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Parisi's discoveries make it possible to understand and describe many
different and apparently entirely random complex materials and
phenomena, not only in physics but also in other, very different areas, such
as mathematics, biology, neuroscience and machine learning.



COMPARING

o Message passing algorithms: Belief propagation, Approximate
Message Passing

e Gradient & sampling based algorithms: Metropolis Monte Carlo,
Gibbs Sampling, Langevin Algorithm, Gradient Descent




STOCHASTIC BLOCK MODEL
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Decelle, Krzakala, Moore, LZ’'11: Numerical evidence that
BP and MCMC both reach the detectability threshold.




Does MCMC match BP even in the presence of a hard phase?

overlap, planted init ----+---
overlap, random init -3

factorizeaTBP — K —

ftactorized~TBP

From Decelle, Krzakala, Moore, LZ’11:

We also investigated the case ¢ = 5, ¢in = 0, illustrated in Fig. 3, with Gibbs sampling, i.e., the Markov chain
Monte Carlo algorithm. For the planted initialization, its performance is generally similar to BP. For the random
initialization, MCMC agrees with BP only in phases (I) and (IV). It follows from results on glassy systems [42] that
in phases (II) and (III), the equilibration time of MCMC is exponentially large as a function of N, and that its

performance in linear time, i.e., CN for any constant C, does not yield any information about the original group
assignment.
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Does MCMC match BP even in the presence of a hard phase?

overlap, planted init ----+---
overlap, random init -3

ffactorized'fBP X

ftactorized~TBP

From Decelle, Krzakala, Moore, LZ’11:

We also investigated the case ¢ = 5, ¢in = 0, illustrated in Fig. 3, with Gibbs sampling, i.e., the Markov chain
Monte Carlo algorlthm For the planted 1n1t1a11za,t10n its performance is generally similar to BP For the random
initialization, dehi-aprees-rwithed i plane ¥y . It follows from results on glassy systems [42] that
in phases (II) and (III) the equ111brat10n tlme of MCMC is exponentially large as a function of N, and that its
performance in linear time, i.e., CN for any constant C, does not yield any information about the orlglnal group
assignment.

In this talk we argue that generically close to 1st
order phase transitions MCMC is worse than BP!




LANDSCAPE OF THE HARD PHASE

What are the properties of the Gibbs measure, in the hard phase
and around, conditioned not to be close to the ground-truth x*?

PHYSICAL REVIEW X

Highlights Recent Subjects Accepted Collections Authors Referees Search

Glassy Nature of the Hard Phase in Inference Problems

Fabrizio Antenucci, Silvio Franz, Pierfrancesco Urbani, and Lenka Zdeborova
Phys. Rev. X 9, 011020 — Published 31 January 2019

Model — sparse rank-one low-rank estimation:
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BAYES-OPTIMAL & AMP PHASE DIAGRAM
Lesieur, Krzakala, L.Z, J. Stat. Mech,’17

e Easy by approximate message passing algorithms.

e Impossible information theoretically.

 Hard phase conjecture: No efficient algorithm works.
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GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X'19

e Analyzed by 1-step replica symmetry breaking.

» The hard phase is glassy - many spurious local minima
potentially blocking the (MCMC, GD, Langevin ...) dynamics.

» The glassiness extends well inside the AMP-easy phase.
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GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X'19

Residual glassiness below the algorithmic threshold. =>

Strong yet indirect indication of algorithmic troubles for

Gibbs-sampling or gradient based algorithms.




GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X'19

Residual glassiness below the algorithmic threshold. =>

Strong yet indirect indication of algorithmic troubles for
Gibbs-sampling or gradient based algorithms.

How to confirm this?

- Analytically — Gibbs samplers and gradient descents are
harder to analyse than message passing .... let’s try anyway!




SPIKED MATRIX-TENSOR MODEL

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX’20

L) = |lxx" = Y)|2 + |x®P - T)2

where: Y = x*(x*)T + 1 (O,Az)
I = (X*)®p o '/V(Oaﬁp)

X c S N — o0

Goal: Estimate x* by Langevin algorithm set to sample the posterior.




PHASE DIAGRAM

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ, PRX 20
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PHASE RETRIEVAL




WHY PHASE RETRIEVAL?

e Phase retrieval is a simple neural network, gradient-descent
based algorithm used for learning in practice.

e Non-convex, high-dimensional, limited sample complexity. ->
challenging regime for computational learning theory.

e Behavious we observe akin to some aspects of deep neural
networks.




PHASE RETRIEVAL

e Broad range of applications in signal processing and imaging.

® Teacher-student setting with teacher having no hidden units,
teacher’s activation function is the absolute value, w* are
teacher weights.

X~ NO1d)  wk~H0,1)
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Phase retrieval: Regression from training data {X,,y, }/_,




BAYES-OPTIMAL GENERALIZATION

Posterior probability distribution:

1 d n
PwiyX) =7 Ewai)ng(yﬂ X, - w)

where P, (y,|X,-w) =60y, — p(X, - w))
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BAYES-OPTIMAL ERROR

Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT 18, PNAS’19
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o = 1 # of samples needed for perfect generalisation for any algorithm, achieved
by LLL-based algorithm in absence of noise (Song, Zadik, Bruna’21).

NV 1.13 # of samples needed for perfect generalisation with approximate message
passing algorithm (conjectured optimal among noise-robust ones).
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DEEP LEARNING USES

EMPIRICAL RISK MINIMISATION

(NOT BAYESIAN ESTIMATION)




ERM & GRADIENT DESCENT

n

Loss function: L} )= Z [ . Ay )2]2

L U]
p=1

d
where y,=|) X w
=

Gradient flow: wi) = —0,Z ({Wj(f) }JC-Z=1) + u(®wi?)

T

ensuring ||w||% — U

Initialisation: w;(0) ~ A#(0,1)




PERFORMANCE OF GRADIENT DESCENT

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

C poly(log d)




GRADIENT DESCENT NUMERICALLY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, NeurIPS’20, 2006.06997.
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PERFORMANCE OF GRADIENT DESCENT

Closing the gap between GD and AMP?

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

~7 ( poly(log d)

GD numerics




DEEP LEARNING IS

OVER-PARAMETRIZED




OVER-PARAMETRIZED PHASE RETRIEVAL

° Kernel regression, random features, NTK: Need O(d?)

samples to solve phase retrieval. As opposed to O(d) with
AMP/GD.

e Needed instead: Over-parametrized, with feature learning &
linear sample complexity.




GRADIENT DESCENT FOR PHASE RETRIEVAL

Loss function: ~ Z({w;, }%" ) =

Wide (m>d) over-parametrised
two-layer neural network

Gradient flow: W, () = -0, Z <{ij(f) }Jc-f’bnil)

Initialisation:  w,,(0) ~ A4(0,1)




OVER-PARAMETRISED LANDSPACE

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Theorem 3.1 (Single unit teacher). Consider a teacher with m* =1 and a student with m > d hidden
units respectively, so that A* has rank 1 and A has full rank. Given a data set {xy}}_, with each x}, € R¢
drawn independently from a standard Gaussian, denote by M,, 4 the set of minimizer of the empirical loss
constructed with {xy}}_, over symmetric positive semidefinite matrices A, i.e.

Mpda= {A = AT positive semidefinite such that E,.(A) = 0} . (10)
Set n = |ad]| for « > 1 and let d - co. Then

lim P (Mjaqa # {4°}) =1 ifa€[0,2 (11)

whereas

lim P (Magpa={4"}) >0  ifac(20) (12)

d—oo

1 = *k 1 m* Xk *k
At) = - Zwi(t)wf(t), A" = - sz’ (w))",




GD FOR OVER-PARAMETRISED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Theorem 4.1. Let {w;(t)}*, be the solution to (3) for the initial data {w;(0)}*,. Assume that m > d
and each w;(0) is drawn independently from a distribution that is absolutely continuous with respect to the

Lebesque measure on R%. Then
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and A s a global minimizer of the empirical loss, i.e.

Ep(Aw) = 2Ln(w, ...

o
[ee]
1

1 — P of failure
o ©
H (o)}
1 1
w = 00 b
N O

o

N
Q Q Q QQ
LI [ | |

o©
o
1




PERFORMANCE OF GRADIENT DESCENT

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Over-parametrised neural network needs fewer samples to learn

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

1 113 ~7 C poly(log d)
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DEEP LEARNING USES
STOCHASTIC

GRADIENT DESCENT




PERSISTENT SGD

Mignaco, Urbani, Krzakala, LZ, NeurIPS’20, 2006.06098
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DYNAMICAL MEAN-FIELD THEORY

(Mézard, Parisi, Virasoro, ‘87, Georges, Kotliar, Krauth, Rozenberg, ‘96)

1OP Publishing Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 51 (2018) 085002 (36pp) https://doi.org/10.1088/1751-8121/aaa68d

Out-of-equilibrium dynamical mean-field
equations for the perceptron model

Elisabeth Agoritsas!®, Giulio Biroli!-2, Pierfrancesco Urbani?
and Francesco Zamponi!

We generalize to the stochastic GD and planted model

; : DMFT . :
Markovian dynamics of a Non-Markovian dynamics

strongly coupled system of 7| of one degree of freedom

p — oo degrees of freedom | with memory




DYNAMICAL MEAN-FIELD THEORY

Mignaco, Urbani, Krzakala, LZ, NeurIPS’20, 2006.06098

Effective scalar stochastic process

eff. regularisation stochastic noise memory Gauss noise

dt' Mi(t, t)h(t") + x(P)

hg ~ A (0,1)
h(t) = h(t) + hym(t)

Q(F) = — EXOR(E) — O3 (D) h) + J

0

Gausslan effective noise:

(x(0) =0, (O () =2T6( —t) + M2, 1)



http://leshouches2020.krzakala.org/

MEMORY KERNELS AND OTHER VARIABLES

om(t) = — v()m(t) — u(r) m(0) = m,

M1, 1) = %@(r)s(r')alv(%(r); h)dv(R(t'); o))

Mp(t, 1) (S(l‘)aﬂ(il(f); hy))

~ b2 5P(t)

P=0

Su(t) = %<s<t>a%v<l’%<r>; 1) u(r) = %<s<r>hoalv<h'<t>; hy))
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P-SGD WITH RANDOM START
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PERFORMANCE OF P-SGD

Mignacco, Urbani, LZ; MLST, 2103.04902.

p-SGD needs fewer samples to learn phase retrieval

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

~7 ( poly(log d)

.

GD numerics




SUMMARY

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian
input data, Gaussian teacher weights) is a neat model to study dynamics
of learning with neural networks.

o Sample complexity of gradient-based algorithms can be improved
with over-parametrization or with p-SGD.

e Solvable case of feature learning in high-d over-parametrized setting.

o Persistent gradient descent - a variant of SGD with a nice flow limit,
analysable by DMFT, performing better than SGD (without hidden
units).




OPEN QUESTIONS

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian
input data, Gaussian teacher weights):

o Sample complexity of GD and how does it depend on the loss,
initialisation, learning rate?

Architectures for which GD/SGD needs smaller sample complexity
thana — 27

Sample complexity of GD with number of hidden units 1<m<d?
Sample complexity of SGD for over-parametrized networks m>1?

etc.
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QUESTIONS

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian
input data, Gaussian teacher weights):

o Sample complexity of GD and how does it depend on the loss,
initialisation, learning rate?

Architectures for which GD/SGD needs smaller sample complexity
thana — 27

Sample complexity of GD with number of hidden units 1<m<d?
Sample complexity of SGD for over-parametrized networks m>1?

etc.




