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Abstract

We study the phase synchronization problem with measurements Y = z⇤z⇤H + �W 2
Cn⇥n, where z⇤ is an n-dimensional complex unit-modulus vector and W is a complex-
valued Gaussian random matrix. It is assumed that each entry Yjk is observed with prob-
ability p. We prove that the minimax lower bound of estimating z⇤ under the squared
`2 loss is (1 � o(1))�

2

2p . We also show that both generalized power method and maxi-

mum likelihood estimator achieve the error bound (1 + o(1))�
2

2p . Thus, �2

2p is the exact
asymptotic minimax error of the problem. Our upper bound analysis involves a precise
characterization of the statistical property of the power iteration. The lower bound is
derived through an application of van Trees’ inequality.

1 Introduction

The phase synchronization problem [18] is to estimate n unknown angles ✓⇤1, · · · , ✓⇤n from

noisy measurements of (✓⇤j � ✓⇤k) mod 2⇡. In this paper, we consider the following additive

model [1, 9, 14, 19]:

Yjk = z⇤j z̄
⇤
k + �Wjk 2 C, (1)

for all 1  j < k  n, where we use the notation x̄ for the complex conjugate of x. We assume

that each z⇤j 2 C1 = {x 2 C : |x| = 1} and we can thus write it as z⇤j = ei✓
⇤
j . The additive

noise Wjk in (1) is assumed to be i.i.d. standard complex Gaussian.1 Our goal in this paper

is to study minimax optimal estimation of the vector z⇤ 2 Cn
1 under the loss function

`(bz, z⇤) = min
a2C1

nX

j=1

|bzja� z⇤j |2. (2)

We remark that the minimization over a global phase in the definition of (2) is necessary.

This is because the global phase is not identifiable from the pairwise observations (1).

1For Wjk ⇠ CN (0, 1), we have Re(Wjk) ⇠ N
�
0, 1

2

�
and Im(Wjk) ⇠ N

�
0, 1

2

�
independently.

1

Model
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� 1� �
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>>>:
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�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
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= argmin
a2C1

kYj � a�(t)
k
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a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}
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zj 2 C = {x 2 C : |x| = 1}

Yjk = zj z̄k + �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np
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GPM

Various estimation procedures have been considered and studied in the literature. For

example, the maximum likelihood estimator (MLE) is defined as the global maximizer of the

following constrained optimization problem

max
z2Cn

1

zHY z, (3)

where Y is Hermitian with Yjk = Ȳkj for all 1  k < j  n and Yjj = 0 for all j 2 [n]. Note

that (3) can be shown to be equivalent to minz2Cn
1

P
1j<kn |Yjk � zj z̄k|2. It was shown in

[2] that the MLE satisfies `(bz, z⇤)  C�2 with high probability for some constant C > 0.

However, the optimization (3) is nonconvex and computationally infeasible in general. To

address this problem, generalized power method (GPM) [5, 7, 17] and semi-definite program-

ming (SDP) have been considered in the literature to approximate the solution of (3). The

generalized power method is defined through the iteration,2
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P
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(t�1)
k

���
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ability p. We prove that the minimax lower bound of estimating z⇤ under the squared
`2 loss is (1 � o(1))�
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2p . We also show that both generalized power method and maxi-

mum likelihood estimator achieve the error bound (1 + o(1))�
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2p . Thus, �2

2p is the exact
asymptotic minimax error of the problem. Our upper bound analysis involves a precise
characterization of the statistical property of the power iteration. The lower bound is
derived through an application of van Trees’ inequality.

1 Introduction

The phase synchronization problem [18] is to estimate n unknown angles ✓⇤1, · · · , ✓⇤n from

noisy measurements of (✓⇤j � ✓⇤k) mod 2⇡. In this paper, we consider the following additive

model [1, 9, 14, 19]:

Yjk = z⇤j z̄
⇤
k + �Wjk 2 C, (1)

for all 1  j < k  n, where we use the notation x̄ for the complex conjugate of x. We assume

that each z⇤j 2 C1 = {x 2 C : |x| = 1} and we can thus write it as z⇤j = ei✓
⇤
j . The additive

noise Wjk in (1) is assumed to be i.i.d. standard complex Gaussian.1 Our goal in this paper

is to study minimax optimal estimation of the vector z⇤ 2 Cn
1 under the loss function

`(bz, z⇤) = min
a2C1

nX

j=1

|bzja� z⇤j |2. (2)

We remark that the minimization over a global phase in the definition of (2) is necessary.

This is because the global phase is not identifiable from the pairwise observations (1).

1For Wjk ⇠ CN (0, 1), we have Re(Wjk) ⇠ N
�
0, 1

2

�
and Im(Wjk) ⇠ N

�
0, 1

2

�
independently.
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by achieving the correct leading constant in front of the optimal rate. In addition, since we

know by the result of [19] that the solution of the SDP is a rank-one matrix bzbzH with bz being

the MLE, the SDP also achieves the optimal error bound (7) as a direct consequence, but

under a stronger condition �2 = O
⇣
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To formally state our main result, we introduce a more general statistical estimation
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k  n, we assume each Yjk is observed with probability p. In other words, consider a random
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Theorem 1.1 immediately implies (6) and (7) as a special case of p = 1, and is the first
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�2 = o(np) and np
logn ! 1 are essential for the results of the above theorem to hold. Since
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2p , the condition �2 = o(np), which is equivalent to
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2p = o(n), guarantees that the minimax risk is of smaller order than the trivial one. The
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logn ! 1 guarantees that the random graph A is connected with high probability.
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setting that allows the possibility of missing entries. Instead of observing Yjk for all 1  j <

k  n, we assume each Yjk is observed with probability p. In other words, consider a random

graph Ajk ⇠ Bernoulli(p) independently for all 1  j < k  n, and we only observe Yjk that
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Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.
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Various estimation procedures have been considered and studied in the literature. For

example, the maximum likelihood estimator (MLE) is defined as the global maximizer of the

following constrained optimization problem
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zHY z, (3)

where Y is Hermitian with Yjk = Ȳkj for all 1  k < j  n and Yjj = 0 for all j 2 [n]. Note

that (3) can be shown to be equivalent to minz2Cn
1

P
1j<kn |Yjk � zj z̄k|2. It was shown in

[2] that the MLE satisfies `(bz, z⇤)  C�2 with high probability for some constant C > 0.

However, the optimization (3) is nonconvex and computationally infeasible in general. To

address this problem, generalized power method (GPM) [5, 7, 17] and semi-definite program-

ming (SDP) have been considered in the literature to approximate the solution of (3). The

generalized power method is defined through the iteration,2
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���
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In other words, one repeatedly computes the product Y z(t�1) and projects this vector to

Cn
1 through entrywise normalization. When the iteration (4) is initialized by the eigenvector

method, [19] shows that z(t) converges to the global maximizer of (3) at a linear rate under the

noise level condition �2 = O
⇣

n
logn

⌘
. For its statistical performance, [15] shows `(z(1), z⇤) 

C�2 with high probability for some constant C > 0. The semidefinite programming is a

convex relaxation of (3). It refers to the following optimization problem,

max
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Tr(Y Z) subject to diag(Z) = In and Z ⌫ 0. (5)

In general, the solution of (5) is an n⇥nmatrix and needs to be rounded. When �2 = O(n1/2),

it was proved by [2] that the solution to (5) is a rank-one matrix bZ = bzbzH, with bz being a

global maximizer of (3). This result was recently proved by [19] to hold under a weaker

condition �2 = O
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n
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⌘
. Given the fact that SDP solves (3), we know that it also achieves

the same high-probability error bound `(bz, z⇤)  C�2 as that of the MLE under the additional

condition �2 = O
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⌘
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Despite these estimation procedures studied in the literature, it remains an open problem

what the optimal error under the loss (2) is. In this paper, we establish a minimax lower

bound for phase synchronization. We show that
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2
, (6)

for some � = o(1) under the condition that �2 = o(n). This provides a stronger characteri-

zation of the fundamental limits of the phase synchronization problem than the Cramér-Rao

2When the denominator of (4) is zero, take z(t)j to be an arbitrary value in C1.

2

Zi 2 Pd

n

k2
! 1

n�2

k4
! 1

Ti = Yi

[µi(�, a)]j = [⌫i(�, a)]j = �(zi � a�1)

� 2 Bz = {(�, z) : � 2 R} = R⇥ {z}

[Xz(�)]ij = [Xz((�, z))]ij = �(zi � z�1
j )

Yij = �(zi � z�1
j ) +Wij

n�2 ! 1

1

n

nX

i=1

I{Z(t)
i 6= Zi}  exp

✓
�(1 + o(1))

n�2

2

◆
+ 2�t

Ti = Yi

µ(�, a) = ⌫(�, a) = a�

Y = z�T +W

Xz : � 7! z�H

� 2 Bz = {� = �z : � 2 R}

Yij = �zizj +Wij

zi 2 {�1, 1}

Y = �zzT +W

9



linear in z (instead of quadratic)

specialization

Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen1, Chao Gao1, and Anderson Y. Zhang2

1 University of Chicago
2 University of Pennsylvania

September 30, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.

Ti = Yi

µ(�, a) = ⌫(�, a) = a�

Y = z�T +W

Xz : � 7! z�T

� 2 Bz = {� = �z : � 2 R}

1

Phase Synchronization
Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� o(1))
�2

2np

`(bz, z)  (1 + o(1))
�2

2np

when �2 = O(n1/3)

when �2 = O(n1/2)

when �2 = O

✓
n

log n

◆

`(bzMLE, z
⇤)  C

�2

n

z(t) ! bzMLE

bZSDP = bzMLEbzH

MLE

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� o(1))
�2

2np

`(bz, z)  (1 + o(1))
�2

2np

when �2 = O(n1/3)

when �2 = O(n1/2)

when �2 = O

✓
n

log n

◆

`(bzMLE, z
⇤)  C

�2

n

z(t) ! bzMLE

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� o(1))
�2

2np

`(bz, z)  (1 + o(1))
�2

2np

when �2 = O(n1/3)

when �2 = O(n1/2)

when �2 = O

✓
n

log n

◆

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� o(1))
�2

2np

`(bz, z)  (1 + o(1))
�2

2np

when �2 = O(n1/3)

with missing 

data

Zi 2 Pd

n

k2
! 1

n�2

k4
! 1

Ti = Yi

[µi(�, a)]j = [⌫i(�, a)]j = �(zi � a�1)

� 2 Bz = {(�, z) : � 2 R} = R⇥ {z}

[Xz(�)]ij = [Xz((�, z))]ij = �(zi � z�1
j )

Yij = �(zi � z�1
j ) +Wij

n�2 ! 1

1

n

nX

i=1

I{Z(t)
i 6= Zi}  exp

✓
�(1 + o(1))

n�2

2

◆
+ 2�t

Ti = Yi

µ(�, a) = ⌫(�, a) = a�

Y = z�T +W

Xz : � 7! z�H

� 2 Bz = {� = �z : � 2 R}

Yij = �zizj +Wij

zi 2 {�1, 1}

Y = �zzT +W

9



Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen
1
, Chao Gao

1
, and Anderson Y. Zhang

2

1 University of Chicago
2 University of Pennsylvania

October 1, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.
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Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.
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(t�1)
k

���
. (15)

Let us shorthand the above formula by

V (t) = f(V (t�1)), (16)

6

fixed point



SDP: A Non-Convex View
MLE

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

GPM

SDP

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

max
V 2Cn⇥n

Tr((A � Y )V HV )

s.t. kVjk
2 = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

Theorem 2.1 (Theorem 4.1 of [16]). Assume �2 = o(np). Then, we have

inf
bZ2Cn⇥n

sup
z2Cn

1

Ez
1

n2
k bZ � zzHk2F � (1� �)

�2

np
,

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2np
,

for some � = o(1).

The above theorem has been established by [16] as the minimax lower bound for phase

synchronization. In fact, Theorem 4.1 of [16] only states the lower bound result for the loss

function `(bz, z). However, the proof of Theorem 4.1 of [16] actually established the lower
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under 1
n2 k bZ � zzHk2F in addition to the loss `(bz, z).

2.2 A Convergence Lemma

Our analysis of the SDP (13) relies on an equivalent non-convex characterization. Since Z is

a positive semi-definite Hermitian matrix, it admits a decomposition

Z = V HV,

for some V 2 Cn⇥n. Let Vj be the jth column of V , and we have Zjk = V H

j Vk. In particular,

the constraint diag(Z) = In can be written as Zjj = kVjk2 = 1 for all j 2 [n]. Replacing Z

by V HV , the SDP (13) can be equivalently represented as
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(t�1)
k

���
. (15)

Let us shorthand the above formula by

V (t) = f(V (t�1)), (16)

6

[Burer & Monteiro 03]



SDP: A Non-Convex View
MLE

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

1

n2
k bZ � zzH

k
2
F  (1 + o(1))

�2

np

A � Y

GPM

SDP

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

inf
bZ

sup
z2Cn

1

Ez

1

n2
k bZ � zzH

k
2
F � (1� o(1))

�2

np

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

max
V 2Cn⇥n

Tr((A � Y )V HV )

s.t. kVjk
2 = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}

Yjk = zjz
H

k
+ �Wjk 2 C

Theorem 2.1 (Theorem 4.1 of [16]). Assume �2 = o(np). Then, we have

inf
bZ2Cn⇥n

sup
z2Cn

1

Ez
1

n2
k bZ � zzHk2F � (1� �)

�2

np
,

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2np
,

for some � = o(1).

The above theorem has been established by [16] as the minimax lower bound for phase

synchronization. In fact, Theorem 4.1 of [16] only states the lower bound result for the loss

function `(bz, z). However, the proof of Theorem 4.1 of [16] actually established the lower

bound under the loss 1
n2 k bZ � zzHk2F, and the lower bound for `(bz, z) is proved as a direct

consequence in view of the inequality

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) �
1

2
inf

bZ2Cn⇥n
sup
z2Cn

1

Ez
1

n2
k bZ � zzHk2F.

Since the solution of the SDP (13) is a matrix, it is natural to study the statistical error

under 1
n2 k bZ � zzHk2F in addition to the loss `(bz, z).

2.2 A Convergence Lemma

Our analysis of the SDP (13) relies on an equivalent non-convex characterization. Since Z is

a positive semi-definite Hermitian matrix, it admits a decomposition

Z = V HV,

for some V 2 Cn⇥n. Let Vj be the jth column of V , and we have Zjk = V H

j Vk. In particular,

the constraint diag(Z) = In can be written as Zjj = kVjk2 = 1 for all j 2 [n]. Replacing Z

by V HV , the SDP (13) can be equivalently represented as

max
V 2Cn⇥n

Tr((A � Y )V HV ) subject to kVjk2 = 1 for all j 2 [n]. (14)

The formulation (14) is closely related to the Burer-Monteiro problem [9, 20] for the SDP

except that here V is still an n ⇥ n matrix without dimension reduction. This non-convex

formulation allows us to derive sharp statistical error bounds of the SDP (13).

We analyze (14) through the following iteration procedure,

V (t)
j =

P
k2[n]\{j}AjkȲjkV
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The above theorem has been established by [16] as the minimax lower bound for phase

synchronization. In fact, Theorem 4.1 of [16] only states the lower bound result for the loss
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Since the solution of the SDP (13) is a matrix, it is natural to study the statistical error

under 1
n2 k bZ � zzHk2F in addition to the loss `(bz, z).

2.2 A Convergence Lemma

Our analysis of the SDP (13) relies on an equivalent non-convex characterization. Since Z is

a positive semi-definite Hermitian matrix, it admits a decomposition

Z = V HV,

for some V 2 Cn⇥n. Let Vj be the jth column of V , and we have Zjk = V H

j Vk. In particular,

the constraint diag(Z) = In can be written as Zjj = kVjk2 = 1 for all j 2 [n]. Replacing Z

by V HV , the SDP (13) can be equivalently represented as

max
V 2Cn⇥n

Tr((A � Y )V HV ) subject to kVjk2 = 1 for all j 2 [n]. (14)

The formulation (14) is closely related to the Burer-Monteiro problem [9, 20] for the SDP

except that here V is still an n ⇥ n matrix without dimension reduction. This non-convex

formulation allows us to derive sharp statistical error bounds of the SDP (13).
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(t�1)
k

���
. (15)

Let us shorthand the above formula by

V (t) = f(V (t�1)), (16)

6

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

V (t) = f(V (t�1))

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

max
V 2Cn⇥n

Tr((A � Y )V HV )

s.t. kVjk
2 = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

zj 2 C = {x 2 C : |x| = 1}



SDP: A Non-Convex View

Lemma. Assume                and            . For 
any            , we have 

for some            .

Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen
1
, Chao Gao

1
, and Anderson Y. Zhang

2

1 University of Chicago
2 University of Pennsylvania

October 1, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.

�2 = o(np)

p � log n

n

inf
z2Cn

1

sup
z2Cn

1

E`(bz, z) � (1� o(1))
�2

2p

`(bz, z)  (1 + o(1))
�2

p

A

1

Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen
1
, Chao Gao

1
, and Anderson Y. Zhang

2

1 University of Chicago
2 University of Pennsylvania

October 1, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.

�2 = o(np)

p � log n

n

inf
z2Cn

1

sup
z2Cn

1

E`(bz, z) � (1� o(1))
�2

2p

`(bz, z)  (1 + o(1))
�2

p

A

1

Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen
1
, Chao Gao

1
, and Anderson Y. Zhang

2

1 University of Chicago
2 University of Pennsylvania

October 1, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.

� = o(1)

� = o(1)

� = o(1)

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2p
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

1

Partial Recovery for Top-k Ranking:

Optimality of MLE and Sub-Optimality of Spectral Method

Pinhan Chen
1
, Chao Gao

1
, and Anderson Y. Zhang

2

1 University of Chicago
2 University of Pennsylvania

October 1, 2020

Abstract

Given partially observed pairwise comparison data generated by the Bradley-Terry-
Luce (BTL) model, we study the problem of top-k ranking. That is, to optimally identify
the set of top-k players. We derive the minimax rate with respect to a normalized
Hamming loss. This provides the first result in the literature that characterizes the partial
recovery error in terms of the proportion of mistakes for top-k ranking. We also derive
the optimal signal to noise ratio condition for the exact recovery of the top-k set. The
maximum likelihood estimator (MLE) is shown to achieve both optimal partial recovery
and optimal exact recovery. On the other hand, we show another popular algorithm,
the spectral method, is in general sub-optimal. Our results complement the recent work
by [? ] that shows both the MLE and the spectral method achieve the optimal sample
complexity for exact recovery. It turns out the leading constants of the sample complexity
are di↵erent for the two algorithms. Another contribution that may be of independent
interest is the analysis of the MLE without any penalty or regularization for the BTL
model. This closes an important gap between theory and practice in the literature of
ranking.

� = o(1)

� = o(1)

� = o(1)

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2p
for any z 2 Cn

1 s.t. `(z, z⇤)  �n

◆
� 1� �

1

Chao Gao, Department of Statistics, Yale University c� March 13, 2021 1

V (t) = f(V (t�1))

maxTr((A � Y )zzH)

s.t. |zj | = 1 for all j 2 [n]

maxTr((A � Y )Z)

s.t. diag(Z) = In and Z ⌫ 0

max
V 2Cn⇥n

Tr((A � Y )V HV )

s.t. kVjk
2 = 1 for all j 2 [n]

P
✓
`(f(z), z⇤)  �`(z, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(z, z⇤)  �

◆
� 1� �

P
✓
`(f(V ), z⇤)  �`(V, z⇤) + (1 + �)

�2

2np
for any z 2 Cn

1 s.t. `(V, z⇤)  �

◆
� 1� �

z(t)
j

=

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
8
>>><

>>>:

�(t) = argmin
�2{z(t�1)}

kY � z(t�1)�H
k
2
F = z(t�1)

z(t)
j

= argmin
a2C1

kYj � a�(t)
k
2 = argmin

a2C1

kYj � az(t�1)
k
2

µ(�, a) = a�

� 2 Bz = {z}

Y = z�H + �W

Y = zzH + �W

Theorem 2.1 (Theorem 4.1 of [16]). Assume �2 = o(np). Then, we have

inf
bZ2Cn⇥n

sup
z2Cn

1

Ez
1

n2
k bZ � zzHk2F � (1� �)

�2

np
,

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2np
,

for some � = o(1).

The above theorem has been established by [16] as the minimax lower bound for phase
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Since the solution of the SDP (13) is a matrix, it is natural to study the statistical error

under 1
n2 k bZ � zzHk2F in addition to the loss `(bz, z).

2.2 A Convergence Lemma

Our analysis of the SDP (13) relies on an equivalent non-convex characterization. Since Z is

a positive semi-definite Hermitian matrix, it admits a decomposition
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for some V 2 Cn⇥n. Let Vj be the jth column of V , and we have Zjk = V H

j Vk. In particular,

the constraint diag(Z) = In can be written as Zjj = kVjk2 = 1 for all j 2 [n]. Replacing Z

by V HV , the SDP (13) can be equivalently represented as

max
V 2Cn⇥n

Tr((A � Y )V HV ) subject to kVjk2 = 1 for all j 2 [n]. (14)

The formulation (14) is closely related to the Burer-Monteiro problem [9, 20] for the SDP

except that here V is still an n ⇥ n matrix without dimension reduction. This non-convex

formulation allows us to derive sharp statistical error bounds of the SDP (13).
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We can therefore think of (6) as a lift of the GPM (7) into a higher dimensional space. This

allows us to analyze the statistical error of SDP from an iterative algorithm perspective,

and previous techniques of analyzing general iterative algorithms in [15, 24] can be borrowed

for the current purpose. To understand the exact statistical error of SDP, we establish the

following convergence result for the iterative procedure (6),

`(V (t), z⇤)  �`(V (t�1), z⇤) + optimal statistical error, for all t � 1, (8)

for some � = o(1) with high probability, as long as it is properly initialized. Here, with slight

abuse of notation, the loss of bV is defined by

`(bV , z⇤) = min
a2Cn:kak2=1

1

n

nX

j=1

kbVj � z̄⇤j ak2, (9)

which is natural given that the matrix bZ = bV H bV is used to estimate z⇤z⇤H. Since the SDP

solution is a fixed point of the iteration (6), the convergence result (8) directly leads to the

sharp statistical error bounds in Theorem 1.1.

Our analysis of SDP through (6) also unifies the understandings of the GPM and the

MLE. Given the relation between (6) and (7), the convergence result (8) directly implies

`(z(t), z⇤)  �`(z(t�1), z⇤) + optimal statistical error, for all t � 1, (10)

for some � = o(1) with high probability, as long as the GPM is properly initialized. This

provides an alternative proof to the minimax optimality of the GPM that has been previously

established by [16]. In addition, just as the SDP can be viewed as a fixed point of the iteration

(6), the MLE can be viewed as a fixed point of the iteration (7). The minimax optimality

of the MLE can also be derived. To summarize, we are able to show the exact minimax

optimality of SDP, GPM, and MLE using a single proof based on the iterative procedure (6).

In addition to phase synchronization, we also establish the optimality of the SDP for Z2

synchronization. In the setting of Z2 synchronization, one observes Yjk = z⇤j z
⇤
k + �Wjk 2 R

for 1  j < k  n, and the goal is to estimate z⇤1 , · · · , z⇤n 2 {�1, 1}. Assume Wjk ⇠ N (0, 1)

and each Yjk is observed with probability p, we show that the SDP for Z2 synchronization

achieves the error

exp
⇣
�(1� o(1))

np

2�2

⌘
. (11)

We also prove a matching lower bound for this problem. Since Z2 synchronization is a discrete

parameter estimation problem, the minimax risk is an exponential function of the signal-

to-noise ratio, compared with the polynomial function for phase synchronization. Despite

being a continuous optimization method, the SDP is able to adapt to the discreteness of

the problem. The exponential rate (11) has been previously derived for p = 1 by [13]. Our

analysis based on the iterative algorithm perspective generalizes their result to more general

values of p � logn
n .
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Missing
data

lower bound developed in [4, 6], which only holds for unbiased estimators. Instead, the lower

bound in (6) holds for both unbiased and biased estimators.

Moreover, in this paper, we prove both the MLE and the GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2
, (7)

for some � = o(1) with high probability under the same condition �2 = o(n). In other words,

these two estimators are not only rate-optimal, but are also exactly asymptotically minimax

by achieving the correct leading constant in front of the optimal rate. In addition, since we

know by the result of [19] that the solution of the SDP is a rank-one matrix bzbzH with bz being

the MLE, the SDP also achieves the optimal error bound (7) as a direct consequence, but

under a stronger condition �2 = O
⇣

n
logn

⌘
.

To formally state our main result, we introduce a more general statistical estimation

setting that allows the possibility of missing entries. Instead of observing Yjk for all 1  j <

k  n, we assume each Yjk is observed with probability p. In other words, consider a random

graph Ajk ⇠ Bernoulli(p) independently for all 1  j < k  n, and we only observe Yjk that

follows (1) when Ajk = 1. Define Ajk = Akj for 1  k < j  n and Ajj = 0 for j 2 [n]. The

full observations can be organized into two Hermitian matrices A and A�Y , where � denotes

the matrix Hadamard product. The MLE and the GPM can be extended by replacing Yjk in

(3) and (4) with AjkYjk.

Theorem 1.1. Assume �2 = o(np) and
np

logn ! 1. Then, there exists some � = o(1) such

that

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2p
. (8)

Moreover, both MLE and GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2p
, (9)

with probability at least 1� n�1 � exp
⇣
�
�np
�2

�1/4⌘
.

Theorem 1.1 immediately implies (6) and (7) as a special case of p = 1, and is the first

statistical analysis of phase synchronization for p < 1. We remark that both conditions

�2 = o(np) and np
logn ! 1 are essential for the results of the above theorem to hold. Since

the minimax risk of the problem is �2

2p , the condition �2 = o(np), which is equivalent to
�2

2p = o(n), guarantees that the minimax risk is of smaller order than the trivial one. The

order n is trivial, since `(z, z⇤)  4n for any z, z⇤ 2 Cn
1 . When p = 1, the necessity of

�2 = o(n) for a nontrivial recovery is understood in the literature [11, 13, 16, 19]. The

condition np
logn ! 1 guarantees that the random graph A is connected with high probability.

It is known that when p  c lognn for some su�ciently small constant c > 0, the random

3
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MLE

which implies `(bz, z⇤)  1+�2
1��1

�2

2np after rearrangement. The crude bound `(bz, z⇤)  � = o(1)

can be easily established for the MLE using the argument in [16] or by a similar argument to

the proof of Lemma 2.2, and thus we obtain the optimal error bound `(bz, z⇤)  (1+ o(1)) �2

2np

for the MLE.

4 SDP for Z2 Synchronization

In this section, we show our analysis of SDP can also be applied to Z2 synchronization and

leads to a sharp exponential statistical error rate. Suppose we observe a random graph

Ajk ⇠ Bernoulli(p) independently for all 1  j < k  n. For each pair (j, k), we observe

Yjk = z⇤j z
⇤
k + �Wjk with z⇤j , z

⇤
k 2 {�1, 1} and Wjk ⇠ N (0, 1) whenever Ajk = 1. In Z2

synchronization, our goal is to estimate the binary vector z⇤ 2 {�1, 1}n from observations

{Ajk}1j<kn and {AjkYjk}1j<kn. We organize the data into two matrices A and A � Y .

Both the matrices A and Y are symmetric as we define Yjk = Ykj and Ajk = Akj for all

1  k < j  n and Yjj = Ajj = 0 for all j 2 [n].

With slight abuse of notation, we consider the loss function

`(bz, z) = min
a2{�1,1}

1

n

nX

j=1

|bzj � zja|2,

for any bz, z 2 {�1, 1}n. Since |bzj � zja|2 = 4I{bzj 6= zja}, the loss `(bz, z) is also called the

misclassification proportion in a clustering problem [15, 29]. We first present the minimax

lower bound of Z2 synchronization under this loss function.

Theorem 4.1. Assume �2 = o(np) and np
logn ! 1. Then, we have

inf
bZ2Rn⇥n

sup
z2{�1,1}n

Ez
1

n2
k bZ � zzTk2F � exp

⇣
�(1 + �)

np

2�2

⌘
,

inf
bz2{�1,1}n

sup
z2{�1,1}n

Ez`(bz, z) � exp
⇣
�(1 + �)

np

2�2

⌘
,

for some � = o(1).

When p = 1, the above result has been proved by [13], but the lower bound result for a

general p is unknown in the literature. Compared with Theorem 2.1, the minimax lower bound

for Z2 synchronization is an exponential function of the signal-to-noise ratio, a consequence

of the discreteness of the problem.

To estimate z⇤ 2 {�1, 1}n, the MLE is defined as the global maximizer of the following

optimization problem

max
z2{�1,1}n

zT(A � Y )z. (24)

Similar to (13), a convex relaxation of (24) leads to the following SDP,

max
Z=ZT2Rn⇥n

Tr((A � Y )Z) subject to diag(Z) = In and Z ⌫ 0. (25)
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for some � = o(1).

When p = 1, the above result has been proved by [13], but the lower bound result for a

general p is unknown in the literature. Compared with Theorem 2.1, the minimax lower bound

for Z2 synchronization is an exponential function of the signal-to-noise ratio, a consequence

of the discreteness of the problem.

To estimate z⇤ 2 {�1, 1}n, the MLE is defined as the global maximizer of the following

optimization problem

max
z2{�1,1}n

zT(A � Y )z. (24)

Similar to (13), a convex relaxation of (24) leads to the following SDP,

max
Z=ZT2Rn⇥n

Tr((A � Y )Z) subject to diag(Z) = In and Z ⌫ 0. (25)
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GPM

While the first conclusion of the theorem is a direct consequence of Lemma 4.1, the second

conclusion can be derived from the inequality

1

n2
kbV T bV � z⇤z⇤Tk2F  2`(bV , z⇤),

which is established by Lemma 5.5 in Section 5.1. The result for the loss `(bz, z⇤) is resulted
from a matrix perturbation bound [11].

Theorem 4.2 has established the minimax optimality of the SDP (25) for Z2 synchroniza-

tion in view of the matching lower bound results in Theorem 4.1. The special case p = 1

recovers the results of [13]. Moreover, under the condition �2 < (1�✏) np
2 logn , we show that the

SDP solution bZ is exactly rank-one and therefore rounding through the leading eigenvector is

not needed. This result generalizes the exact recovery threshold of Z2 synchronization when

p = 1 [1, 4, 5]. The phenomenon that SDP can achieve exact recovery has also been revealed

in community detection under stochastic block models [3, 10, 18, 19, 22, 25].

We shall compare Theorem 4.2 to Theorem 2.2 and Theorem 2.3. Though the two SDPs

(25) and (13) have the same type of constraints, the di↵erence of the domain implies two

types of convergence rates exp
�
�(1� o(1)) np

2�2

�
and (1+ o(1)) �2

2np . It is quite surprising that

the SDP (25), a continuous optimization problem, is able to achieve an exponential rate,

which is typical for a discrete problem. The adaptation of the SDP (25) to the discrete

structure is a consequence of the fact that both (25) and (26) are optimization problems over

Rn⇥n. We make this e↵ect explicit by bounding the statistical error by the random variable
8
n

Pn
j=1 I{|Uj | > 1� �} in Lemma 4.1.

To close this section, we briefly discuss the implications of Lemma 4.1 on the MLE (24)

and the generalized power method defined by the iteration procedure

z(t)j =

P
k2[n]\{j}AjkYjkz

(t�1)
k���

P
k2[n]\{j}AjkYjkz

(t�1)
k

���
. (28)

We note that the iteration (28) is real-valued so that we always have z(t)j 2 {�1, 1}, which
makes it di↵erent from (20). The statistical optimality of the generalized power method

(28) has been established by [15] for Z2 synchronization when p = 1. Following the same

argument in Section 3, we can embed both MLE and GPM into Rn⇥n
1 , and thus Lemma 4.1

also implies that both MLE and GPM achieve the optimal rate exp
�
�(1� o(1)) np

2�2

�
for a

general p as well. Just as what we have for phase synchronization, the analyses of MLE,

GPM, and SDP for Z2 synchronization are all based on Lemma 4.1, and thus we have unified

the three di↵erent methods from an iterative algorithm perspective.

5 Proofs

This section presents the proofs of all technical results in the paper. We first list some

auxiliary lemmas in Section 5.1. The key lemmas of the SDP analyses, Lemma 2.1 and

Lemma 4.1, are proved in Section 5.2 and Section 5.3, respectively. We then prove the main
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for some � = o(1).

When p = 1, the above result has been proved by [13], but the lower bound result for a

general p is unknown in the literature. Compared with Theorem 2.1, the minimax lower bound

for Z2 synchronization is an exponential function of the signal-to-noise ratio, a consequence

of the discreteness of the problem.

To estimate z⇤ 2 {�1, 1}n, the MLE is defined as the global maximizer of the following

optimization problem
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z2{�1,1}n

zT(A � Y )z. (24)

Similar to (13), a convex relaxation of (24) leads to the following SDP,
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structure is a consequence of the fact that both (25) and (26) are optimization problems over

Rn⇥n. We make this e↵ect explicit by bounding the statistical error by the random variable
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j=1 I{|Uj | > 1� �} in Lemma 4.1.

To close this section, we briefly discuss the implications of Lemma 4.1 on the MLE (24)

and the generalized power method defined by the iteration procedure
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We note that the iteration (28) is real-valued so that we always have z(t)j 2 {�1, 1}, which
makes it di↵erent from (20). The statistical optimality of the generalized power method

(28) has been established by [15] for Z2 synchronization when p = 1. Following the same

argument in Section 3, we can embed both MLE and GPM into Rn⇥n
1 , and thus Lemma 4.1

also implies that both MLE and GPM achieve the optimal rate exp
�
�(1� o(1)) np

2�2
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for a

general p as well. Just as what we have for phase synchronization, the analyses of MLE,

GPM, and SDP for Z2 synchronization are all based on Lemma 4.1, and thus we have unified

the three di↵erent methods from an iterative algorithm perspective.

5 Proofs

This section presents the proofs of all technical results in the paper. We first list some

auxiliary lemmas in Section 5.1. The key lemmas of the SDP analyses, Lemma 2.1 and

Lemma 4.1, are proved in Section 5.2 and Section 5.3, respectively. We then prove the main
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Theorem [G & Zhang]. Assume                
and               . Then, 

                                                      
Moreover, the MLE, GPM initialized by the 
leading eigenvector of          , and the 
leading eigenvector of SDP all achieve 

with high probability.

lower bound developed in [4, 6], which only holds for unbiased estimators. Instead, the lower

bound in (6) holds for both unbiased and biased estimators.

Moreover, in this paper, we prove both the MLE and the GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2
, (7)

for some � = o(1) with high probability under the same condition �2 = o(n). In other words,

these two estimators are not only rate-optimal, but are also exactly asymptotically minimax

by achieving the correct leading constant in front of the optimal rate. In addition, since we

know by the result of [19] that the solution of the SDP is a rank-one matrix bzbzH with bz being

the MLE, the SDP also achieves the optimal error bound (7) as a direct consequence, but

under a stronger condition �2 = O
⇣

n
logn

⌘
.

To formally state our main result, we introduce a more general statistical estimation

setting that allows the possibility of missing entries. Instead of observing Yjk for all 1  j <

k  n, we assume each Yjk is observed with probability p. In other words, consider a random

graph Ajk ⇠ Bernoulli(p) independently for all 1  j < k  n, and we only observe Yjk that

follows (1) when Ajk = 1. Define Ajk = Akj for 1  k < j  n and Ajj = 0 for j 2 [n]. The

full observations can be organized into two Hermitian matrices A and A�Y , where � denotes

the matrix Hadamard product. The MLE and the GPM can be extended by replacing Yjk in

(3) and (4) with AjkYjk.

Theorem 1.1. Assume �2 = o(np) and
np

logn ! 1. Then, there exists some � = o(1) such

that

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2p
. (8)

Moreover, both MLE and GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2p
, (9)

with probability at least 1� n�1 � exp
⇣
�
�np
�2

�1/4⌘
.

Theorem 1.1 immediately implies (6) and (7) as a special case of p = 1, and is the first

statistical analysis of phase synchronization for p < 1. We remark that both conditions

�2 = o(np) and np
logn ! 1 are essential for the results of the above theorem to hold. Since

the minimax risk of the problem is �2

2p , the condition �2 = o(np), which is equivalent to
�2

2p = o(n), guarantees that the minimax risk is of smaller order than the trivial one. The

order n is trivial, since `(z, z⇤)  4n for any z, z⇤ 2 Cn
1 . When p = 1, the necessity of

�2 = o(n) for a nontrivial recovery is understood in the literature [11, 13, 16, 19]. The

condition np
logn ! 1 guarantees that the random graph A is connected with high probability.

It is known that when p  c lognn for some su�ciently small constant c > 0, the random
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results including Theorem 2.2, Theorem 2.3 and Theorem 4.2 in Section 5.4. Theorem 4.1

is proved in Section 5.5. Finally, the proofs of Lemma 2.2, Lemma 4.3 and Lemma 4.2 are

given in Section 5.6.

5.1 Some Auxiliary Lemmas
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Proof. The first result is a direct application of union bound and Bernstein’s inequality. The
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The following result is essentially Corollary 3.11 of [7]. The specific form that we need is
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lower bound developed in [4, 6], which only holds for unbiased estimators. Instead, the lower

bound in (6) holds for both unbiased and biased estimators.

Moreover, in this paper, we prove both the MLE and the GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2
, (7)

for some � = o(1) with high probability under the same condition �2 = o(n). In other words,

these two estimators are not only rate-optimal, but are also exactly asymptotically minimax

by achieving the correct leading constant in front of the optimal rate. In addition, since we

know by the result of [19] that the solution of the SDP is a rank-one matrix bzbzH with bz being

the MLE, the SDP also achieves the optimal error bound (7) as a direct consequence, but

under a stronger condition �2 = O
⇣

n
logn

⌘
.

To formally state our main result, we introduce a more general statistical estimation

setting that allows the possibility of missing entries. Instead of observing Yjk for all 1  j <

k  n, we assume each Yjk is observed with probability p. In other words, consider a random

graph Ajk ⇠ Bernoulli(p) independently for all 1  j < k  n, and we only observe Yjk that

follows (1) when Ajk = 1. Define Ajk = Akj for 1  k < j  n and Ajj = 0 for j 2 [n]. The

full observations can be organized into two Hermitian matrices A and A�Y , where � denotes

the matrix Hadamard product. The MLE and the GPM can be extended by replacing Yjk in

(3) and (4) with AjkYjk.

Theorem 1.1. Assume �2 = o(np) and
np

logn ! 1. Then, there exists some � = o(1) such

that

inf
bz2Cn

1

sup
z2Cn

1

Ez`(bz, z) � (1� �)
�2

2p
. (8)

Moreover, both MLE and GPM achieve the error bound

`(bz, z⇤)  (1 + �)
�2

2p
, (9)

with probability at least 1� n�1 � exp
⇣
�
�np
�2

�1/4⌘
.

Theorem 1.1 immediately implies (6) and (7) as a special case of p = 1, and is the first

statistical analysis of phase synchronization for p < 1. We remark that both conditions

�2 = o(np) and np
logn ! 1 are essential for the results of the above theorem to hold. Since

the minimax risk of the problem is �2

2p , the condition �2 = o(np), which is equivalent to
�2

2p = o(n), guarantees that the minimax risk is of smaller order than the trivial one. The

order n is trivial, since `(z, z⇤)  4n for any z, z⇤ 2 Cn
1 . When p = 1, the necessity of

�2 = o(n) for a nontrivial recovery is understood in the literature [11, 13, 16, 19]. The

condition np
logn ! 1 guarantees that the random graph A is connected with high probability.

It is known that when p  c lognn for some su�ciently small constant c > 0, the random
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