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Deep Generative models
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Empirically, Deep Generative models 
produce amazing images
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Ok, Modern deep generative models 
produce amazing pictures. 
But what can we do with them ?

A: generate fake pics for fake social media 
accounts lol
They are modular differentiable priors that 
learn the statistics of your dataset.



Ok, Modern deep generative models 
produce amazing pictures. 
But what can we do with them ?

A: We can solve inverse problems:
Denoising, Compression, Inpainting, 
Colorization, Compressed Sensing, Source 
separation, MRI, Phase Retrieval, Seismic 
Imaging, Anomaly detection, etc… 



Talk Outline
Deep Generative models for inverse problems:

Compressed sensing using Generative models (CSGM)
(Bora et al. ICML 2017) 
1. Unsupervised way to solve inverse problems using a deep generative model G(z)
2. CSGM Guarantees through Set Restricted Eigenvalue conditions.

Theory for Inverting deep generative models.
1.P. Hand and V. Voroninski, Global guarantees for enforcing deep priors by empirical risk, (COLT 2018)
2.Inverting Deep Generative models, One layer at a time
Q. Lei, A. Jalal, I. Dhillon, A.G.D, NeurIPS 2019 
Daskalakis, Dhruv, and Zampetakis. "Constant-expansion suffices for compressed sensing with 
generative priors”, 2021 

A New Algorithmic idea:  ILO: Intermediate Layer Optimization
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
ICML 2021, Deep-Inverse Workshop, NeurIPS 2020. Daras, Dean, Jalal, AD. 
https://github.com/giannisdaras/ilo
https://arxiv.org/abs/2102.07364

New results: Robust Compressed Sensing MRI with Deep Generative 
Priors (NeurIPS’21)
Also if we have time (we won’t): How to turn people into frogs ,
Bias and fairness in inverse problems 

https://github.com/giannisdaras/ilo
https://arxiv.org/abs/2102.07364
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Fresh results- Inpainting 

Compressed Sensing using Generative Models (CSGM) 
by Bora et al. 2017 / PULSE using StyleGAN2 as a prior. 



Fresh results- Inpainting 

Intermediate Layer Optimization (ILO), Layers 1-2,
Prior distribution used: StyleGAN2



Fresh results- Inpainting 

Intermediate Layer Optimization (ILO), Layers 1-4,
Prior distribution used: StyleGAN2
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Compressed sensing= Linear Inverse problems

Am = mx* y

n

• You observe y = A x* ,     x in Rn , y  in Rm,  n>m
• i.e. m (noisy) linear observations of an unknown vector y in Rn

• Goal: Recover x* from y
• ill-posed: there are many possible x* that explain the measurements since we 

have m linear equations with n unknowns. 
• High-dimensional statistics: Number of parameters n > number of samples m
• Must make some assumption: that x* has some structure
• x* is sparse à x* is near the range of a pre-trained generator 



General setup: Linear Inverse problems
• y= Ax* + noise 
• minx ||Ax- y||+R(x)

• Sparsity prior: R(x) = ||x||1 (Lasso)  or ||Dx||1 (Lasso 
in DCT/Wavelet)

• minz ||A G(z) - y|| (CSGM) 

• R(x)= +∞ if x not in range of G(z) 
Otherwise Uniform over all x in range of generator



Sparsity in compressed sensing 
Sparsity in a basis 

is a decent model for natural images

But now we have much better data driven models for 
structure in high-dimensional distributions: DGMs

Idea: Replace: 
“ x is k-sparse “ 

"x is in the range of a deep generative model G(z)’’

(Recent fact: this is a proper generalization: you can 
create all k-sparse vectors with a 2-layer network).

( Akshay Kamath, Sushrut Karmalkar, Eric Price, 
Lower Bounds for Compressed Sensing with Generative Models, Arxiv)

How do we solve inverse problems?



Simplest Inverse problem: Inverting a Generator 

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a 
z1 such that G(z1) is very close to x1 ? 

?

Compressed sensing using generative models, Bora et al. ICML 2017. 
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• Given a target image x1 how do we invert the GAN, i.e. find a 
z1 such that G(z1) is very close to x1 ? 

• Just define a loss J(z) = || G(z) – x1|| 
• Do gradient descent on z (network weights fixed). 
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Inverting a GAN 

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a 
z1 such that G(z1) is very close to x1 ? 

• Just define a loss J(z) = || G(z) – x1|| 
• Do gradient descent on z (network weights fixed). 

Related work : 
Creswell and Bharath (2016) 
Donahue, Krahenbuhl,Trevor 2016 
Dumoulin et al. 
Adversarially learned Inference 
Lipton and Tripathi 2017 

Compressed sensing using generative models, Bora et al. ICML 2017. 



Recovery algorithm: Step 2: Inpainting

x1

G(z)z

• Given a target image x1 observe only some pixels.
• How do we invert the GAN now?

Compressed sensing using generative models, Bora et al. ICML 2017. 



Recovery algorithm: Step 2: Inpainting
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• Given a target image x1 observe only some pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very 

close to x1 on the observed pixels? 
• Just define a loss J(z) = || A G(z) –A  x1|| 
• Do gradient descent on z (network weights fixed). 
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Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
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• Just define a loss J(z) = || A G(z) –A  x1|| 
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Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very 

close to x1 After it has been blurred? 
• Just define a loss J(z) = || A G(z) –A  x1|| 
• Do gradient descent on z (network weights fixed). 
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Recovery from linear measurements 

yG(z)z

min
z�Rk

||y �AG(z)||2

A

CSGM algorithm:
Do gradient descent in z space 

to satisfy measurements. 

Obtain useful gradients 
through the measurements 

using backprop.  

Compressed sensing using generative models, Bora et al. ICML 2017. 



Recovery from linear measurements 

yG(z)z

min
z�Rk

||y �AG(z)||2

A

CSGM algorithm:
Do gradient descent in z space 

to satisfy measurements. 

Obtain useful gradients 
through the measurements 

using backprop.  

Compressed sensing using generative models, Bora et al. ICML 2017. 

Note: There are other methods for solving inverse problems 
Supervised end-to-end inversion

CycleGAN, AmbientGAN and others.
Deep Learning Techniques for Inverse Problems in Imaging, 

https://arxiv.org/pdf/2005.06001.pdf

https://arxiv.org/pdf/2005.06001.pdf
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Theory results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with 

• Then the reconstruction is close to optimal: 
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y = Ax� + �

m = O(kd log n)



Theory results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with 

• Then the reconstruction is close to optimal: 

• (Reconstruction accuracy relates to generator quality) 
• Thm2: More general result: m = O( k log L ) measurements for any 

L-Lipschitz function G(z)

ẑ = min
z

||y �AG(z)||

||G(ẑ)� x�||2 � C min
z

||G(z)� x�||

y = Ax� + �

m = O(kd log n)

Compressed sensing using generative models, Bora et al. ICML 2017. 

+ c||η||



Main results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with 

• Then the reconstruction is close to optimal: 

• (Reconstruction accuracy proportional to model accuracy) 
• Thm2: More general result: m = O( k log L ) measurements for any 

L-Lipschitz function G(z)

ẑ = min
z

||y �AG(z)||

||G(ẑ)� x�||2 � C min
z

||G(z)� x�||

y = Ax� + �

m = O(kd log n)

RIP property for a measurement 
matrix: all sparse vectors are far from 
the nullspace of measurement matrix

We define a set restricted eigenvalue 
condition (S-REC) that asks that the 

differences of pairs of generated 
images is far from the nullspace.  

Key Lemma: Random matrices with 
m=k logL rows will 
satisfy S-REC whp. 
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Main results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with 

• Then the reconstruction is close to optimal: 

• (Reconstruction accuracy proportional to model accuracy) 
• Thm2: More general result: m = O( k log L ) measurements for any 

L-Lipschitz function G(z)

ẑ = min
z

||y �AG(z)||

||G(ẑ)� x�||2 � C min
z

||G(z)� x�||

y = Ax� + �

m = O(kd log n)

Key Lemma: Random matrices with 
m=k logL rows will 
satisfy S-REC whp.

How to bound metric entropy (aka log Covering 
number) of generator range 

Distance distortion L due 
to G(z) 



Theory for Optimization
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Compressed sensing using generative models, Bora et al. ICML 2017. 

Open: How to do efficiently ?
(under the right conditions) 

For generators with random iid weights, gradient descent provably solves this problem!
(Assuming each layer is logk factor bigger compared to previous one).

Hand and Voroninski
Global guarantees for enforcing deep priors by empirical risk (COLT 2018)

Leong, Hand, Voroninski
Phase Retrieval Under a Generative Prior (NeurIPS 2018)

Open problem: Unfortunately real generators have a contracting layer near the end. 
Optimization for this (real) family of generators is open. 



Talk Outline
Deep Generative models for inverse problems:

Compressed sensing using Generative models (CSGM)
(Bora et al. ICML 2017) 
1. Unsupervised way to solve inverse problems using a deep generative model G(z)
2. CSGM Guarantees through Set Restricted Eigenvalue conditions.

Theory for Inverting deep generative models.
1.P. Hand and V. Voroninski, Global guarantees for enforcing deep priors by empirical risk, (COLT 2018)
2.Inverting Deep Generative models, One layer at a time
Q. Lei, A. Jalal, I. Dhillon, A.G.D, NeurIPS 2019 
Daskalakis, Dhruv, and Zampetakis. "Constant-expansion suffices for compressed sensing with 
generative priors”, 2021 

A New Algorithmic idea:  ILO: Intermediate Layer Optimization
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
ICML 2021, Deep-Inverse Workshop, NeurIPS 2020. Daras, Dean, Jalal, AD. 
https://github.com/giannisdaras/ilo
https://arxiv.org/abs/2102.07364

https://github.com/giannisdaras/ilo
https://arxiv.org/abs/2102.07364


New Results: ILO

42

ILO: Intermediate Layer Optimization for Inverse Problems using 
Deep Generative Models

ICML 2021,  
Giannis Daras, Joseph Dean, Ajil Jalal, AD. 
https://github.com/giannisdaras/ilo
https://arxiv.org/abs/2102.07364

Two algorithmic innovations:
1. Use Intermediate Layer Optimization (ILO)
2. Use LPIPS as a perceptual distance in addition to 

MSE
And one more benefit:
-StyleGAN2 (1024x1024) versus 2017 DCGAN (64x64)

https://github.com/giannisdaras/ilo


Intermediate Layer Optimization (ILO)

43

z G1
G2

h= G1 (z) G2(h)=G2(G1(z))
final output

Consider a nested generator: 
G= G2 (G1 (z)) 
Step 1, Run CSGM:  z1*= argminz ||G(z)-y||= argminz || G2 (G1 (z)) –y|| 
Step 2: After obtaining z1*, optimize over h:
h*= argminh||  G2 (h) –y ||,   starting with h1=G1(z1*)
Note that we may get non-realizable h vectors hence we are expanding 
the range of the generator.



ILO: Composition of Generators

44

G1
G2

G2(h)=G2(G1(z))
final output

G= G2 (G1 (z)) 
Step1: z1*= argmin ||G(z)-y||

Target y
G(z1*)

z

h= G1 (z)



ILO: Composition of Generators

45

G1
G2

G2(h)=G2(G1(z))
final output

G= G2 (G1 (z)) 
Step1: z1*= argminz ||G(z)-y|| (normal CSGM)
Step2: Min over h,  starting with h1= G1(z1*) 
G2(h*) ,   h*= argminh||  G2 (h) –y ||

Target y

z

h= G1 (z)
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G1
G2

h1= G1 (z) G2(h1)=G2(G1(z))
final output

G= G2 (G1 (z)) 
z1= argmin ||G(z)-y||
Min over h1, starting with G1
G2(h*) 

Not a real picture



ILO in deeper layers expands the manifold too much

47

G1
G2

G2(h)=G2(G1(z))
final output

G= G2 (G1 (z)) 
Step1: z1*= argminz ||G(z)-y|| (normal CSGM)
Step2: Min over h,  starting with h1= G1(z1*) 
G2(h*) ,   h*= argminh||  G2 (h) –y ||
Intermediate Optimization in a deeper layer 
creates non-natural faces.

Target y

z

h= G1 (z)



ILO results (inpainting)

Input: Corrupted 
images

ILO (inpainting) Pulse (MSE) Ground truth



ILO results (denoising)



Super resolution with ILO

Input (LR 16x) PULSE (previous 
SOTA)

ILO super-res. 
(Ours)

Ground truth



Applying Deep Generative models for MRI

4x Acceleration with diagnostically useful reconstructions 
is possible using deep-generative models. 

Annotated Meniscus tear 



Robust Compressed Sensing MRI with Deep 
Generative Priors (ICML’21)

We trained the first deep generative model for clinical MRI data. 

Used Facebook FastMRI dataset 

We match SOTA supervised Deep learning methods (in distribution)

We significantly outperform SOTA supervised methods when MRI 
measurements change

We mostly outperform supervised methods under anatomy changes (train on 
Brains, reconstruct Knees)   

Preliminary radiology evaluation: Our reconstructions are ranked as higher 
diagnostic quality in a blind evaluation by 3 experts. (or match supervised state 
of the art in other anatomies). 

authors: Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, AGD, Jonathan I. Tamir



Robust Compressed Sensing MRI with Deep Generative Priors (ICML’21)





Blind Quality Assessment Results

• Two board-certified radiologists and a faculty member that uses neuroimaging in their research.
• 30 total blind quality assessment questions (3 anatomies x 10 scans). In each question, the experts 

were shown four images:
• The fully-sampled reference image, explicitly marked as "Reference".
• The results of three reconstruction algorithms at acceleration factor R=4: MoDL, ConvDecoder and our method. 

The order of the reconstructions was shuffled for each question.

MoDL ConvDec Ours

Knee 1.87 
(0.34)

2.97 
(0.18)

1.17 
(0.45)

Abdomen 1.87
(0.76)

2.17
(0.93)

1.97
(0.71)

Brain
(in-dist)

2.00
(0.82)

2.07
(0.77)

1.93
(0.85)

Average (std. dev.) ranking (N = 30) of each 
method on each anatomy. Lower is better. 

Ours vs. MoDL
Ours vs. 
ConvDec

Knee 1.53e-10 2.77e-6
Abdomen 0.610 0.340

Brain 0.767 0.550

Pairwise p-values for the hypothesis that rankings 
are significantly different.



Blind Quality Assessment 
survey example



Super-resolution: ILO versus PULSE



Inpainting: CSGM vs ILO 



Gaussian denoising: CSGM vs ILO vs BM3D



How to make frog-people

60

G1
G2

h1= G1 (z)

max  Frogness(G(z) )

Imagenet
Classifier

Frog 
Logit



Frog human



Goldfish human



3. Turning your friends into Frog-people

63

G1
G2

h1= G1 (z)

Friend x1

Imagenet
Classifier

z

G(z)



3. Turning your friends into Frog-people
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G1
G2

h1= G1 (z)

argmin Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



3. Turning your friends into Frog-people
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G1
G2

h1= G1 (z)

argmin 0*Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



3. Turning your friends into Frog-people

66

G1
G2

h1= G1 (z)

argmin 1*Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



3. Turning your friends into Frog-people
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G1
G2

h1= G1 (z)

argmin 1.5* Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



3. Turning your friends into Frog-people

68

G1
G2

h1= G1 (z)

argmin 3*Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



3. Turning your friends into Frog-people

69

G1
G2

h1= G1 (z)

argmin 8*Frogness(G(z) ) +  
λ Dist[ x1, G(z) ] 

Distance 
(MSE+LPIP

S)
D(x,G(z)

Friend x1

Imagenet
Classifier

Frog
Logitz

G(z)



video



Not Fun part: Bias in inverse problems



Bias in inverse problems



ILO results for Obama Inpainting

PULSE 
(MSE)

LPIPS LPIPS+
MSE

ILO 
with 
LPIPS+
MSE

Real 
image

Observation

Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
Deep-Inverse Workshop, NeurIPS 2020.  
Joseph Dean, Giannis Daras, AD. 



Fairness in inverse problems

Fairness for Image Generation with Uncertain Sensitive Attributes. A. Jalal et al. ICML 
2021 

http://arxiv.org/abs/2106.12182


End to end Approach

x* y

• One idea: end-to-end inversion using DNNs. (100s of papers propose this)
• Create many (x*,y) pairs using a simulator. Train a network to go from y to x*.
• Key issues: how to get a good matched dataset. 
• How to design and train the inversion net (e.g. U-Nets, ADMM or unrolling 

methods)
• End-to-end methods are very fragile to uncertainty in forward operator or x 

statistics.  (PNAS 2021, ICML 2021, Our just submitted paper) 

Forward
operator 

xhat
y

Trained 
dnn for 
inversion



Supervised End2End methods are Brittle



ML reconstruction has a problem for 
underrepresented classes

likelihood

Our new results show that conditional sampling (Langevin Dynamics) 
is the right way to generate, as opposed to ERM/ML reconstructions
Sample from P(x | y ) as opposed to max P(x|y). 
(email me for pointers)



Takeaways: Modeling high-dimensional distributions

• Use guided unsupervised methods to create synthetic data 
that agrees with observations. 

• Search in the latent space to match the measurements
• Expand the range of generators as needed, depending on 

the number of measurements. 
• DCGAN and older generators were very sensitive to 

cropping, color range, etc. We think we solve these 
problems with ILO and score-based models. 

• Special care is needed on extrapolating bias in the training 
data or measurement errors/miscalibrations.

Theory: Expanding the sample complexity bounds from 
compressed sensing beyond sparsity to generative models.
Optimization Guarantees for non-convex GAN-projection 
problems
Robustness, Quantization, Different measurements, etc. 



Conclusions

• Generative models are powerful data-driven priors
• Very modular, plug and play other boxes and back-prop through 

everything

• Open research directions:
• 1. Solving inverse problems with generative models– proofs for the 

optimization problems. 
• 2. Imposing physical constraints on the generated data
• 3. Robustness to errors/corruptions in measurements.  

https://arxiv.org/abs/2006.09461
Robust compressed sensing of generative models, A. Jalal et al. Outlier Detection using Generative Models with Theoretical Performance 
Guarantees, by Xu et al. 

• 4. Fairness in inverse problems-– new interesting problems 
• 5. MRI and other exciting medial imaging applications 

• Papers, code and pre-trained models:
• http://users.ece.utexas.edu/~dimakis
• Twitter: @AlexGDimakis

https://arxiv.org/abs/2006.09461
https://github.com/AshishBora/csgm
http://users.ece.utexas.edu/~dimakis
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Pointers
Deep Generative models for inverse problems:

Compressed sensing using Generative models (Bora et al. ICML 2017) 
1. How to solve inverse problems using a deep generative model G(z) 
2. CSGM Guarantees through Set Restricted Eigenvalue conditions.

A central algorithmic challenge: Inverting deep generative models. 

1.P. Hand and V. Voroninski, Global guarantees for enforcing deep priors by empirical risk, (COLT 2018)

2.Inverting Deep Generative models, One layer at a time
Q. Lei, A. Jalal, I. Dhillon, A.G.D, NeurIPS 2019 

3.Constant-Expansion Suffices for Compressed Sensing with Generative Priors.
C. Daskalakis, D. Rohatgi, M. Zampetakis

IA few results on invertible generative models. 

Conditional Sampling from Invertible Generative Models with Applications to Inverse Problems
by Erik Lindgren et al.  https://arxiv.org/abs/2002.11743

https://arxiv.org/abs/2002.11743
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Compressed sensing using generative models, Bora et al. ICML 2017. 
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• Projections on Manifolds:
• Baraniuk & Wakin (2009) Random projections of smooth 

manifolds. Eftekhari & Wakin (2015) 
• Deep network models:
• Mousavi, Dasarathy, Baraniuk
• Chang, J., Li, C., Poczos, B., Kumar, B., and 
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Compressed sensing using Generative models (Bora et al. ICML 2017) 
1. How to solve inverse problems using a deep generative model G(z) 
2. CSGM Guarantees through Set Restricted Eigenvalue conditions.

Theory for Inverting deep generative models. 
1.P. Hand and V. Voroninski, Global guarantees for enforcing deep priors by empirical risk, (COLT 2018)
2.Inverting Deep Generative models, One layer at a time
Q. Lei, A. Jalal, I. Dhillon, A.G.D, NeurIPS 2019 

New Algorithmic Developments: 
Intermediate Layer Optimization + Perceptual Distances
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
Deep-Inverse Workshop, NeurIPS 2020.  , Joseph Dean, Giannis Daras, AD. 

If we have time: A few results on invertible generative models. 
Conditional Sampling from Invertible Generative Models with Applications to Inverse Problems
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number) of generator range 

Distance distortion L due 
to G(z) 
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Main results

• For general L-Lipschitz functions. 

• Minimize only over z vectors within a ball. 

• Assuming poly(n) bounded weights: L= n O(d) ,δ= 1/n O(d)



Proof technology

Architecture of compressed sensing proofs for Lasso:

Lemma 1: A random Gaussian measurement matrix has RIP/REC
whp

Lemma 2: Lasso works for matrices that have RIP/REC.
Lasso recovers a xhat close to x*



Proof technology

For a generative model defining a subset of images S:

Lemma 1: A random Gaussian measurement matrix has S-REC
whp for sufficient measurements. 

Lemma 2: The optimum of the squared loss minimization 
recovers a zhat close to z* if A has S-REC. 
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Proof technology

Why is the Restricted Eigenvalue Condition (REC) needed?

Lasso solves: 

If there is a sparse vector x in the nullspace of A then this fails.

REC: All approximately k-sparse vectors x are far from the nullspace: 

A vector x is approximately k-sparse if there exists  a set of k coordinates 
S such that 

min
s.t.:||Ax�y||2<�

||x||1

�||x||2 � ||Ax|||2

||xS ||1 � ||xSc ||1



Proof technology

Unfortunate coincidence: The difference of two k-sparse vectors is 2k 
sparse. 

But the difference of two natural images is not natural. 

The correct way to state REC (That generalizes to our S-REC) is 

For any two k-sparse vectors x1,x2 , their difference is far from the 
nullspace:

�||x1 � x2||2 � ||A(x1 � x2)||2
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Our Set-Restricted Eigenvalue Condition (S-REC). For any set 

A matrix A satisfies S-REC if for all x1, x2 in S 

For any two natural images, their difference is far from the nullspace of 
A: 

�||x1 � x2||2 � ||A(x1 � x2)||2

S � Rn



Proof technology

Our Set-Restricted Eigenvalue Condition (S-REC). For any set 

A matrix A satisfies S-REC if for all x1, x2 in S 

The difference of two natural images is far from the nullspace of A: 

• Lemma1: If the set S is the range of a generative model then m= O (k 
logL) measurements suffice to make a gaussian iid matrix S-REC whp. 

• Lemma2: If the matrix has S-REC then squared loss optimizer zhat
must be close to z*

�||x1 � x2||2 � ||A(x1 � x2)||2

S � Rn
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Compressed sensing using generative models, Bora et al. ICML 2017. 

Open: How to do efficiently ?
(under the right conditions) 

For generators with random iid weights, gradient descent provably solves this problem!
(Assuming each layer is logk factor bigger compared to previous one).

Hand and Voroninski
Global guarantees for enforcing deep priors by empirical risk (COLT 2018)

Leong, Hand, Voroninski
Phase Retrieval Under a Generative Prior (NeurIPS 2018)


