Exact Minimax Estimation for Phase Synchronization

Chao Gao
University of Chicago

Oct 202I

Anderson Zhang

Phase Synchronization

Model

$$
Y_{j k}=z_{j} \bar{z}_{k}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n
$$

Phase Synchronization

Model

$$
Y_{j k}=z_{j} \bar{z}_{k}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n
$$

Parameter space

$$
z_{j} \in \mathbb{C}_{1}=\{z \in \mathbb{C}:|z|=1\}
$$

Phase Synchronization

Model

$$
\begin{array}{r}
Y_{j k}=z_{j} \bar{z}_{k}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n \\
\operatorname{Im}\left(W_{j k}\right), \operatorname{Re}\left(W_{j k}\right) \sim N(0,1 / 2)
\end{array}
$$

Parameter space

$$
z_{j} \in \mathbb{C}_{1}=\{z \in \mathbb{C}:|z|=1\}
$$

Phase Synchronization

Model

$$
\begin{array}{r}
Y_{j k}=z_{j} \bar{z}_{k}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n \\
\operatorname{Im}\left(W_{j k}\right), \operatorname{Re}\left(W_{j k}\right) \sim N(0,1 / 2)
\end{array}
$$

Parameter space

$$
z_{j} \in \mathbb{C}_{1}=\{z \in \mathbb{C}:|z|=1\}
$$

Loss function

$$
\ell(\widehat{z}, z)=\min _{a \in \mathbb{C}_{1}} \frac{1}{n} \sum_{j=1}^{n}\left|\widehat{z}_{j} a-z_{j}\right|^{2}
$$

Algorithms

Algorithms

MLE

$\max _{z \in \mathbb{C}^{n}} z^{\mathrm{H}} Y z$
$z \in \mathbb{C}_{1}^{n}$

Algorithms

MLE

$$
\max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}} Y z
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}\right|}
$$

Algorithms

MLE

$$
\max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}} Y z
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}\right|}
$$

SDP

Algorithms

MLE

$$
\max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}} Y z=\max _{z \in \mathbb{C}_{1}^{n}} \operatorname{Tr}\left(Y z z^{\mathrm{H}}\right)
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}\right|}
$$

SDP

Algorithms

MLE

$$
\max _{z \in \mathbb{C}_{1}^{z}} z^{\mathrm{H}} Y z=\max _{z \in \mathbb{C}_{1}^{n}} \operatorname{Tr}\left(Y z z^{\mathrm{H}}\right)
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash j\}} Y_{j k} z_{k}^{(t-1)}\right|}
$$

SDP

$$
\max _{Z=Z^{\mathrm{H}} \in \mathbb{R}^{n \times n}}
$$

Literature

MLE

GPM

SDP

Literature

MLE
[Bandeira, Boumal \& Singer 17]
$\ell\left(\widehat{z}_{\mathrm{MLE}}, z^{*}\right) \leq C \frac{\sigma^{2}}{n}$

GPM

SDP

Literature

MLE
 [Bandeira, Boumal \& Singer 17]
 $$
\ell\left(\hat{z}_{\mathrm{MLE}}, z^{*}\right) \leq C \frac{\sigma^{2}}{n}
$$

GPM

SDP

[Bandeira, Boumal \& Singer 17] $\widehat{Z}_{\text {SDP }}=\widehat{\mathrm{A}}_{\text {MLE }} \hat{Z}_{\text {MLE }}^{H}$ when $\sigma^{2}=O\left(n^{1 / 2}\right)$

Literature

MLE
 [Bandeira, Boumal \& Singer 17]
 $$
\ell\left(\hat{z}_{\mathrm{MLE}}, z^{*}\right) \leq C \frac{\sigma^{2}}{n}
$$

[Boumal 16] $\quad z^{(t)} \rightarrow \widehat{z}_{\text {MLE }}$ when $\sigma^{2}=O\left(n^{1 / 3}\right)$
GPM

SDP

[Bandeira, Boumal \& Singer 17] $\widehat{Z}_{\text {SDP }}=\widehat{\mathrm{A}}_{\text {MLE }} \hat{Z}_{\text {MLE }}^{H}$ when $\sigma^{2}=O\left(n^{1 / 2}\right)$

Literature

MLE [Bandeira, Boumal \& Singer 17] $\quad \ell\left(\hat{z}_{\mathrm{MLE}}, z^{*}\right) \leq C \frac{\sigma^{2}}{n}$
[Boumal 16] $\quad z^{(t)} \rightarrow \widehat{z}_{\text {MLE }}$ when $\sigma^{2}=O\left(n^{1 / 3}\right)$
GPM

$$
\text { [Zhong \& Boumal 18] } \quad z^{(t)} \rightarrow \widehat{z}_{\text {MLE }} \text { when } \sigma^{2}=O\left(\frac{n}{\log n}\right)
$$

[Bandeira, Boumal \& Singer 17] $\widehat{Z}_{\text {SDP }}=\widehat{\mathrm{Z}}_{\mathrm{MLE}} \hat{z}_{\mathrm{MLE}}^{\mathrm{H}}$ when $\sigma^{2}=O\left(n^{1 / 2}\right)$

Literature

MLE [Bandeira, Boumal \& Singer 17] $\quad \ell\left(\hat{z}_{\mathrm{MLE}}, z^{*}\right) \leq C \frac{\sigma^{2}}{n}$
[Boumal 16] $\quad z^{(t)} \rightarrow \widehat{z}_{\text {MLE }}$ when $\sigma^{2}=O\left(n^{1 / 3}\right)$
GPM
[Zhong \& Boumal 18] $\quad z^{(t)} \rightarrow \widehat{z}_{\text {MLE }}$ when $\sigma^{2}=O\left(\frac{n}{\log n}\right)$

SDP

[Bandeira, Boumal \& Singer 17] $\widehat{Z}_{\text {SDP }}=\widehat{र}_{\text {MLE }}^{2} Z_{\text {MLE }}$ when $\sigma^{2}=O\left(n^{1 / 2}\right)$
[Zhong \& Boumal 18] $\quad \widehat{Z}_{\text {SDP }}=\widehat{z}_{\text {MLE }} \hat{z}_{\text {MLE }} \quad$ when $\sigma^{2}=O\left(\frac{n}{\log n}\right)$

Main Results

Model

$$
Y_{j k}=z_{j}^{*} \bar{z}_{k}^{*}+\sigma W_{j k} \in \mathbb{C}
$$

$$
1 \leq j<k \leq n
$$

Main Results

Model

$$
Y_{j k}=z_{j}^{*} \bar{z}_{k}^{*}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n
$$

Missing
data

$$
A_{j k} \sim \operatorname{Bernoulli}(p)
$$

Main Results

Model

$$
Y_{j k}=z_{j}^{*} \bar{z}_{k}^{*}+\sigma W_{j k} \in \mathbb{C} \quad 1 \leq j<k \leq n
$$

Missing data

$$
A_{j k} \sim \operatorname{Bernoulli}(p)
$$

Loss function

$$
\ell(\widehat{z}, z)=\min _{a \in \mathbb{C}_{1}} \frac{1}{n} \sum_{j=1}^{n}\left|\widehat{z}_{j} a-z_{j}\right|^{2}
$$

Main Results

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$

 and $\frac{n p}{\log n} \rightarrow \infty$. Then,$$
\inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \ell(\widehat{z}, z) \geq(1-o(1)) \frac{\sigma^{2}}{2 n p}
$$

Main Results

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$

 and $\frac{n p}{\log n} \rightarrow \infty$. Then,$$
\inf _{\hat{z} \in \mathbb{C i}_{1}^{n_{1}} \in \operatorname{suc⿻}_{1}^{\mathbb{E}}} \mathbb{E}_{z} \ell(\hat{z}, z) \geq(1-o(1)) \frac{\sigma^{2}}{2 n p} .
$$

Moreover, the MLE, GPM initialized by the leading eigenvector of $A \circ Y$, and the leading eigenvector of SDP all achieve

$$
\ell(\widehat{z}, z) \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
$$

with high probability.

Main Results

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$ and $\frac{n p}{\log n} \rightarrow \infty$. Then,

$$
\inf _{\widehat{Z}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \frac{1}{n^{2}}\left\|\widehat{Z}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \geq(1-o(1)) \frac{\sigma^{2}}{n p}
$$

Main Results

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$ and $\frac{n p}{\log n} \rightarrow \infty$. Then,

$$
\inf _{\hat{Z}}^{\operatorname{inc} \sup _{z 1}^{\mathbb{C}}} \mathbb{E}_{z} \frac{1}{n^{2}}\left\|\widehat{Z}-z z^{\mathbb{H}}\right\|_{\mathrm{F}}^{2} \geq(1-o(1)) \frac{\sigma^{2}}{n p} .
$$

Moreover, SDP achieves

$$
\frac{1}{n^{2}}\left\|\widehat{Z}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \leq\left(1+o(1) \frac{\sigma^{2}}{n p}\right.
$$

with high probability.

How to prove the results?

Statistical and Computational Guarantees of Lloyd's Algorithm and Its Variants

Yu Lu^{1} and Harrison H Zhou ${ }^{1}$
${ }^{1}$ Yaie University

December 8, 2016

Abstract

Clustering is a fundamental problem in statistics and machine learning. Lloyd's algorithm, proposed in 1957, is still possibly the most widely used clustering algorithm in practice due to its simplicity and empirical performance. However, there has been little theoretical investigation on the statistical and computational guarantees of Lloyd's algorithm. This paper is an attempt to bridge this gap between practice and theory. We investigate the performance of Lloyd's algorithm on clustering sub-Gaussian mixtures. Under an appropriate initialization for labels or centers, we show that Lloyd's algorithm converges to an exporentially small clustering error after an order of $\log n$ iterations, where n is the sample size. The error rate is shown to be minimax optimal. For the two-mixture case, we only require the initializer to be slightly better than random guess.

In addition, we extend the Lloyd's algorithm and iss analysis to commenity detection and crowdsourcing, two problems that have received ε lot of attention resently in statistics and machine learning. Two variants of Lloyd's algorithm are proposed respectively for community detection and crowdsourcing. On the theoretical side, we provide statistical and computational guarentees of the two algorithms, and the results improve upon some previous signal-to-noise ratio conditions in literature for both problems. Experimental results on simulatec and real data sets demorstrate competitive performance of our algorithms to the state-of-the-art methods.

1 Introduction

Lloyd's algorithm, proposed in 1957 by Stuart Lloyd at Bell Labs [40], is still one of the most popular clustering algorithms used by practitioners, with a wide range of applications from computer vision [3], to astronomy [45] and to biology [26]. Although considerable innovations have been made on developing new provable and efficient clustering algorithms in the past six decades, Llcyd's algorithm has been consistently listed as one of the top ten data mining algorithms in several recent su:veys [55].

Structured Linear Models

$$
Y=\mathscr{X}_{z}(B)+w
$$

[Gao, van der Vaart \& Zhou 15]

Structured Linear Models

structure

$$
Y=\mathscr{X}_{z}^{z}(B)+w
$$

Structured Linear Models

structure

linear operator

Structured Linear Models

structure

linear operator
parameter
[Gao, van der Vaart \& Zhou 15]

Structured Linear Models

structure
linear operator
parameter

$$
B \in \mathcal{B}_{z}
$$

Structured Linear Models

Clustering

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

Ranking

$$
Y_{i j} \sim N\left(\beta\left(z_{i}-z_{j}\right), 1\right)
$$

Regression

$$
Y_{i} \sim N\left(X_{i}^{T} \beta, 1\right)
$$

Structured Linear Models

Clustering

$$
\begin{aligned}
& Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right) \\
& \mathscr{X}_{z}:\left[\theta_{1}, \ldots, \theta_{k}\right] \mapsto\left[\theta_{z_{1}}, \ldots, \theta_{z_{n}}\right]
\end{aligned}
$$

Ranking

$$
Y_{i j} \sim N\left(\beta\left(z_{i}-z_{j}\right), 1\right)
$$

Regression

$$
Y_{i} \sim N\left(X_{i}^{T} \beta, 1\right)
$$

Structured Linear Models

Clustering

$$
\begin{aligned}
& Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right) \\
& \mathscr{X}_{z}:\left[\theta_{1}, \ldots, \theta_{k}\right] \mapsto\left[\theta_{z_{1}}, \ldots, \theta_{z_{n}}\right]
\end{aligned}
$$

Ranking

$$
\begin{aligned}
Y_{i j} & \sim N\left(\beta\left(z_{i}-z_{j}\right), 1\right) \\
\mathscr{X}_{z} & : \beta \mapsto\left(\beta\left(z_{i}-z_{j}\right)\right)_{i j}
\end{aligned}
$$

Regression

$$
Y_{i} \sim N\left(X_{i}^{T} \beta, 1\right)
$$

Structured Linear Models

Clustering

$$
\begin{aligned}
& Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right) \\
& \mathscr{X}_{z}:\left[\theta_{1}, \ldots, \theta_{k}\right] \mapsto\left[\theta_{z_{1}}, \ldots, \theta_{z_{n}}\right]
\end{aligned}
$$

Ranking

$$
\begin{aligned}
Y_{i j} & \sim N\left(\beta\left(z_{i}-z_{j}\right), 1\right) \\
\mathscr{X}_{z} & : \beta \mapsto\left(\beta\left(z_{i}-z_{j}\right)\right)_{i j}
\end{aligned}
$$

Regression

$$
\begin{gathered}
Y_{i} \sim N\left(X_{i}^{T} \beta, 1\right) \\
\mathscr{X}_{z}: \beta \mapsto X \beta
\end{gathered}
$$

Iterative Algorithm

Iterative Algorithm

some local statistic $\quad T_{j}$

Iterative Algorithm

T_{j}

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
\widehat{z}_{j}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}(B, a)\right\|^{2}
$$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
\widehat{z}_{j}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}(B, a)\right\|^{2}
$$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$\widehat{z}_{j}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}(B, a)\right\|^{2}$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
z_{j}^{(t)}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}\left(\widehat{B}\left(z^{(t-1)}\right), a\right)\right\|^{2}
$$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
z_{j}^{(t)}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}\left(\widehat{B}\left(z^{(t-1)}\right), a\right)\right\|^{2}
$$

$\widehat{B}(z)=\underset{B \in \mathcal{B}_{z}}{\operatorname{argmin}}\left\|Y-\mathscr{X}_{z}(B)\right\|^{2}$

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
\left\{\begin{array}{l}
z_{j}^{(t)}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}\left(\widehat{B}\left(z^{(t-1)}\right), a\right)\right\|^{2} \\
\widehat{B}(z)=\underset{B \in \mathcal{B}_{z}}{\operatorname{argmin}}\left\|Y-\mathscr{X}_{z}(B)\right\|^{2}
\end{array}\right.
$$

Conditions

Conditions

Ioss function

$$
\left.\ell\left(z, z^{*}\right)=\sum_{j} \| \mu_{j}\left(B^{*}, z_{j}\right)-\mu_{j}\left(B^{*}, z\right) z^{*}\right) \|^{2}
$$

Conditions

loss function

$$
\begin{aligned}
\ell\left(z, z^{*}\right) & =\sum_{j}\left\|\mu_{j}\left(B^{*}, z_{j}\right)-\mu_{j}\left(B^{*}, z_{j}^{*}\right)\right\|^{2} \\
& \geq \Delta_{\min }^{2} \sum_{j} \mathbf{1}_{\left\{z_{j} \neq z_{j}^{*}\right\}}
\end{aligned}
$$

Conditions

loss function

$$
\ell\left(z, z^{*}\right)=\sum_{j}\left\|\mu_{j}\left(B^{*}, z_{j}\right)-\mu_{j}\left(B^{*}, z_{j}^{*}\right)\right\|^{2}
$$

error conditions

$$
\frac{\operatorname{diff}\left(\mu_{j}(B(z), a), \mu_{j}\left(B\left(z^{*}\right), a\right)\right)}{\ell\left(z, z^{*}\right)}=o_{\mathbb{P}}(1)
$$

$$
\operatorname{diff}\left(\mu_{j}\left(\widehat{B}\left(z^{*}\right), a\right), \mu_{j}\left(B^{*}, a\right)\right)=o_{\mathbb{P}}(1)
$$

Conditions

loss function

$$
\ell\left(z, z^{*}\right)=\sum_{j}\left\|\mu_{j}\left(B^{*}, z_{j}\right)-\mu_{j}\left(B^{*}, z_{j}^{*}\right)\right\|^{2}
$$

error conditions

$$
\begin{array}{r}
\max _{\left\{z: \ell\left(z, z^{*}\right) \leq \tau\right\}} \frac{\operatorname{diff}\left(\mu_{j}(B(z), a), \mu_{j}\left(B\left(z^{*}\right), a\right)\right)}{\ell\left(z, z^{*}\right)}=o_{\mathbb{P}}(1) \\
\quad \operatorname{diff}\left(\mu_{j}\left(\widehat{B}\left(z^{*}\right), a\right), \mu_{j}\left(B^{*}, a\right)\right)=o_{\mathbb{P}}(1)
\end{array}
$$

Convergence

Theorem [G \& Zhang]. Assume

$$
\ell\left(z^{(0)}, z^{*}\right) \leq \tau
$$

and the conditions hold with the same τ.

Convergence

Theorem [G \& Zhang]. Assume

$$
\ell\left(z^{(0)}, z^{*}\right) \leq \tau
$$

and the conditions hold with the same τ.
Then, we have

$$
\ell\left(z^{(t)}, z^{*}\right) \leq[\text { ideal error }]+\frac{1}{2} \ell\left(z^{(t-1)}, z^{*}\right)
$$

for all $t \geq 1$.

Iterative Algorithm

$$
\mathbb{E} T_{j}=\mu_{j}\left(B, z_{j}\right)
$$

$$
\left\{\begin{array}{l}
z_{j}^{(t)}=\underset{a}{\operatorname{argmin}}\left\|T_{j}-\mu_{j}\left(\widehat{B}\left(z^{(t-1)}\right), a\right)\right\|^{2} \\
\widehat{B}(z)=\underset{B \in \mathcal{B}_{z}}{\operatorname{argmin}}\left\|Y-\mathscr{X}_{z}(B)\right\|^{2}
\end{array}\right.
$$

Clustering

model

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

Clustering

model

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

specialization

$$
T_{i}=Y_{i}
$$

Clustering

model

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

specialization

$$
T_{i}=Y_{i} \quad \mu_{i}(B, a)=\theta_{a}
$$

Clustering

model

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

specialization

$$
T_{i}=Y_{i} \quad \mu_{i}(B, a)=\theta_{a}
$$

algorithm

$$
\left\{\begin{array}{l}
z_{i}^{(t)}=\underset{a \in[k]}{\operatorname{argmin}}\left\|Y_{i}-\widehat{\theta}_{a}\left(z^{(t-1)}\right)\right\|^{2} \\
\widehat{\theta}_{a}(z)=\frac{\sum_{i=1}^{n} \mathbf{1}_{\left\{z_{i}=a\right\}} Y_{i}}{\sum_{i=1}^{n} \mathbf{1}_{\left\{z_{i}=a\right\}}}
\end{array}\right.
$$

Clustering

model

$$
Y_{i} \sim N\left(\theta_{z_{i}}, I_{d}\right)
$$

specialization

$$
T_{i}=Y_{i} \quad \mu_{i}(B, a)=\theta_{a}
$$

algorithm

$$
\left\{\begin{array}{l}
z_{i}^{(t)}=\underset{a \in[k]}{\operatorname{argmin}}\left\|Y_{i}-\widehat{\theta}_{a}\left(z^{(t-1)}\right)\right\|^{2} \\
\widehat{\theta}_{a}(z)=\frac{\sum_{i=1}^{n} \mathbf{1}_{\left\{z_{i}=a\right\}} Y_{i}}{\sum_{i=1}^{n} \mathbf{1}_{\left\{z_{i}=a\right\}}}
\end{array}\right.
$$

Clustering

Theorem
 Assume $k=o(n)$, and

Clustering

Theorem
Assume $k=o(n)$, and

$$
\frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{b}^{*}\right\|^{2}}{k^{2}(k d / n+1)} \rightarrow \infty .
$$

Clustering

Theorem
 Assume $k=o(n)$, and
 $$
\frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{\|}^{*}\right\|^{2}}{k^{2}(k d / n+1)} \rightarrow \infty .
$$

Initialize by spectral clustering, and then

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{z_{i}^{(t)} \neq z_{i}^{*}\right\}} \leq \exp \left(-(1+o(1)) \frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{b}^{*}\right\|^{2}}{8}\right)+2^{-t}
$$

for all $t \geq 1$ with high probability.

Clustering

Theorem
 Assume $k=o(n)$, and
 $$
\frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{\Delta}^{*}\right\|^{2}}{k^{2}(k d / n+1)} \rightarrow \infty .
$$

Initialize by spectral clustering, and then

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{z_{i}^{(i)} \neq z_{i}^{*}\right\}} \leq \exp \left(-(1+o(1)) \frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{b}^{*}\right\|^{2}}{8}\right)+2^{-t}
$$

for all $t \geq 1$ with high probability,

Clustering

Theorem [Lu \& Zhou 16]. Assume $k=o(n)$, and
 $$
\frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{\theta}^{*}\right\|^{2}}{k^{2}(k d / n+1)} \rightarrow \infty .
$$

Initialize by spectral clustering, and then

$$
\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{z_{i}^{(i)} \neq z_{i}^{*}\right\}} \leq \exp \left(-(1+o(1)) \frac{\min _{a \neq b}\left\|\theta_{a}^{*}-\theta_{b}^{*}\right\|^{2}}{8}\right)+2^{-t}
$$

for all $t \geq 1$ with high probability

Phase Synchronization

$$
Y=z z^{\mathrm{H}}+\sigma W
$$

Phase Synchronization

$$
Y=z z^{\mathrm{H}}+\sigma W
$$

Phase Synchronization

structure
linear operator
parameter

$$
B \in \mathcal{B}_{z}
$$

Phase Synchronization

linear operator

Phase Synchronization

$$
Y=z \beta^{\mathrm{H}}+\sigma W
$$

Phase Synchronization

$$
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}}
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

Phase Synchronization

$$
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}}
$$

linear in \mathbf{z} (instead of quadratic)

Phase Synchronization

$$
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}}
$$

linear in z (instead of quadratic)

$$
\text { specialization } \quad T_{i}=Y_{i}
$$

Phase Synchronization

$$
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}}
$$

linear in z (instead of quadratic)

$$
T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

linear in z (instead of quadratic)

specialization

$$
T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta
$$

$$
\left\{\begin{array}{l}
\beta^{(t)}=\underset{\beta \in\left\{z^{(t-1)}\right\}}{\operatorname{argmin}}\left\|Y-z^{(t-1)} \beta^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \\
z_{j}^{(t)}=\underset{a \in \mathbb{C}_{1}}{\operatorname{argmin}}\left\|Y_{j}-a \beta^{(t)}\right\|^{2}
\end{array}\right.
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

linear in z (instead of quadratic)
specialization

$$
T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta
$$

$$
\left\{\begin{array}{l}
\beta^{(t)}=\underset{\beta \in\left\{z^{(t-1)}\right\}}{\operatorname{argmin}}\left\|Y-z^{(t-1)} \beta^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}=z^{(t-1)} \\
z_{j}^{(t)}=\underset{a \in \mathbb{C}_{1}}{\operatorname{argmin}}\left\|Y_{j}-a \beta^{(t)}\right\|^{2}
\end{array}\right.
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

linear in z (instead of quadratic)
specialization

$$
T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta
$$

$$
\left\{\begin{array}{l}
\beta^{(t)}=\underset{\beta \in\left\{z^{(t-1)}\right\}}{\operatorname{argmin}}\left\|Y-z^{(t-1)} \beta^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}=z^{(t-1)} \\
z_{j}^{(t)}=\underset{a \in \mathbb{C}_{1}}{\operatorname{argmin}}\left\|Y_{j}-a \beta^{(t)}\right\|^{2}=\underset{a \in \mathbb{C}_{1}}{\operatorname{argmin}}\left\|Y_{j}-a z^{(t-1)}\right\|^{2}
\end{array}\right.
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

linear in z (instead of quadratic)

$$
\begin{aligned}
& \text { specialization } \quad T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta \\
& z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n \backslash \backslash j\}} Y_{j k} z_{k}^{(t-1)}\right|}
\end{aligned}
$$

Phase Synchronization

$$
\begin{gathered}
Y=z \beta^{\mathrm{H}}+\sigma W \quad \mathscr{X}_{z}: \beta \mapsto z \beta^{\mathrm{H}} \\
\beta \in \mathcal{B}_{z}=\{z\}
\end{gathered}
$$

linear in z (instead of quadratic)

$$
\text { specialization } \quad T_{i}=Y_{i} \quad \mu(\beta, a)=a \beta
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}\right|}
$$

with missing data

Phase Synchronization

Phase Synchronization

$$
z^{(t)}=f\left(z^{(t-1)}\right) \Longleftrightarrow z_{i}^{(t)}=\left[\left\|A \circ Y z^{(t-1)]_{i}}\right\| \|(A \circ Y)\left(z^{(t-1)]} \|\right.\right.
$$

Phase Synchronization

$$
z^{(t)}=f\left(z^{(t-1)}\right) \curvearrowright z_{i}^{(t)}=\frac{\left[(A \circ Y) z^{(t-1)}\right]_{i}}{\left|\left[(A \circ Y) z^{(t-1)}\right]_{i}\right|}
$$

Lemma. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. For any $\gamma=o(1)$, we have
$\mathbb{P}\left(\ell\left(f(z), z^{*}\right) \leq \delta \ell\left(z, z^{*}\right)+(1+\delta) \frac{\sigma^{2}}{2 n p}\right.$ for any $z \in \mathbb{C}_{1}^{n}$ s.t. $\left.\ell\left(z, z^{*}\right) \leq \gamma\right) \geq 1-\delta$
for some $\delta=o(1)$.

Phase Synchronization

Corollary. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. Initialized by PCA, the power method satisfies

$$
\ell(\widehat{z}, z) \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
$$

with high probability after $\log \left(\frac{n p}{\sigma^{2}}\right)$ iterations.

Phase Synchronization

MLE $\quad \max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}}(A \circ Y) z$

Phase Synchronization

MLE $\quad \max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}}(A \circ Y) z$

$$
\widehat{z}=f(\widehat{z})
$$

Phase Synchronization

MLE $\quad \max _{z \in \mathbb{C}_{1}^{n}} z^{\mathrm{H}}(A \circ Y) z$

$$
\widehat{z}=f(\widehat{z})
$$

Corollary. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$.

The MLE satisfies

$$
\ell(\widehat{z}, z) \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
$$

with high probability.

SDP: A Non-Convex View

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

GPM $z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}\right|}$

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

fixed point

SDP: A Non-Convex View

MLE $\begin{gathered}\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right) \\ \text { s.t. }\left|z_{j}\right|=1 \text { for all } j \in[n]\end{gathered}$
fixed point

SDP $\begin{gathered}\max \operatorname{Tr}((A \circ Y) Z) \\ \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0\end{gathered}$

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

SDP
s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

fixed point

SDP
s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$

$\max _{V \in \mathbb{C}^{n} \times n} \operatorname{Tr}\left((A \circ Y) V^{\mathrm{H}} V\right)$
s.t. $\left\\|V_{j}\right\\|^{2}=1$ for all $j \in[n]$

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

fixed point

SDP
s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$
$\square Z=V^{\mathrm{H}} V$

$\max _{V \in \mathbb{C}^{n} \times n} \operatorname{Tr}\left((A \circ Y) V^{\mathrm{H}} V\right)$
s.t. $\left\\|V_{j}\right\\|^{2}=1$ for all $j \in[n]$

[Burer \& Monteiro 03]

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

fixed point
GPM

SDP
s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$

$\max _{V \in \mathbb{C}^{n} \times n} \operatorname{Tr}\left((A \circ Y) V^{\mathrm{H}} V\right)$
s.t. $\left\\|V_{j}\right\\|^{2}=1$ for all $j \in[n]$

$$
V_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} A_{j k} \bar{Y}_{j k} V_{k}^{(t-1)}}{\left\|\sum_{k \in[n] \backslash\{j\}} A_{j k} \bar{Y}_{j k} V_{k}^{(t-1)}\right\|}
$$

[Burer \& Monteiro 03]

SDP: A Non-Convex View

MLE | $\max \operatorname{Tr}\left((A \circ Y) z z^{\mathrm{H}}\right)$ |
| :---: |
| s.t. $\left\|z_{j}\right\|=1$ for all $j \in[n]$ |

SDP

$\max _{V \in \mathbb{C}^{n \times n}} \operatorname{Tr}\left((A \circ Y) V^{\mathrm{H}} V\right)$
s.t. $\left\\|V_{j}\right\\|^{2}=1$ for all $j \in[n]$

fixed point \rightarrow

$$
V_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash j\}\}} A_{j k} \bar{Y}_{j k} V_{k}^{(t-1)}}{\left\|\sum_{k \in[n] \backslash j\}} A_{j k} \bar{Y}_{j k} V_{k}^{(t-1)}\right\|}
$$

[Burer \& Monteiro 03]

SDP: A Non-Convex View

SDP: A Non-Convex View

$$
V^{(t)}=f\left(V^{(t-1)}\right) \Longleftrightarrow V_{j}^{(t)}=\frac{\sum_{k \in[n \mid\{j\}} A_{j k} \bar{Y}_{j k} V_{k}^{(t-1)}}{\left\|\sum_{k \in[n \mid \backslash\{j\}}^{(t)} A_{j k} \bar{y}_{j k} V_{k}^{(t-1)}\right\|}
$$

SDP: A Non-Convex View

Lemma. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. For any $\gamma=o(1)$, we have
$\mathbb{P}\left(\ell\left(f(V), z^{*}\right) \leq \delta \ell\left(V, z^{*}\right)+(1+\delta) \frac{\sigma^{2}}{2 n p}\right.$ for any $z \in \mathbb{C}_{1}^{n}$ s.t. $\left.\ell\left(V, z^{*}\right) \leq \gamma\right) \geq 1-\delta$
for some $\delta=o(1)$.

SDP: A Non-Convex View

Lemma. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. For any $\gamma=o(1)$, we have
$\mathbb{P}\left(\ell\left(f(V), z^{*}\right) \leq \delta \ell\left(V, z^{*}\right)+(1+\delta) \frac{\sigma^{2}}{2 n p}\right.$ for any $z \in \mathbb{C}_{1}^{n}$ s.t. $\left.\ell\left(V, z^{*}\right) \leq \gamma\right) \geq 1-\delta$
for some $\delta=o(1)$.

$$
\ell\left(\widehat{V}, z^{*}\right)=\min _{a \in \mathbb{C}^{n}:\|a\|^{2}=1} \frac{1}{n} \sum_{j=1}^{n}\left\|\widehat{V}_{j}-\bar{z}_{j}^{*} a\right\|^{2}
$$

Phase Synchronization

$$
\max \operatorname{Tr}((A \circ Y) Z)
$$

SDP
s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$

Phase Synchronization

SDP $_{\text {s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0}^{\max \operatorname{Tr}((A \circ Y) Z)} \stackrel{\widehat{Z}=\hat{V}^{\hat{Q}} \hat{V}}{ } \widehat{V}=f(\widehat{V})$

Phase Synchronization

$$
\begin{array}{ll}
\max \operatorname{Tr}((A \circ Y) Z) & \widehat{Z}=\widehat{V}^{\mathrm{H}} \widehat{V} \\
\text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0
\end{array}
$$

SDP
Corollary. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. The SDP satisfies

$$
\begin{aligned}
\ell(\widehat{V}, z) & \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}, \\
\frac{1}{n^{2}}\left\|\widehat{Z}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} & \leq(1+o(1)) \frac{\sigma^{2}}{n p}, \\
\ell(\widehat{z}, z) & \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
\end{aligned}
$$

with high probability.

Phase Synchronization

$$
\begin{array}{ll}
\max \operatorname{Tr}((A \circ Y) Z) & \widehat{Z}=\widehat{V}^{\mathrm{H}} \hat{V} \\
\text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0
\end{array}
$$

SDP
Corollary. Assume $\sigma^{2}=o(n p)$ and $p \gg \frac{\log n}{n}$. The SDP satisfies

$$
\ell(\widehat{V}, z) \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
$$

normalized leading eigenvector $\frac{1}{n^{2}}$

$$
\begin{aligned}
\frac{1}{n^{2}}\left\|\widehat{Z}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} & \leq(1+o(1)) \frac{\sigma^{2}}{n p} \\
\ell(\widehat{z}, z) & \leq(1+o(1)) \frac{\sigma^{2}}{2 n p}
\end{aligned}
$$

with high probability.

Lower Bound

Lower Bound

proof of lower bound

Lower Bound

proof of lower bound
 $$
\inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2}
$$

Lower Bound

proof of lower bound
 $$
\inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2} \text { not separable }
$$

Lower Bound

$$
\begin{aligned}
\begin{array}{c}
\text { proof of } \\
\text { lower bound }
\end{array} & \inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2} \\
& \geq \frac{1}{2 n} \inf _{z \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z}\left\|\widehat{z} \widetilde{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Lower Bound

$$
\begin{aligned}
& \begin{array}{c}
\text { proof of } \\
\text { lower bound }
\end{array} \inf _{\widetilde{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2} \\
& \geq \frac{1}{2 n} \inf _{z \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z}\left\|\widehat{z} \widetilde{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \quad \text { not separable } \\
& \text { separable }
\end{aligned}
$$

Lower Bound

proof of
lower bound $\inf _{\bar{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2}$ not separable

$$
\geq \frac{1}{2 n} \inf _{\widetilde{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z}\left\|\widehat{\widetilde{z}} \widetilde{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \quad \text { separable }
$$

$$
\geq \frac{1}{2 n} \inf _{\tilde{z}} \sum_{1 \leq j \neq k \leq n}\left(\int \prod_{l=1}^{n} \pi\left(z_{l}\right)\right) \mathbb{E}_{z}\left|\widehat{z}_{j} \overline{\bar{z}}_{k}-z_{j} \bar{z}_{k}\right|^{2} d z
$$

Lower Bound

proof of
lower bound $\inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2}$ not separable $\geq \frac{1}{2 n} \inf _{z \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z}\left\|\widehat{z} \widetilde{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \quad$ separable
$\geq \frac{1}{2 n} \inf _{\widehat{z}} \sum_{1 \leq j \neq k \leq n}\left(\int \prod_{l=1}^{n} \pi\left(z_{l}\right)\right) \mathbb{E}_{z}\left|\widehat{z}_{j} \overline{\bar{z}}_{k}-z_{j} \bar{z}_{k}\right|^{2} d z$
$\geq \frac{1}{2 n} \sum_{1 \leq j \neq k \leq n} \mathbb{E}_{z_{-(j, k)} \sim \pi} \inf _{\widehat{T}} \int \pi\left(z_{j}\right) \pi\left(z_{k}\right) \mathbb{E}_{z}\left|\widehat{T}-z_{j} \bar{z}_{k}\right|^{2} d z_{j} d z_{k}$

Lower Bound

$$
\begin{aligned}
\begin{array}{c}
\text { proof of } \\
\text { lower bound }
\end{array} & \inf _{\widehat{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n}\left|\widehat{z}_{j} e^{i \theta}-z_{j}\right|^{2} \\
& \geq \frac{1}{2 n} \inf _{\bar{z} \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z}\left\|\widehat{z} \widehat{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}-\text { set separable } \\
& \geq \frac{1}{2 n} \inf _{\widehat{z}} \sum_{1 \leq j \neq k \leq n}\left(\int \prod_{l=1}^{n} \pi\left(z_{l}\right)\right) \mathbb{E}_{z}\left|\widehat{\widetilde{z}}_{j} \overline{\bar{z}}_{k}-z_{j} \bar{z}_{k}\right|^{2} d z \\
& \geq \frac{1}{2 n} \sum_{1 \leq j \neq k \leq n} \mathbb{E}_{z_{-(j, k)} \sim \pi} \inf _{\widehat{T}} \int \pi\left(z_{j}\right) \pi\left(z_{k}\right) \mathbb{E}_{z}\left|\widehat{T}-z_{j} \bar{z}_{k}\right|^{2} d z_{j} d z_{k} \\
& \geq \frac{1}{2 n} \sum_{1 \leq j \neq k \leq n}(1-\delta) \frac{\sigma^{2}}{p} \text { van Tree's inequality }
\end{aligned}
$$

Lower Bound

$\left.\begin{gathered}\text { proof of } \\ \text { lower bound }\end{gathered} \inf _{z \in \mathbb{C}_{1}^{n}} \sup _{z \in \mathbb{C}_{1}^{n}} \mathbb{E}_{z} \min _{\theta \in \mathbb{R}} \sum_{j=1}^{n} \right\rvert\, \hat{z}_{j} e^{i \theta}-\underline{\left.z_{j}\right|^{2}}$ not separable
$\geq \frac{1}{2 n} \inf _{z \in \mathbb{C}_{1}^{C_{1}}} \sup _{z \in \mathbb{C}_{1}^{\mathbb{Z}}} \mathbb{E}_{z}\left\|\widehat{z}^{\mathrm{H}}-z z^{\mathrm{H}}\right\|_{\mathrm{F}}^{2} \underbrace{}_{\text {separable }}$
$\geq \frac{1}{2 n} \inf _{\hat{\tilde{z}}} \sum_{1 \leq j \neq k \leq n}\left(\int \prod_{l=1}^{n} \pi\left(z_{l}\right)\right) \mathbb{E}_{z}\left|\hat{z}_{j} \overline{\bar{z}}_{k}-z_{j} \bar{z}_{k}\right|^{2} d z$
$\geq \frac{1}{2 n} \sum_{1 \leq j \neq k \leq n} \mathbb{E}_{z_{-(j, k)} \sim \pi} \frac{\inf }{\widehat{T}} \int \pi\left(z_{j}\right) \pi\left(z_{k}\right) \mathbb{E}_{z}\left|\widehat{T}-z_{j} \bar{z}_{k}\right|^{2} d z_{j} d z_{k}$
$\geq \frac{1}{2 n} \sum_{1 \leq j \neq k \leq n}(1-\delta) \frac{\sigma^{2}}{p}$ van Tree's inequality
$=(1-o(1)) \frac{\sigma^{2}}{2 p}$

Z2 Synchronization

Model

$$
Y_{j k}=z_{j} z_{k}+\sigma W_{j k}
$$

Z2 Synchronization

Model

$$
Y_{j k}=z_{j} z_{k}+\sigma W_{j k}
$$

Parameter
space

$$
z_{j} \in\{-1,1\}
$$

Z2 Synchronization

Model

$$
Y_{j k}=z_{j} z_{k}+\sigma W_{j k}
$$

Parameter space

$$
z_{j} \in\{-1,1\}
$$

Missing
data

$A_{j k} \sim \operatorname{Bernoulli}(p)$

Z2 Synchronization

MLE

$$
\max _{\in\{-1,1\}^{n}} z^{\mathrm{T}}(A \circ Y) z
$$

Z2 Synchronization

MLE

$$
\max _{z \in\{-1,1\}^{n}} z^{\mathrm{T}}(A \circ Y) z
$$

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}\right|}
$$

Z2 Synchronization

MLE

$$
\max _{z \in\{-1,1\}^{n}} z^{\mathrm{T}}(A \circ Y) z
$$

GPM

$$
z_{j}^{(t)}=\frac{\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}}{\left|\sum_{k \in[n] \backslash\{j\}} A_{j k} Y_{j k} z_{k}^{(t-1)}\right|}
$$

SDP $\max _{Z=Z^{\mathrm{T}} \in \mathbb{R}^{n \times n}} \operatorname{Tr}((A \circ Y) Z) \quad$ subject to $\quad \operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$

Z2 Synchronization

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$

 and $\frac{n p}{\log n} \rightarrow \infty$. Then,$$
\inf _{\widehat{z}\{-1,1\}^{n}} \sup _{z \in\{-1,1\}^{n}} \mathbb{E}_{z} \ell(\widehat{z}, z) \geq \exp \left(-(1+o(1)) \frac{n p}{2 \sigma^{2}}\right) .
$$

Moreover, the MLE, GPM initialized by the leading eigenvector of $A \circ Y$, and the leading eigenvector of SDP all achieve

$$
\ell(\widehat{z}, z) \leq \exp \left(-(1-o(1)) \frac{n p}{2 \sigma^{2}}\right)
$$

with high probability.

Z2 Synchronization

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$

 and $\frac{n p}{\log n} \rightarrow \infty$. Then,$$
\inf _{\widehat{z} \in\{-1,1\}^{n}} \sup _{z \in\{-1,1\}^{n}} \mathbb{E}_{z} \ell(\widehat{z}, z) \geq \exp \left(-(1+o(1)) \frac{n p}{2 \sigma^{2}}\right) .
$$

Moreover, the MLE, GPM initialized by the leading eigenvector of $A \circ Y$, and the leading eigenvector of SDP all achieve

$$
\ell(\widehat{z}, z) \leq \exp \left(-(1-o(1)) \frac{n p}{2 \sigma^{2}}\right)
$$

with high probability.
" $\mathrm{p}=1$ " by [Fei \& Chen 20]

Comparison

Comparison

phase sync

Comparison

phase sync

Z2 sync

Comparison

| phase sync | $\max \quad \operatorname{Tr}((A \circ Y) Z)$
 s.t. $\operatorname{diag}(Z)=$ I_{n} and $Z \succeq 0$
 Z2 Sync $\max \quad \operatorname{Tr}((A \circ Y) Z)$
 s.t. $\operatorname{diag}(Z)=I_{n}$ and $Z \succeq 0$ $\| \quad(1+o(1)) \frac{\sigma^{2}}{2 n p}$ |
| :---: | :---: | :---: |$|$

Comparison

phase sync	$\begin{array}{cc} \max & \operatorname{Tr}((A \circ Y) Z) \\ \text { s.t. } \operatorname{diag}(Z) & =I_{n} \text { and } Z \succeq 0 \end{array}$	$(1+o(1)) \frac{\sigma^{2}}{2 n p}$
Z2 sync	$\begin{gathered} \max \quad \operatorname{Tr}((A \circ Y) Z) \\ \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0 \end{gathered}$	$\exp \left(-(1-o(1)) \frac{n p}{2 \sigma^{2}}\right)$

Comparison

phase sync

Z2 sync

$$
\begin{aligned}
& \max _{Z=Z^{\mathrm{H}} \in \mathbb{C}^{n \times n}} \operatorname{Tr}((A \circ Y) Z) \\
& \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0 \\
& \max _{Z=Z^{\mathrm{T}} \in \mathbb{R}^{n \times n}} \operatorname{Tr}((A \circ Y) Z) \\
& \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0
\end{aligned}
$$

$$
(1+o(1)) \frac{\sigma^{2}}{2 n p}
$$

$$
\exp \left(-(1-o(1)) \frac{n p}{2 \sigma^{2}}\right)
$$

Comparison

phase sync	$\begin{aligned} & \max _{Z=Z^{\mathrm{H}} \in \mathbb{C}^{n \times n}} \operatorname{Tr}((A \circ Y) Z) \\ & \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0 \end{aligned}$	$(1+o(1)) \frac{\sigma^{2}}{2 n p}$
Z2 sync	$\begin{gathered} \max _{Z=Z^{\mathrm{T}} \in \mathbb{R}^{n \times n}} \operatorname{Tr}((A \circ Y) Z) \\ \text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0 \end{gathered}$	$\exp \left(-\left(1-o(1) \frac{n p}{2 \sigma^{2}}\right)\right.$

For any $x, y \in \mathbb{C}^{n}$ such that $\|y\|=1$ and $\operatorname{Re}\left(y^{\mathrm{H}} x\right)>0$, we have

$$
\left\|\frac{x}{\|x\|}-y\right\|^{2} \leq \frac{\left\|\left(I_{n}-y y^{\mathrm{H}}\right) x\right\|^{2}+\left|\operatorname{Im}\left(y^{\mathrm{H}} x\right)\right|^{2}}{\left|\operatorname{Re}\left(y^{\mathrm{H}} x\right)\right|^{2}}
$$

Comparison

phase sync
Z2 sync

$$
\max _{Z=Z^{\mathrm{T}} \in \mathbb{R}^{n \times n}} \operatorname{Tr}((A \circ Y) Z)
$$

$$
\text { s.t. } \operatorname{diag}(Z)=I_{n} \text { and } Z \succeq 0
$$

$$
\begin{gathered}
(1+o(1)) \frac{\sigma^{2}}{2 n p} \\
\exp \left(-(1-o(1)) \frac{n p}{2 \sigma^{2}}\right)
\end{gathered}
$$

extra term in complex space

Rotation Synchronization

Rotation Synchronization

Model $\quad Y_{i j}=Z_{i} Z_{j}^{\mathrm{T}}+\sigma W_{i j} \in \mathbb{R}^{d \times d} \quad Z_{i} \in \mathrm{SO}(d)$

Rotation Synchronization

Model $\quad Y_{i j}=Z_{i} Z_{j}^{\mathrm{T}}+\sigma W_{i j} \in \mathbb{R}^{d \times d} \quad Z_{i} \in \mathrm{SO}(d) \quad A_{j k} \sim \operatorname{Bernoulli}(p)$

Rotation Synchronization

Model $\quad Y_{i j}=Z_{i} Z_{j}^{\mathrm{T}}+\sigma W_{i j} \in \mathbb{R}^{d \times d} \quad Z_{i} \in \mathrm{SO}(d) \quad A_{j k} \sim \operatorname{Bernoulli}(p)$
Loss

$$
\ell(\widehat{Z}, Z)=\min _{U \in \mathrm{SO}(d)} \frac{1}{n} \sum_{j=1}^{n}\left\|\widehat{Z}_{j} U-Z_{j}\right\|_{\mathrm{F}}^{2}
$$

Rotation Synchronization

Model $\quad Y_{i j}=Z_{i} Z_{j}^{\mathrm{T}}+\sigma W_{i j} \in \mathbb{R}^{d \times d} \quad Z_{i} \in \mathrm{SO}(d) \quad A_{j k} \sim \operatorname{Bernoulli}(p)$
Loss

$$
\ell(\widehat{Z}, Z)=\min _{U \in S O(d)} \frac{1}{n} \sum_{j=1}^{n}\left\|\widehat{Z}_{j} U-Z_{j}\right\|_{\mathrm{F}}^{2}
$$

Theorem [G \& Zhang]. Assume $\sigma^{2}=o(n p)$

 and $\frac{n p}{\log n} \rightarrow \infty$. Then,$$
\inf _{\widehat{Z} \in \operatorname{SO}(d)^{n}} \sup _{Z \in \operatorname{SO}(d)^{n}} \mathbb{E}_{n} l(\widehat{Z}, Z) \geq(1-o(1)) \frac{(d-1) d \sigma^{2}}{2 n p} .
$$

Moreover, both MLE and GPM achieve

$$
\ell(\widehat{Z}, Z) \leq(1+o(1)) \frac{(d-1) d \sigma^{2}}{2 n p}
$$

with high probability.

Thank You

