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1. Introduction
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Graph matching, a.k.a. network alignment

* Given two unlabeled graphs A and B on n vertices
* Match their vertices to maximally align their edges:
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Applications

Social Networks

e [Narayanan, Shmatikov
2008, 2009]

Linked [} 4

Computational Biology

* [Singh, Xu, Berger 2008;
Kazemi et al. 2016]
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Computer Vision

e [Lahner et al. 2016;

Fan, M., Wu, Xu 2020]
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* Noiseless: graph isomorphism problem
* Computational complexity not settled [Babai 2016]

* Noisy: Given adjacency matrices 4, B € R™*", solve
n
max ) Ar(iyx(j) Bis
i=1
where m: [n] — [n] is a permutation/matching

* The quadratic assighment problem is NP-hard



2. Model and Result
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Correlated Erdos—Reéenyi graph model [pedarsani-Grossglauser 11]

* A and B are marginally G(n, p) graphs
e Ground-truth matching ™
* Define

5 — IP{BZJ — 0 | A *(Z)ﬂ'*(]) — ]_}

L[ A (3ymr () Big] = p(1 = 9)

so 6 € (0,1) is the noise level and 1 — ¢ is the correlation

* Given (4, B), aim to recover ™ exactly



When is exact recovery possible?

* Connectivity threshold for A,B ~ G(n, p) :

np = (1+e¢€)logn

* Intersection of the two graphs A, AB ~ G(n,p(1 —6)) :

np(l—6)=(1+¢€)logn

*If np = 1.1logn, then 6 needs to be small constant.  ceo



Condition Time

Cullina, Kiyavash 16]  np(1—6) = (1+ €)logn, pKLKl—a exp
Wu, Xu, Yu 21]

Barak et al. 18] 1 -6 = (log n)—O(l), ne < np < nl=€ quasi-poly
Ding, Ma, Wu, Xu 18] 6 < (logn)™¢, np=(logn)° poly

Fan, M., Wu, Xu 19]

Ding, Ma, Wu, Xu 18] 6 < (loglogn)~¢, np = (logn)* poly

M., R., T. 21]

This Work d < 6y(€), (1+€)logn < np <n°@D  poly



3. Algorithm and Analysis
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* Associate each vertex i of A with a signature fl-A
* Do the same for B

* Match vertex i of A and vertex j of B if and only if fl-A is “close” to ij

Naive example:

* How about f;* = deg?, the degree of i in 4 ?
* Issue: the n degrees for each graph are in

(np — C\/p, np + C\7p )



Some methods in the literature
* [Ding, Ma, Wu, Xu 18]: same problem, vanishing noise
Signature: Degree profile, i.e., neighbors’ degrees

* [Mossel, Xu 18]: seeded version, constant noise
Signature: Number of r-neighbors in a seed set

* [Ganassali, Massoulié, Lelarge 20, 21]: partial matching, constant noise
Signature: Local trees of depth O(log n)
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* Observe A and B with latent matching ™ (= identity WLOG)

1
* Average degree: (1 + €) logn < np < nC¢loglogn

* Noise level: 6 < 6y A (€/4), 6y > 0 small constant

A new n?2T°(_time algorithm recovers m* exactly with

probability 1 — n~¢/10



Step 1: Partition trees
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*Fix graph A and vertex i € {1, ..., n}

*S(i,7): r-sphere of i in graph distance

* Construct a complete binary tree of depthm = Cloglogn
T={Tl.c€e{—-1,+1}, r=1,..,m}

Nodes TS, o € {—1,+1}" form a partition of S(i, 1)



Partition tree: Definition
T = {i}
eforr=0,...,m—1

foro € {—1,+1}"
*Tloiny = U € N(TE) N S(i,7+ 1) : deg(j) = np}

*Tlo2yy = {j ENTF) NS@,r+ 1) : deg(j) < np}

N (S) is the set of neighbors of verticesin S



Overlap between children of a vertex in two graphs
* For a typical vertex i

*|SC, D] = np

* ‘TJ_rlﬂ ~ np /2

T4 30, A) N T3 B)| ~ (p/2) - (1 - k(6))

kK(6) > 0asd -0
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Overlap between leaves in two graphs

* For a typical vertex i, whose m-neighborhood is a tree

*|S(i,m)| = (np)™

*|T5"| = (np/2)™

o |T™(i, A) N T(i,B)| =~ (np/2)™ - (1 — k(8))"



How many typical vertices?

1
Iflogn < np < n¢'leglogn gnd m = Cloglogn

* With probability 1 — n~1°

*n — n'~¢ typical vertices whose m-neighborhood are trees



1
*Iflogn < np < nc'loglogn

* With probability 1 — n™1%, forn — n1=¢ typical vertices i # j
* Leaves of partition trees ati in A and i in B have overlap
IT(i, A) N T, B) > (np/2)™ - (1— k(6))"

* Leaves of partition trees at i in A and j in B have tiny overlap



Step 2: Vertex signatures
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Vertex signature: Definition
* Graph A4, vertex i

* Define signature [ € R%"™: For leaf )",

*(f)e = Xjldeg(j) —np — 1] for j € N(Tg") N S(i,m + 1)



Entrywise difference between vertex signatures
+Recall [T (i, A) N TI(i, B)| ~ (np/2)™ - (1 — 1(8))"
* Entrywise difference between signatures: For i # |,

1
Jlogn

(-2

variance

<1-(1-2k()"<1-

-3

variance

~ 1



Sparsified ¢, difference between vertex signatures

* Sparsification: Take uniform random I c {—1, +1}™ of size
1| = polylog(n) « 2™ = length(f;*)
* Match i and j if and only if

-3 3 1
Jlogn

1
1] Lioel variance



1
*If logn < np < ncloglogn

* Noise & < 6, small constant
*n — nl~¢ typical vertices i and j are matched correctly

e With probability 1 — n~1Y obtain an almost exact matching #

{i: (i) = m*()}| < 4n'~°



Step 3: Refine to an exact matching
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* Given 1y such that [{i:my(i) # m*(()}| < An
*Matchi =m,(j) if
* Ny(i) N1o(Ng(j)) = ce?np
*N,(i) N nO(NB(k)) < ce’npforallk #j
* Ny(k) Nty (Ng(j)) < ce?np forallk # i

* Extend 4 to a permutationon {1, ..., n}



e With probability 1 — n=¢/10
oif {i:my(i) #* (D)} <An
ethen [{i:m; (i) # " (D)} < An/2

o [{i:mp(i) # T* (D)} < An/2¢, forf =1,2,...

y// *
"Mog,(n) = 1



* Average degree: (1 + €)logn < np < n®>~¢

* Noise level: 6 < €/4

e Starting from a data-dependent partial matching

e Recover * exactly with probability 1 — n~¢/10



* Observe A and B with latent matching ©*

1
* Average degree: (1 + €) logn < np < nC¢loglogn

* Noise level: 6 < 65 A (€/4)

e The n?T°(M_time algorithm recovers m* exactly with

probability 1 — n~¢/10



4. Discussion
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Future directions

* Theory of Erd6s—Rényi graph matching
* Dense graphs, global algorithms
 Partial recovery, detection [Ganassali, Massoulié 20; Hall, Massoulié 20;
Ganassali, Massoulié, Lelarge 21; Wu, Xu, Yu 20; M., Wu, Xu, Yu 21]
* Variations
e Seeded version [Kazemi, Hassani, Grossglauser 15; Mossel, Xu 18; Yu, Xu, Lin 20]
* Side information

* Other random graph matching models
e Universality [Fan, M., Wu, Xu 19]
* Preferential attachment [Korula, Lanttanzi 14; Racz, Sridhar 20]
* Correlated stochastic block models [Onaran, Garp, Erkip 16; Racz, Sridhar 20]
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