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Parisi's discoveries make it possible to understand and describe many 
different and apparently entirely random complex materials and 
phenomena, not only in physics but also in other, very different areas, such 
as mathematics, biology, neuroscience and machine learning.



COMPARING

Message passing algorithms: Belief propagation, Approximate 
Message Passing 

Gradient & sampling based algorithms: Metropolis Monte Carlo, 
Gibbs Sampling, Langevin Algorithm, Gradient Descent



STOCHASTIC BLOCK MODEL

Decelle, Krzakala, Moore, LZ’11: Numerical evidence that 
BP and MCMC both reach the detectability threshold.  
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Does MCMC match BP even in the presence of a hard phase? 

From Decelle, Krzakala, Moore, LZ’11:
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Does MCMC match BP even in the presence of a hard phase? 

In this talk we argue that generically close to 1st 
order phase transitions MCMC is worse than BP!

From Decelle, Krzakala, Moore, LZ’11:



LANDSCAPE OF THE HARD PHASE

What are the properties of the Gibbs measure, in the hard phase 
and around, conditioned not to be close to the ground-truth x*? 

Model — sparse rank-one low-rank estimation: 
Yij = x*i x*j / N + ξij

ξij ∼ 𝒩(0,Δ)
Px(x*i ) = (1 − ρ)δ(x*i ) + ρ[δ(x*i − 1) + δ(x*i + 1)]/2
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• Easy by approximate message passing algorithms.  

• Impossible information theoretically.  

• Hard phase conjecture: No efficient algorithm works.                                                             

BAYES-OPTIMAL & AMP PHASE DIAGRAM 

ρ = 0.08 noise, Δ/ρ2

Lesieur, Krzakala, LZ, J. Stat. Mech,’17 



GLASSY NATURE OF THE HARD PHASE

Analyzed by 1-step replica symmetry breaking.  

The hard phase is glassy - many spurious local minima 
potentially blocking the (MCMC, GD, Langevin …) dynamics. 

The glassiness extends well inside the AMP-easy phase. 

Antenucci, Franz, Urbani, LZ, Phys. Rev. X’19 

1R
SB

 c
om

pl
ex

ity
 

Parisi 
parameter: 

ρ = 0.08



Residual glassiness below the algorithmic threshold. =>  

Strong yet indirect indication of algorithmic troubles for 
Gibbs-sampling or gradient based algorithms. 

GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X’19 



Residual glassiness below the algorithmic threshold. =>  

Strong yet indirect indication of algorithmic troubles for 
Gibbs-sampling or gradient based algorithms. 

GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X’19 

How to confirm this? 

• Analytically — Gibbs samplers and gradient descents are 
harder to analyse than message passing ….  let’s try anyway! 



SPIKED MATRIX-TENSOR MODEL 

ℒ(x) = ∥xx⊤ − Y∥2
2 + ∥x⨂p − T∥2

2

x, x* ∈ 𝕊N−1

Y = x*(x*)⊤ + 𝒩(0,Δ̃2)
T = (x*)⨂p + 𝒩(0,Δ̃p)

N → ∞

Loss:

where: 

Goal: Estimate x* by Langevin algorithm set to sample the posterior. 

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX’20



PHASE DIAGRAM

ΔLang
2 =

Δ3

2

p=3ℒ(x) = ∥xx⊤ − Y∥2
2 + ∥x⨂p − T∥2

2

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX’20



PHASE RETRIEVAL



WHY PHASE RETRIEVAL? 

Phase retrieval is a simple neural network, gradient-descent 
based algorithm used for learning in practice.  

Non-convex, high-dimensional, limited sample complexity. -> 
challenging regime for computational learning theory.  

Behavious we observe akin to some aspects of deep neural 
networks.  



Broad range of applications in signal processing and imaging.  

Teacher-student setting with teacher having no hidden units, 
teacher’s activation function is the absolute value, w* are 
teacher weights. 

PHASE RETRIEVAL 

yμ =
d

∑
i=1

Xμiw*i

w*i ∼ 𝒩(0,1)Xμi ∼ 𝒩(0,1/d) μ = 1,…, n
i = 1,…, d

Phase retrieval: Regression from training data {Xμ, yμ}n
μ=1



BAYES-OPTIMAL GENERALIZATION 

 A new sample Xnew is given. Bayes-optimal prediction of 

a new label:

P(w |y, X) =
1

Z(y, X)

d

∏
i=1

Pw(wi)
n

∏
μ=1

Pout(yμ |Xμ ⋅ w)

̂ynew = 𝔼P(w|y,X) [φ(Xnew ⋅ w)]

Pout(yμ |Xμ ⋅ w) = δ(yμ − φ(Xμ ⋅ w))

Posterior probability distribution: 

where

 empirical risk minimization≠



BAYES-OPTIMAL ERROR

hardbest achievable error
best known algorithm

α =
n
d

αIT = 1

αAMP = 1.13

# of samples needed for perfect generalisation for any algorithm, achieved 
by LLL-based algorithm in absence of noise (Song, Zadik, Bruna’21). 

# of samples needed for perfect generalisation with approximate message 
passing algorithm (conjectured optimal among noise-robust ones). 

Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19 

n → ∞
d → ∞



DEEP LEARNING USES 
EMPIRICAL RISK MINIMISATION 

(NOT BAYESIAN ESTIMATION) 



ERM & GRADIENT DESCENT

ℒ({wi}p
i=1) =

n

∑
μ=1

[y2
μ − (

d

∑
i=1

Xμiwi)2]
2

yμ =
d

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wi(t) = − ∂wi
ℒ({wj(t)}d

j=1) + μ(t)wi(t)

wi(0) ∼ 𝒩(0,1)

where

ensuring ∥w∥2
2 = d



α =
n
d

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

PERFORMANCE OF GRADIENT DESCENT

C



GRADIENT DESCENT NUMERICALLY
Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, NeurIPS’20, 2006.06997.  
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α =
n
d

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

PERFORMANCE OF GRADIENT DESCENT

~7

GD numerics

?
Closing the gap between GD and AMP? 

C



DEEP LEARNING IS 
OVER-PARAMETRIZED 



OVER-PARAMETRIZED PHASE RETRIEVAL

Kernel regression, random features, NTK: Need  
samples to solve phase retrieval. As opposed to  with 
AMP/GD.  

Needed instead: Over-parametrized, with feature learning & 
linear sample complexity. 

O(d2)
O(d)



GRADIENT DESCENT FOR PHASE RETRIEVAL 

ℒ({wia}d,m
i,a=1) =

n

∑
μ=1

[y2
μ −

1
m

m

∑
a=1

(
d

∑
i=1

Xμiwia)2]
2

yμ =
d

∑
i=1

Xμiw*i

Loss function: 

Initialisation:

Gradient flow: ·wia(t) = − ∂wia
ℒ({wjb(t)}d,m

j,b=1)
wia(0) ∼ 𝒩(0,1)

whereX
y

w

Wide (m>d) over-parametrised 
two-layer neural network 



OVER-PARAMETRISED LANDSPACE
Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459



GD FOR OVER-PARAMETRISED PHASE RETRIEVAL 
Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459



α =
n
d

1 1.13

IT AMP

PERFORMANCE OF GRADIENT DESCENT

~7

GD numerics

2

GD in an over-
parametrised network

Over-parametrised neural network needs fewer samples to learn 

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

C

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459



DEEP LEARNING USES 
STOCHASTIC 

GRADIENT DESCENT 



PERSISTENT SGD

wj (t + η) = wj (t) − η[ ̂ν(t)wj (t) +
n

∑
μ=1

sμ(t) ∂wj
ℓ(yμ, Xμ, w(t))]

batch size: bn, 0 ≤ b ≤ 1  at fixed  d, n → ∞ α = n/d, b, τ

stochastic gradient flow, η → 0
·wj (t) = − ̂ν(t)wj (t) −

n

∑
μ=1

sμ(t) ∂wj
ℓ(yμ, Xμ, w(t))

Mignaco, Urbani, Krzakala, LZ, NeurIPS’20, 2006.06098  

ℓ(yμ, Xμ, w) = [y2
μ − (

d

∑
i=1

Xμiwi)2]
2



DYNAMICAL MEAN-FIELD THEORY 
(Mézard, Parisi, Virasoro, ‘87, Georges, Kotliar, Krauth, Rozenberg, ‘96)

We generalize to the stochastic GD and planted model



DYNAMICAL MEAN-FIELD THEORY
Mignaco, Urbani, Krzakala, LZ, NeurIPS’20, 2006.06098  

Lectures by Urbani to watch at http://leshouches2020.krzakala.org/

∂th(t) = − ν̃(t)h(t) − s(t)∂1v(h̃(t); h0) + ∫
t

0
dt′ MR(t, t′ )h(t′ ) + χ(t)

⟨χ(t)⟩ = 0, ⟨χ(t)χ(t′ )⟩ = 2Tδ(t − t′ ) + MC(t, t′ )

h0 ∼ 𝒩(0,1)

Effective scalar stochastic process 

Gaussian effective noise: h̃(t) ≡ h(t) + h0m(t)

stochastic noise memoryeff. regularisation Gauss noise

http://leshouches2020.krzakala.org/


MEMORY KERNELS AND OTHER VARIABLES 

MC(t, t′ ) =
α
b2

⟨s(t)s(t′ )∂1v(h̃(t); h0)∂1v(h̃(t′ ); h0))⟩

MR(t, t′ ) =
α
b2

δ
δP(t′ )

⟨s(t)∂1v(h̃(t); h0)⟩
P=0

δν(t) =
α
b

⟨s(t)∂2
1v(h̃(t); h0)⟩

̂ν(t) = −
α
b

⟨s(t)h̃(t)∂1v(h̃(t); h0)⟩ ν̃(t) = ̂ν(t) + δν(t)

μ(t) =
α
b

⟨s(t)h0∂1v(h̃(t); h0)⟩

∂tm(t) = − ̂ν(t)m(t) − μ(t) m(0) = m0



α = 2.5

P-SGD WITH RANDOM START 

GD/p-SGD in 
phase retrieval, 
random start.  

ηSGD = 0.01
b = 0.5,τ = 2

d=100
d=500

d=1000 d=2500



α =
n
d

1 1.13

IT AMP

Chen, Chi, Fan, Ma’19

poly(log d)
Cai, Huang, Li, Wang’21

PERFORMANCE OF P-SGD 

~7

GD numerics

C

p-SGD

~2.5

p-SGD needs fewer samples to learn phase retrieval 

Mignacco, Urbani, LZ; MLST, 2103.04902. 



SUMMARY

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian 
input data, Gaussian teacher weights) is a neat model to study dynamics 
of learning with neural networks.  

Sample complexity of gradient-based algorithms can be improved 
with over-parametrization or with p-SGD.  

Solvable case of feature learning in high-d over-parametrized setting.  

Persistent gradient descent - a variant of SGD with a nice flow limit, 
analysable by DMFT, performing better than SGD (without hidden 
units).



OPEN QUESTIONS

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian 
input data, Gaussian teacher weights):  

Sample complexity of GD and how does it depend on the loss, 
initialisation, learning rate?  

Architectures for which GD/SGD needs smaller sample complexity 
than ? 

Sample complexity of GD with number of hidden units 1<m<d? 

Sample complexity of SGD for over-parametrized networks m>1?    

etc. 

α = 2



OPEN QUESTIONS

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian 
input data, Gaussian teacher weights):  

Sample complexity of GD and how does it depend on the loss, 
initialisation, learning rate?  

Architectures for which GD/SGD needs smaller sample complexity 
than ? 

Sample complexity of GD with number of hidden units 1<m<d? 

Sample complexity of SGD for over-parametrized networks m>1?    

etc. 

α = 2


