Exact Matching of Random Graphs with Constant Correlation

Cheng Mao (Georgia Tech)
Mark Rudelson (University of Michigan)
Konstantin Tikhomirov (Georgia Tech)

Simons Institute, Berkeley, CA
October 15, 2021

1. Introduction

Graph matching, a.k.a. network alignment

- Given two unlabeled graphs A and B on n vertices
- Match their vertices to maximally align their edges:

Match

Applications

Social Networks

- [Narayanan, Shmatikov 2008, 2009]

Linked in.

Computational Biology

- [Singh, Xu, Berger 2008; Kazemi et al. 2016]

Computer Vision

- [Lähner et al. 2016; Fan, M., Wu, Xu 2020]
source

target

Tech

Deterministic formulation

- Noiseless: graph isomorphism problem
- Computational complexity not settled [Babai 2016]
- Noisy: Given adjacency matrices $A, B \in \mathbf{R}^{n \times n}$, solve

$$
\max _{\pi} \sum_{i=1}^{n} A_{\pi(i) \pi(j)} B_{i j}
$$

where $\pi:[n] \rightarrow[n]$ is a permutation/matching

- The quadratic assignment problem is NP-hard

2. Model and Result

Correlated Erdős-Rényi graph model [Pedarsani-Grossglauser 11]

- A and B are marginally $G(n, p)$ graphs
- Ground-truth matching π^{*}
- Define

$$
\begin{aligned}
& \delta:=\mathbb{P}\left\{B_{i j}=0 \mid A_{\pi^{*}(i) \pi^{*}(j)}=1\right\} \\
& \mathbb{E}\left[A_{\pi^{*}(i) \pi^{*}(j)} B_{i j}\right]=p(1-\delta)
\end{aligned}
$$

so $\delta \in(0,1)$ is the noise level and $1-\delta$ is the correlation

- Given (A, B), aim to recover π^{*} exactly

When is exact recovery possible?

- Connectivity threshold for $A, B \sim G(n, p)$:

$$
n p \geq(1+\epsilon) \log n
$$

- Intersection of the two graphs $A_{\pi^{*}} \wedge B \sim G(n, p(1-\delta))$:

$$
n p(1-\delta) \geq(1+\epsilon) \log n
$$

- If $n p=1.1 \log n$, then δ needs to be small constant.
creating the next

Selected results for exact recovery

Condition

Time

[Cullina, Kiyavash 16] $\quad n p(1-\delta) \geq(1+\epsilon) \log n, \quad p \ll 1-\alpha \quad \exp$ [Wu, Xu, Yu 21]
[Barak et al. 18]

$$
1-\delta \geq(\log n)^{-o(1)}, \quad n^{o(1)} \leq n p \leq n^{1-\epsilon} \text { quasi-poly }
$$

[Ding, Ma, Wu, Xu 18]
[Fan, M., Wu, Xu 19]
[Ding, Ma, Wu, Xu 18]
[M., R., T. 21]
This Work

$$
\delta \leq(\log n)^{-C}, \quad n p \geq(\log n)^{C}
$$

poly

$$
\delta \leq(\log \log n)^{-C}, \quad n p \geq(\log n)^{C} \quad \text { poly }
$$

$$
\delta \leq \delta_{0}(\epsilon), \quad(1+\epsilon) \log n \leq n p \leq n^{o(1)}
$$

poly

3. Algorithm and Analysis

Matching via vertex signatures

- Associate each vertex i of A with a signature f_{i}^{A}
- Do the same for B
- Match vertex i of A and vertex j of B if and only if f_{i}^{A} is "close" to f_{j}^{B}

Naïve example:

- How about $f_{i}^{A}=\operatorname{deg}_{i}^{A}$, the degree of i in A ?
- Issue: the n degrees for each graph are in

$$
(n p-C \sqrt{n p}, n p+C \sqrt{n p})
$$

Some methods in the literature

- [Ding, Ma, Wu, Xu 18]: same problem, vanishing noise Signature: Degree profile, i.e., neighbors' degrees
- [Mossel, Xu 18]: seeded version, constant noise

Signature: Number of r-neighbors in a seed set

- [Ganassali, Massoulié, Lelarge 20, 21]: partial matching, constant noise Signature: Local trees of depth $O(\log n)$

Lesson: Use degree statistics \& explore large neighborhoods

Main theorem

- Observe A and B with latent matching π^{*} (= identity WLOG)
- Average degree: $(1+\epsilon) \log n \leq n p \leq n^{\frac{1}{C \log \log n}}$
- Noise level: $\delta \leq \delta_{0} \wedge(\epsilon / 4), \delta_{0}>0$ small constant
- A new $n^{2+o(1)}$-time algorithm recovers π^{*} exactly with probability $1-n^{-\epsilon / 10}$

Step 1: Partition trees

Partition tree: Structure

- Fix graph A and vertex $i \in\{1, \ldots, n\}$
- $S(i, r): r$-sphere of i in graph distance
- Construct a complete binary tree of depth $m=C \log \log n$

$$
T=\left\{T_{\sigma}^{r}: \sigma \in\{-1,+1\}^{r}, r=1, \ldots, m\right\}
$$

Nodes $T_{\sigma}^{r}, \sigma \in\{-1,+1\}^{r}$ form a partition of $S(i, r)$

Partition tree: Definition

- $T^{0}=\{i\}$
- for $r=0, \ldots, m-1$
- for $\sigma \in\{-1,+1\}^{r}$
- $T_{(\sigma,+1)}^{r+1}=\left\{j \in N\left(T_{\sigma}^{r}\right) \cap S(i, r+1): \operatorname{deg}(j) \geq n p\right\}$
- $T_{(\sigma,-1)}^{r+1}=\left\{j \in N\left(T_{\sigma}^{r}\right) \cap S(i, r+1): \operatorname{deg}(j)<n p\right\}$
$N(S)$ is the set of neighbors of vertices in S

Overlap between children of a vertex in two graphs

- For a typical vertex i
- $|S(i, 1)| \approx n p$
- $\left|T_{ \pm 1}^{1}\right| \approx n p / 2$
- $\left|T_{ \pm 1}^{1}(i, A) \cap T_{ \pm 1}^{1}(i, B)\right| \approx(n p / 2) \cdot(1-\kappa(\delta))$

$$
\kappa(\delta) \rightarrow 0 \text { as } \delta \rightarrow 0
$$

Overlap between leaves in two graphs

- For a typical vertex i, whose m-neighborhood is a tree
- $|S(i, m)| \approx(n p)^{m}$
- $\left|T_{\sigma}^{m}\right| \approx(n p / 2)^{m}$
$\cdot\left|T_{\sigma}^{m}(i, A) \cap T_{\sigma}^{m}(i, B)\right| \approx(n p / 2)^{m} \cdot(1-\kappa(\delta))^{m}$

How many typical vertices?

- If $\log n \leq n p \leq n^{\frac{1}{c^{\prime} \log \log n}}$ and $m=C \log \log n$
- With probability $1-n^{-10}$
- $n-n^{1-c}$ typical vertices whose m-neighborhood are trees

Conclusion

- If $\log n \leq n p \leq n^{\frac{1}{C^{\prime} \log \log n}}$
- With probability $1-n^{-10}$, for $n-n^{1-c}$ typical vertices $i \neq j$
- Leaves of partition trees at i in A and i in B have overlap

$$
\left|T_{\sigma}^{m}(i, A) \cap T_{\sigma}^{m}(i, B)\right|>(n p / 2)^{m} \cdot(1-\kappa(\delta))^{m}
$$

- Leaves of partition trees at i in A and j in B have tiny overlap

Step 2: Vertex signatures

Vertex signature: Definition

- Graph A, vertex i
- Define signature $f_{i}^{A} \in \mathbf{R}^{2^{m}}$: For leaf T_{σ}^{m},
- $\left(f_{i}^{A}\right)_{\sigma}=\sum_{j}[\operatorname{deg}(j)-n p-1]$ for $j \in N\left(T_{\sigma}^{m}\right) \cap S(i, m+1)$

Entrywise difference between vertex signatures

- Recall $\left|T_{\sigma}^{m}(i, A) \cap T_{\sigma}^{m}(i, B)\right| \approx(n p / 2)^{m} \cdot(1-\kappa(\delta))^{m}$
- Entrywise difference between signatures: For $i \neq j$,

$$
\begin{aligned}
& \frac{\left(f_{i}^{A}-f_{i}^{B}\right)_{\sigma}^{2}}{\text { variance }} \leq 1-(1-2 \kappa(\delta))^{m} \leq 1-\frac{1}{\sqrt{\log n}} \\
& \frac{\left(f_{i}^{A}-f_{j}^{B}\right)_{\sigma}^{2}}{\text { variance }} \approx 1
\end{aligned}
$$

Sparsified ℓ_{2} difference between vertex signatures

- Sparsification: Take uniform random $I \subset\{-1,+1\}^{m}$ of size

$$
|I|=\operatorname{polylog}(n) \ll 2^{m}=\operatorname{length}\left(f_{i}^{A}\right)
$$

- Match i and j if and only if

$$
\frac{1}{|I|} \sum_{\sigma \in I} \frac{\left(f_{i}^{A}-f_{j}^{B}\right)_{\sigma}^{2}}{\text { variance }} \leq 1-\frac{1}{\sqrt{\log n}}
$$

Conclusion

- If $\log n \leq n p \leq n^{\frac{1}{C \log \log n}}$
- Noise $\delta \leq \delta_{0}$ small constant
- $n-n^{1-c}$ typical vertices i and j are matched correctly
- With probability $1-n^{-10}$ obtain an almost exact matching $\hat{\pi}$

$$
\left|\left\{i: \hat{\pi}(i) \neq \pi^{*}(i)\right\}\right| \leq 4 n^{1-c}
$$

Step 3: Refine to an exact matching

One-step refinement

- Given π_{0} such that $\left|\left\{i: \pi_{0}(i) \neq \pi^{*}(i)\right\}\right| \leq \lambda n$
- Match $i=\pi_{1}(j)$ if
- $N_{A}(i) \cap \pi_{0}\left(N_{B}(j)\right) \geq c \epsilon^{2} n p$
- $N_{A}(i) \cap \pi_{0}\left(N_{B}(k)\right)<c \epsilon^{2} n p$ for all $k \neq j$
- $N_{A}(k) \cap \pi_{0}\left(N_{B}(j)\right)<c \epsilon^{2} n p$ for all $k \neq i$
- Extend π_{1} to a permutation on $\{1, \ldots, n\}$

Iterative refinement

- With probability $1-n^{-\epsilon / 10}$
- if $\left|\left\{i: \pi_{0}(i) \neq \pi^{*}(i)\right\}\right| \leq \lambda n$
- then $\left|\left\{i: \pi_{1}(i) \neq \pi^{*}(i)\right\}\right| \leq \lambda n / 2$
- $\left|\left\{i: \pi_{\ell}(i) \neq \pi^{*}(i)\right\}\right| \leq \lambda n / 2^{\ell}$, for $\ell=1,2, \ldots$
- $\pi_{\log _{2}(n)}=\pi^{*}$

Conclusion

- Average degree: $(1+\epsilon) \log n \leq n p \leq n^{0.5-\epsilon}$
- Noise level: $\delta \leq \epsilon / 4$
- Starting from a data-dependent partial matching
- Recover π^{*} exactly with probability $1-n^{-\epsilon / 10}$

Main theorem

- Observe A and B with latent matching π^{*}
- Average degree: $(1+\epsilon) \log n \leq n p \leq n^{\frac{1}{C \log \log n}}$
- Noise level: $\delta \leq \delta_{0} \wedge(\epsilon / 4)$
-The $n^{2+o(1)}$-time algorithm recovers π^{*} exactly with probability $1-n^{-\epsilon / 10}$

4. Discussion

Future directions

- Theory of Erdős-Rényi graph matching
- Dense graphs, global algorithms
- Partial recovery, detection [Ganassali, Massoulié 20; Hall, Massoulié 20; Ganassali, Massoulié, Lelarge 21; Wu, Xu, Yu 20; M., Wu, Xu, Yu 21]
- Variations
- Seeded version [Kazemi, Hassani, Grossglauser 15; Mossel, Xu 18; Yu, Xu, Lin 20]
- Side information
- Other random graph matching models
- Universality [Fan, M., Wu, Xu 19]
- Preferential attachment [Korula, Lanttanzi 14; Racz, Sridhar 20]
- Correlated stochastic block models [Onaran, Garp, Erkip 16; Racz, Sridhar 20]

Thank you!

"Exact Matching of Random Graphs with Constant Correlation". Cheng Mao, Mark Rudelson, Konstantin Tikhomirov. arXiv preprint arXiv:2110.05000, 2021

