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1. Introduction



Graph matching, a.k.a. network alignment

• Given two unlabeled graphs 𝐴 and 𝐵 on 𝑛 vertices

• Match their vertices to maximally align their edges:

Match



Social Networks

• [Narayanan, Shmatikov
2008, 2009]

Applications

Computational Biology

• [Singh, Xu, Berger 2008;  
Kazemi et al. 2016]

Computer Vision

• [Lähner et al. 2016;           
Fan, M., Wu, Xu 2020]



Deterministic formulation

• Noiseless: graph isomorphism problem
• Computational complexity not settled [Babai 2016]

• Noisy: Given adjacency matrices 𝐴, 𝐵 ∈ 𝐑𝑛×𝑛, solve

where 𝜋: 𝑛 → [𝑛] is a permutation/matching

• The quadratic assignment problem is NP-hard



2. Model and Result



Correlated Erdős–Rényi graph model [Pedarsani-Grossglauser 11]

• 𝐴 and 𝐵 are marginally 𝐺(𝑛, 𝑝) graphs

• Ground-truth matching 𝜋∗

• Define

so 𝛿 ∈ (0, 1) is the noise level and 1 − 𝛿 is the correlation

• Given (𝐴, 𝐵), aim to recover 𝜋∗ exactly



When is exact recovery possible?

• Connectivity threshold for 𝐴, 𝐵 ∼ 𝐺(𝑛, 𝑝) : 

𝑛𝑝 ≥ 1 + 𝜖 log 𝑛

• Intersection of the two graphs 𝐴𝜋∗ ∧ 𝐵 ∼ 𝐺(𝑛, 𝑝 1 − 𝛿 ) :

𝑛𝑝 1 − 𝛿 ≥ 1 + 𝜖 log 𝑛

• If 𝑛𝑝 = 1.1 log 𝑛, then 𝛿 needs to be small constant.



Selected results for exact recovery

Condition Time

[Cullina, Kiyavash 16]

[Wu, Xu, Yu 21]
𝑛𝑝 1 − 𝛿 ≥ (1 + 𝜖) log 𝑛 , 𝑝 ≪ 1 − 𝛼 exp

[Barak et al. 18] 1 − 𝛿 ≥ log 𝑛 −𝑜 1 , 𝑛𝑜 1 ≤ 𝑛𝑝 ≤ 𝑛1−𝜖 quasi-poly

[Ding, Ma, Wu, Xu 18]

[Fan, M., Wu, Xu 19]
𝛿 ≤ log 𝑛 −𝐶 , 𝑛𝑝 ≥ log 𝑛 𝐶 poly

[Ding, Ma, Wu, Xu 18]

[M., R., T. 21]
𝛿 ≤ log log 𝑛 −𝐶 , 𝑛𝑝 ≥ log 𝑛 𝐶 poly

This Work 𝛿 ≤ 𝛿0(𝜖), (1 + 𝜖) log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛𝑜(1) poly



3. Algorithm and Analysis



Matching via vertex signatures

• Associate each vertex 𝑖 of 𝐴 with a signature 𝑓𝑖
𝐴

• Do the same for 𝐵

• Match vertex 𝑖 of 𝐴 and vertex 𝑗 of 𝐵 if and only if 𝑓𝑖
𝐴 is “close” to 𝑓𝑗

𝐵

Naïve example:

• How about 𝑓𝑖
𝐴 = deg𝑖

𝐴, the degree of 𝑖 in 𝐴 ?

• Issue: the 𝑛 degrees for each graph are in 

(𝑛𝑝 − 𝐶 𝑛𝑝, 𝑛𝑝 + 𝐶 𝑛𝑝 )



Some methods in the literature

• [Ding, Ma, Wu, Xu 18]: same problem, vanishing noise 

Signature: Degree profile, i.e., neighbors’ degrees

• [Mossel, Xu 18]: seeded version, constant noise

Signature: Number of 𝑟-neighbors in a seed set

• [Ganassali, Massoulié, Lelarge 20, 21]: partial matching, constant noise

Signature: Local trees of depth 𝑂(log 𝑛)

Lesson: Use degree statistics & explore large neighborhoods



Main theorem

• Observe 𝐴 and 𝐵 with latent matching 𝜋∗ (= identity WLOG)

• Average degree: (1 + 𝜖) log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛
1

𝐶 log log 𝑛

• Noise level: 𝛿 ≤ 𝛿0 ∧ (𝜖/4), 𝛿0 > 0 small constant

• A new 𝑛2+𝑜(1)-time algorithm recovers 𝜋∗ exactly with 

probability 1 − 𝑛−𝜖/10



Step 1: Partition trees



Partition tree: Structure

• Fix graph 𝐴 and vertex 𝑖 ∈ {1,… , 𝑛}

•𝑆 𝑖, 𝑟 : 𝑟-sphere of 𝑖 in graph distance

• Construct a complete binary tree of depth 𝑚 = 𝐶 log log 𝑛

𝑇 = {𝑇𝜎
𝑟: 𝜎 ∈ −1,+1 𝑟 , 𝑟 = 1,… ,𝑚}

Nodes 𝑇𝜎
𝑟 , 𝜎 ∈ −1,+1 𝑟 form a partition of 𝑆(𝑖, 𝑟)



Partition tree: Definition

•𝑇0 = {𝑖}

• for 𝑟 = 0,… ,𝑚 − 1

• for 𝜎 ∈ −1,+1 𝑟

•𝑇(𝜎,+1)
𝑟+1 = 𝑗 ∈ 𝑁 𝑇𝜎

𝑟 ∩ 𝑆 𝑖, 𝑟 + 1 ∶ deg 𝑗 ≥ 𝑛𝑝

•𝑇(𝜎,−1)
𝑟+1 = {𝑗 ∈ 𝑁 𝑇𝜎

𝑟 ∩ 𝑆 𝑖, 𝑟 + 1 ∶ deg 𝑗 < 𝑛𝑝}

𝑁 𝑆 is the set of neighbors of vertices in 𝑆



Overlap between children of a vertex in two graphs

• For a typical vertex 𝑖

• |𝑆 𝑖, 1 | ≈ 𝑛𝑝

• |𝑇±1
1 | ≈ 𝑛𝑝/2

• 𝑇±1
1 (𝑖, 𝐴) ∩ 𝑇±1

1 (𝑖, 𝐵) ≈ (𝑛𝑝/2) ⋅ (1 − 𝜅(𝛿))

𝜅 𝛿 → 0 as 𝛿 → 0



Overlap between leaves in two graphs

• For a typical vertex 𝑖, whose 𝑚-neighborhood is a tree

• |𝑆 𝑖,𝑚 | ≈ 𝑛𝑝 𝑚

• |𝑇𝜎
𝑚| ≈ 𝑛𝑝/2 𝑚

• 𝑇𝜎
𝑚(𝑖, 𝐴) ∩ 𝑇𝜎

𝑚(𝑖, 𝐵) ≈ 𝑛𝑝/2 𝑚 ⋅ 1 − 𝜅 𝛿
𝑚



How many typical vertices?

• If log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛
1

𝐶′ log log 𝑛 and 𝑚 = 𝐶 log log 𝑛

• With probability 1 − 𝑛−10

•𝑛 − 𝑛1−𝑐 typical vertices whose 𝑚-neighborhood are trees



Conclusion

• If log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛
1

𝐶′ log log 𝑛

• With probability 1 − 𝑛−10, for 𝑛 − 𝑛1−𝑐 typical vertices 𝑖 ≠ 𝑗

• Leaves of partition trees at 𝑖 in 𝐴 and 𝑖 in 𝐵 have overlap

𝑇𝜎
𝑚(𝑖, 𝐴) ∩ 𝑇𝜎

𝑚(𝑖, 𝐵) > 𝑛𝑝/2 𝑚 ⋅ 1 − 𝜅 𝛿
𝑚

• Leaves of partition trees at 𝑖 in 𝐴 and 𝑗 in 𝐵 have tiny overlap



Step 2: Vertex signatures



Vertex signature: Definition

• Graph 𝐴, vertex 𝑖

• Define signature 𝑓𝑖
𝐴 ∈ 𝐑2𝑚: For leaf 𝑇𝜎

𝑚, 

• (𝑓𝑖
𝐴)𝜎 = σ𝑗[deg 𝑗 − 𝑛𝑝 − 1] for 𝑗 ∈ 𝑁 𝑇𝜎

𝑚 ∩ 𝑆 𝑖,𝑚 + 1



Entrywise difference between vertex signatures

• Recall 𝑇𝜎
𝑚(𝑖, 𝐴) ∩ 𝑇𝜎

𝑚(𝑖, 𝐵) ≈ 𝑛𝑝/2 𝑚 ⋅ 1 − 𝜅 𝛿
𝑚

• Entrywise difference between signatures: For 𝑖 ≠ 𝑗,

(𝑓𝑖
𝐴−𝑓𝑖

𝐵)𝜎
2

variance
≤ 1 − 1 − 2𝜅 𝛿

𝑚
≤ 1 −

1

log 𝑛

(𝑓𝑖
𝐴−𝑓𝑗

𝐵)𝜎
2

variance
≈ 1



Sparsified ℓ𝟐 difference between vertex signatures

• Sparsification: Take uniform random 𝐼 ⊂ −1,+1 𝑚 of size 

𝐼 = polylog 𝑛 ≪ 2𝑚 = length(𝑓𝑖
𝐴)

• Match 𝑖 and 𝑗 if and only if 

1

|𝐼|
σ𝜎∈𝐼

(𝑓𝑖
𝐴−𝑓𝑗

𝐵)𝜎
2

variance
≤ 1 −

1

log 𝑛



Conclusion

• If log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛
1

𝐶 log log 𝑛

• Noise 𝛿 ≤ 𝛿0 small constant

•𝑛 − 𝑛1−𝑐 typical vertices 𝑖 and 𝑗 are matched correctly

• With probability 1 − 𝑛−10 obtain an almost exact matching ො𝜋

𝑖: ො𝜋 𝑖 ≠ 𝜋∗ 𝑖 ≤ 4𝑛1−𝑐



Step 3: Refine to an exact matching



One-step refinement

• Given 𝜋0 such that 𝑖: 𝜋0 𝑖 ≠ 𝜋∗ 𝑖 ≤ 𝜆 𝑛

• Match 𝑖 = 𝜋1(𝑗) if 

•𝑁𝐴 𝑖 ∩ 𝜋0 𝑁𝐵 𝑗 ≥ 𝑐𝜖2𝑛𝑝

•𝑁𝐴 𝑖 ∩ 𝜋0 𝑁𝐵 𝑘 < 𝑐𝜖2𝑛𝑝 for all 𝑘 ≠ 𝑗

•𝑁𝐴 𝑘 ∩ 𝜋0 𝑁𝐵 𝑗 < 𝑐𝜖2𝑛𝑝 for all 𝑘 ≠ 𝑖

• Extend 𝜋1 to a permutation on {1, … , 𝑛}



Iterative refinement

• With probability 1 − 𝑛−𝜖/10

• if 𝑖: 𝜋0 𝑖 ≠ 𝜋∗ 𝑖 ≤ 𝜆 𝑛

• then 𝑖: 𝜋1 𝑖 ≠ 𝜋∗ 𝑖 ≤ 𝜆 𝑛/2

• 𝑖: 𝜋ℓ 𝑖 ≠ 𝜋∗ 𝑖 ≤ 𝜆 𝑛/2ℓ, for ℓ = 1, 2, …

•𝜋log2(𝑛) = 𝜋∗



Conclusion

• Average degree: (1 + 𝜖) log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛0.5−𝜖

• Noise level: 𝛿 ≤ 𝜖/4

• Starting from a data-dependent partial matching

• Recover 𝜋∗ exactly with probability 1 − 𝑛−𝜖/10



Main theorem

• Observe 𝐴 and 𝐵 with latent matching 𝜋∗

• Average degree: (1 + 𝜖) log 𝑛 ≤ 𝑛𝑝 ≤ 𝑛
1

𝐶 log log 𝑛

• Noise level: 𝛿 ≤ 𝛿0 ∧ (𝜖/4)

• The 𝑛2+𝑜(1)-time algorithm recovers 𝜋∗ exactly with 

probability 1 − 𝑛−𝜖/10



4. Discussion



Future directions
• Theory of Erdős–Rényi graph matching

• Dense graphs, global algorithms

• Partial recovery, detection [Ganassali, Massoulié 20; Hall, Massoulié 20; 
Ganassali, Massoulié, Lelarge 21; Wu, Xu, Yu 20; M., Wu, Xu, Yu 21]

• Variations
• Seeded version [Kazemi, Hassani, Grossglauser 15; Mossel, Xu 18; Yu, Xu, Lin 20]

• Side information

• Other random graph matching models
• Universality [Fan, M., Wu, Xu 19]

• Preferential attachment [Korula, Lanttanzi 14; Racz, Sridhar 20]

• Correlated stochastic block models [Onaran, Garp, Erkip 16; Racz, Sridhar 20]



Thank you!

“Exact Matching of Random Graphs with Constant Correlation”.

Cheng Mao, Mark Rudelson, Konstantin Tikhomirov.
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