distance on $\mathcal{M}^{+}(\Omega)$ with nice properties [KMV '16, LMS '18, CPSV '18]

Infimal convolution between horizontal Wasserstein and vertical Fisher-Rao

Some convex analysis

$$
\partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=\rho_{t} r_{t} \quad \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left(\left|v_{t}(x)\right|^{2}+\kappa^{2}\left|r_{t}(x)\right|^{2}\right) \mathrm{d} \rho_{t}(x) \mathrm{d} t
$$

- mass/momentum variables, convex 1-homogeneous action

$$
(\rho, G, f)=(\rho, \rho v, \rho r) \quad \text { and } \quad\left(|v|^{2}+\kappa^{2} r^{2}\right) \rho=\frac{|G|^{2}+\kappa^{2}|f|^{2}}{\rho}
$$

- convex constraint/functional over measures $(\rho, G, f) \in \mathcal{M}^{+} \times \mathcal{M}^{d} \times \mathcal{M}$

$$
\partial_{t} \rho_{t}+\operatorname{div} G_{t}=f_{t} \quad \frac{1}{2} \int_{0}^{1} \int_{\Omega} \frac{\left|G_{t}\right|^{2}+\kappa^{2}\left|f_{t}\right|^{2}}{\rho_{t}} \mathrm{~d} t
$$

The bulk/interface setup
 (AKA the ring-road)

Key ingredients:
\checkmark transport in the city
\checkmark transport on the road
\checkmark a toll cost $\kappa>0$

$$
\Omega=\text { downtown, } \Gamma=\partial \Omega=\text { ring-road }
$$

Bulk/interface interactions

Think $\omega=$ cars in the city Ω, and $\gamma=$ cars on the road Γ

$$
\mathcal{P}^{\oplus}(\Omega):=\left\{\rho=(\omega, \gamma) \in \mathcal{M}^{+}(\Omega) \times \mathcal{M}^{+}(\Gamma) \quad \text { s.t. } \quad|\omega|+|\gamma|=1\right\}
$$

The ring-road distance

Definition/theorem [M '20]

For $\rho_{0}, \rho_{1} \in \mathcal{P}^{\oplus}(\Omega)$

$$
\begin{aligned}
& \mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\min \left\{\int_{0}^{1} \int_{\Omega} \frac{\left|F_{t}\right|^{2}}{2 \omega_{t}} \mathrm{~d} t+\int_{0}^{1} \int_{\Gamma} \frac{\left|G_{t}\right|^{2}+\kappa^{2}\left|f_{t}\right|^{2}}{2 \gamma_{t}} \mathrm{~d} t\right. \\
& \left.\begin{array}{lll}
\text { s.t. } & \partial_{t} \omega_{t}+\operatorname{div}\left(F_{t}\right)=0 & \text { in } \Omega \\
F_{t} \cdot n=f_{t} & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma_{t}+\operatorname{div}\left(G_{t}\right)=f_{t} \text { in } \Gamma\right\}
\end{aligned}
$$

is a distance on $\mathcal{P} \oplus(\Omega)$, and minimizing geodesics $t \mapsto \rho_{t}$ always exist with

$$
\varrho_{t}=\omega_{t}+\gamma_{t} \in \mathcal{P}(\Omega)
$$

- only coupled through the flux condition
- weak formulation allows $f \neq 0$ even if $F=0$
- local stoichiometry $\omega \rightleftharpoons \gamma$ with rate $\partial_{t} \gamma=f=-\partial_{t} \omega$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Step 1: pure Wasserstein transport inside Ω with $f=0, G=0$
finite cost $\quad \mathcal{W}_{\Omega}^{2}<\infty$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Step 1: pure Wasserstein transport inside Ω with $f=0, G=0$
finite cost $\quad \mathcal{W}_{\Omega}^{2}<\infty$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

γ_{0}

Step 2: pure Wasserstein transport along Γ with $F=0, f=0$
finite cost $\quad \mathcal{W}_{\Gamma}^{2}<\infty$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Step 2: pure Wasserstein transport along Γ with $F=0, f=0$
finite cost $\quad \mathcal{W}_{\Gamma}^{2}<\infty$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Step 3: pure Fisher-Rao reaction $\omega \rightleftharpoons \gamma$ with $F=0, G=0$ and $f>0$

$$
\text { finite cost } \quad \mathcal{F} \mathcal{R}_{\kappa}^{2}<\infty
$$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Step 3: pure Fisher-Rao reaction $\omega \rightleftharpoons \gamma$ with $F=0, G=0$ and $f>0$

$$
\text { finite cost } \quad \mathcal{F} \mathcal{R}_{\kappa}^{2}<\infty
$$

A typical proof: $\mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)<+\infty$

$$
\left\{\begin{array}{ll}
\partial_{t} \omega+\operatorname{div} F=0 & \text { in } \Omega \\
F \cdot n=f & \text { on } \partial \Omega
\end{array} \quad \text { and } \quad \partial_{t} \gamma+\operatorname{div} G=f \quad \text { in } \Gamma\right.
$$

Conclusion: we just connected any arbitrary ρ_{0} to $\rho^{*}=\left(0, \delta_{x^{*}}\right)$ with finite cost.

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$
\inf _{(\omega, \gamma) \in L} \mathcal{A}
$$

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$
\inf _{(\omega, \gamma) \in L} \mathcal{A}=\inf _{\omega, \gamma} \sup _{\phi, \psi}\{\mathcal{A}+\mathcal{L}\}
$$

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$
\inf _{(\omega, \gamma) \in L} \mathcal{A}=\inf _{\omega, \gamma} \sup _{\phi, \psi}\{\mathcal{A}+\mathcal{L}\}=\sup _{\phi, \psi} \inf _{\omega, \gamma}\{\mathcal{A}+\mathcal{L}\}
$$

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$
\inf _{(\omega, \gamma) \in L} \mathcal{A}=\inf _{\omega, \gamma} \sup _{\phi, \psi}\{\mathcal{A}+\mathcal{L}\}=\sup _{\phi, \psi} \inf _{\omega, \gamma}\{\mathcal{A}+\mathcal{L}\}
$$

Proposition (Hamilton-Jacobi duality)

$$
\begin{aligned}
& \mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\sup _{\phi, \psi}\left\{\int_{\Omega} \phi_{1} \omega_{1}-\phi_{0} \omega_{0}+\int_{\Gamma} \psi_{1} \gamma_{1}-\psi_{0} \gamma_{0}\right. \text { s.t. } \phi, \psi \in C^{1} \text { and } \\
&\left\{\begin{array}{ll}
\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2} \leq 0 & \text { in }(0,1) \times \Omega \\
\partial_{t} \psi+\frac{1}{2}|\nabla \psi|^{2}+\frac{1}{2 \kappa^{2}}|\psi-\phi|^{2} \leq 0 & \text { in }(0,1) \times \Gamma
\end{array}\right\}
\end{aligned}
$$

Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

$$
\inf _{(\omega, \gamma) \in L} \mathcal{A}=\inf _{\omega, \gamma} \sup _{\phi, \psi}\{\mathcal{A}+\mathcal{L}\}=\sup _{\phi, \psi} \inf _{\omega, \gamma}\{\mathcal{A}+\mathcal{L}\}
$$

Proposition (Hamilton-Jacobi duality)

$$
\begin{aligned}
& \mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\sup _{\phi, \psi}\left\{\int_{\Omega} \phi_{1} \omega_{1}-\phi_{0} \omega_{0}+\int_{\Gamma} \psi_{1} \gamma_{1}-\psi_{0} \gamma_{0}\right. \text { s.t. } \phi, \psi \in C^{1} \text { and } \\
& \qquad\left\{\begin{array}{ll}
\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2} \leq 0 & \text { in }(0,1) \times \Omega \\
\partial_{t} \psi+\frac{1}{2}|\nabla \psi|^{2}+\frac{1}{2 \kappa^{2}}|\psi-\phi|^{2} \leq 0 & \text { in }(0,1) \times \Gamma
\end{array}\right\}
\end{aligned}
$$

Corollary

For fixed ρ_{0}, ρ_{1} the map $\kappa \mapsto \mathcal{W}_{\kappa}\left(\rho_{0}, \rho_{1}\right)$ is monotone \uparrow
Proof: $S_{\kappa^{\prime}} \subset S_{\kappa}$ for $\kappa^{\prime}<\kappa$.

Optimality and geodesics

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\sup \left\{\int_{\Omega} \phi_{1} \omega_{1}-\phi_{0} \omega_{0}+\int_{\Gamma} \psi_{1} \gamma_{1}-\psi_{0} \gamma_{0} \quad \text { s.t. }(\phi, \psi) \text { subsolutions }\right\}
$$

Hopf-Lax monotonicity suggests saturating HJ inequalities

Theorem (certification)

If $\left\{\begin{array}{ll}\partial_{t} \omega+\operatorname{div}(\omega \nabla \phi)=0 \\ \partial_{t} \gamma+\operatorname{div}(\gamma \nabla \psi)=\gamma \frac{\psi-\phi}{\kappa^{2}}\end{array} \quad\right.$ with $\quad \begin{cases}\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}=0 & \omega \text {-a.e. } \\ \partial_{t} \psi+\frac{1}{2}|\nabla \psi|^{2}+\frac{1}{2 \kappa^{2}}|\psi-\phi|^{2}=0 & \gamma \text {-a.e. }\end{cases}$
then $t \mapsto \rho_{t}=\left(\omega_{t}, \gamma_{t}\right) \in \mathcal{P}^{\oplus}$ is a minimizing geodesic between ρ_{0}, ρ_{1}.

- allows to check optimality of possible ansatz
- determines the built-in Riemannian structure à la Otto

One-point geodesics

In classical OT, Eulerian/Lagrangian duality $d^{2}\left(x_{0}, x_{1}\right)=\mathcal{W}^{2}\left(\delta_{x_{0}}, \delta_{x_{1}}\right)$

$$
\rho_{t}=\delta_{x_{t}}
$$

minimizing \mathcal{W}-geodesics
constant-speed particles

One-point geodesics

Question

Compute the \mathcal{W}_{κ} distance and geodesic between $\rho_{0}=\left(\delta_{x_{0}}, 0\right)$ and $\rho_{1}=\left(0, \delta_{x_{R}}\right)$?

- clearly a 1D problem along I, coordinate $r \in[0, R]$ with $R=\left|x_{R}-x_{0}\right|$
- cannot simply be a traveling Dirac (∞ cost)

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

Theorem (one-point geodesics)

For $\rho_{0}=\left(\delta_{0}, 0\right)$ and $\rho_{1}=\left(0, \delta_{R}\right)$ we have

$$
\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\frac{1}{2} \frac{\alpha}{\alpha-1}\left(R^{2}+\alpha \kappa^{2}\right)
$$

$$
\alpha=1+\sqrt{1+\frac{R^{2}}{\kappa^{2}}}>2
$$

and the geodesic is

$$
\omega_{t}=\alpha\left(\frac{R t}{r}\right)^{\alpha} \frac{1}{r} \chi_{[R t, R]}(r) \mathrm{d} r \quad \text { and } \quad \gamma_{t}=t^{\alpha}
$$

- Mass splitting and unbounded speeds \neq classical OT
- $\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right) \xrightarrow{\kappa \rightarrow \infty}+\infty$ and $\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right) \xrightarrow{\kappa \rightarrow 0} \frac{1}{2} R^{2}$

(1) superposition of Lagrangian particles $\left(X_{t}^{y}\right)_{y \in[0,1]}$ with mass dy
(2) constant speeds, only keep $y \in\left[0, Y_{t}\right]$

$$
\omega_{t}(\bullet)=\int_{0}^{Y_{t}} \delta_{X_{t}^{y}}(\bullet) \mathrm{d} y \quad \text { and } \quad \frac{d}{d t} X_{t}^{y}=U(y)
$$

(3) optimize with respect to $U(\cdot)$

$$
\text { cost }=\quad \int_{0}^{1} \int_{0}^{\tau(y)} \frac{1}{2} \mathrm{~d} y|U(y)|^{2} \mathrm{~d} t+\text { "reaction" }
$$

Geometrical/topological properties

Theorem

Writing $\varrho_{i}=\omega_{i}+\gamma_{i} \in \mathcal{P}(\Omega)$, there holds

$$
\begin{equation*}
\mathcal{W}_{\Omega}^{2}\left(\varrho_{0}, \varrho_{1}\right) \leq \underbrace{\mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)}_{\uparrow \text { in } \kappa} \leq \mathcal{W}_{\Omega}^{2}\left(\omega_{0}, \omega_{1}\right)+\mathcal{W}_{\Gamma}^{2}\left(\gamma_{0}, \gamma_{1}\right) \tag{1}
\end{equation*}
$$

Moreover

$$
\mathcal{W}_{\kappa}\left(\rho_{n}, \rho\right) \rightarrow 0 \quad \text { iff } \quad \omega_{n} \stackrel{*}{\rightharpoonup} \omega \text { and } \gamma_{n} \stackrel{*}{\rightharpoonup} \gamma
$$

and $\left(\mathcal{P} \oplus, \mathcal{W}_{\kappa}\right)$ is complete.

Remarks:

- Completeness needed for the "Italian voodoo" [AGS '08]
- For fixed κ all inequalities are sharp but can be strict
- $\ln (1)$ the r.h.s. can be $+\infty$ if $\left|\omega_{0}\right| \neq\left|\omega_{1}\right|$ or $\left|\gamma_{0}\right| \neq\left|\gamma_{1}\right|$

The small- and large-toll limits

Theorem

There holds

$$
\lim _{\kappa \rightarrow 0} \mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\mathcal{W}_{\Omega}^{2}\left(\varrho_{0}, \varrho_{1}\right) \quad \text { with } \quad \varrho=\omega+\gamma
$$

and

$$
\lim _{\kappa \rightarrow+\infty} \mathcal{W}_{\kappa}^{2}\left(\rho_{0}, \rho_{1}\right)=\mathcal{W}_{\Omega}^{2}\left(\omega_{0}, \omega_{1}\right)+\mathcal{W}_{\Gamma}^{2}\left(\gamma_{0}, \gamma_{1}\right) \quad \in[0,+\infty]
$$

and geodesics converge as well (Gamma-limit).

Interpretation:

- As $\kappa \rightarrow 0$ the (ω, γ) cars need not be distinguished and superpose into $\varrho=\omega+\gamma$
- As $\kappa \rightarrow+\infty$ transfer of mass becomes infinitely expensive, hence independent OT problems in Ω, Г

Perspectives

- static formulation ??
- gradient-flows and PDEs
- dynamical evolution of interfaces [Cancès-Merlet?]
- complex structures, different flux costs

$$
\kappa^{2} \frac{|f|^{2}}{\theta(\omega, \gamma)} \quad \text { e.g. } \theta(\omega, \gamma)=[\omega-\gamma]^{+}
$$

- numerics, with T. Gallouët and M. Laborde (ALG2-JKO)

Thank you for listening

