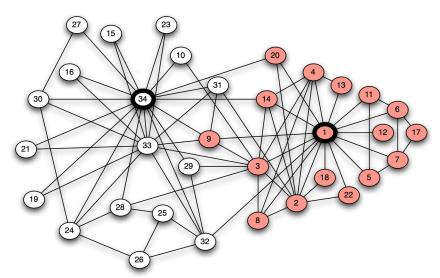
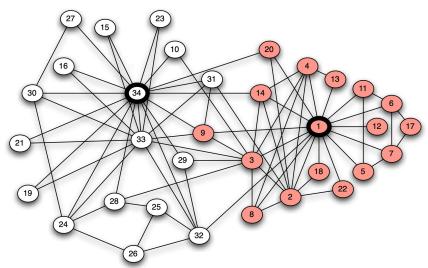
Correlated stochastic block models: graph matching and community recovery

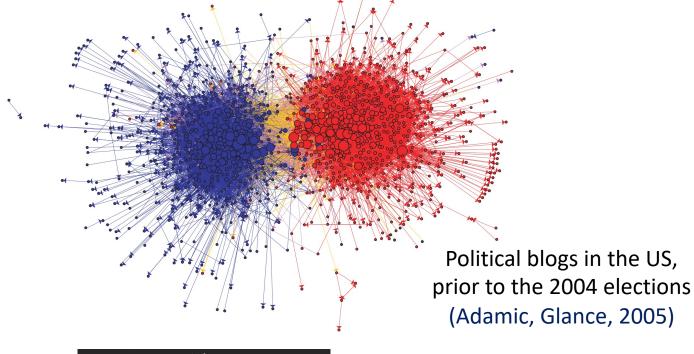
Based on joint work with Anirudh Sridhar

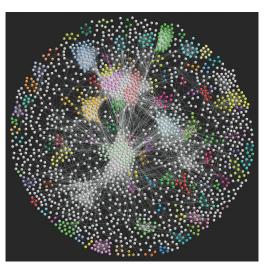

Miklós Z. Rácz

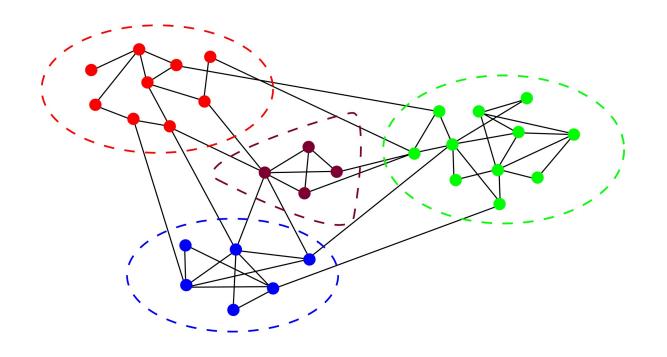
Workshop on Algorithmic Advances for Statistical Inference with Combinatorial Structure, Simons Institute, Berkeley

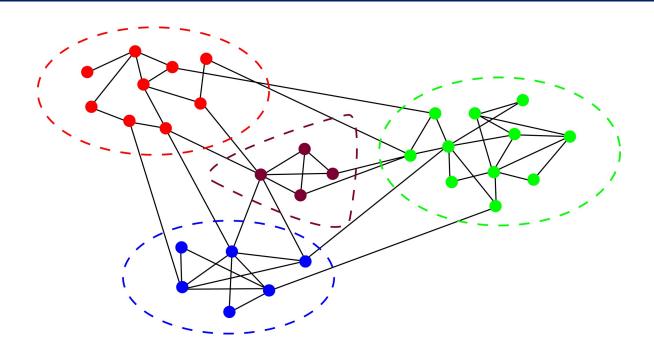

October 11, 2021

Recovering communities in networks


Zachary's karate club (1970-72; 1977)


Recovering communities in networks

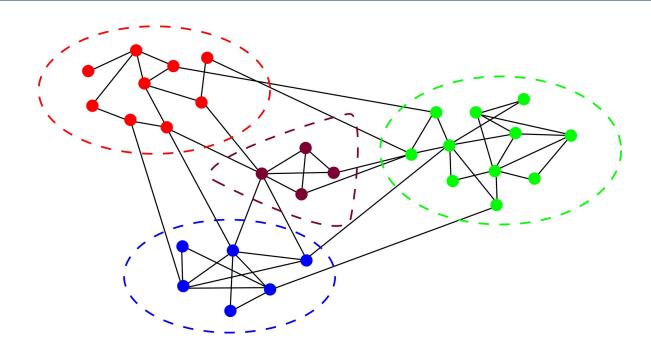

Zachary's karate club (1970-72; 1977)


Drosophila protein-protein interaction network (Guruharsha et al., 2011)

Holland, Laskey, Leinhardt (1983)

Many works in physics, probability, statistics, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...


Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?

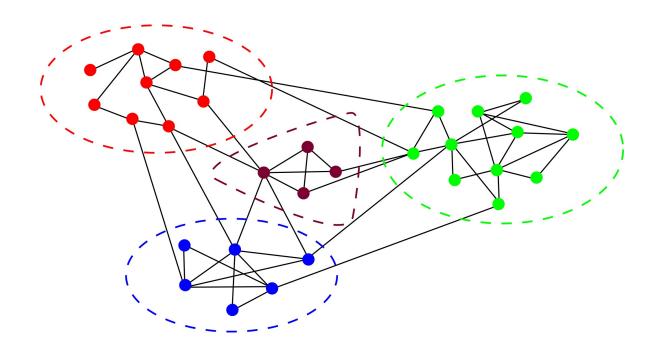
Holland, Laskey, Leinhardt (1983)

Many works in physics, probability, statistics, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...

Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?


Holland, Laskey, Leinhardt (1983)

Many works in physics, probability, statistics, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...

This talk: two balanced communities

- *n* nodes
- $\sigma_i \in \{+1, -1\}$ i.i.d. uniform community labels
- Given $\sigma = {\sigma_i}$, edges drawn independently:
 - If $\sigma_i = \sigma_j$, then $i \sim j$ with prob. p
 - If $\sigma_i \neq \sigma_j$, then $i \sim j$ with prob. q

Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?

 $G \sim SBM(n, p, q)$

Holland, Laskey, Leinhardt (1983)

Many works in physics, probability, statistics, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...

This talk: two balanced communities

- n nodes
- $\sigma_i \in \{+1, -1\}$ i.i.d. uniform community labels
- Given $\sigma = {\sigma_i}$, edges drawn independently:
 - If $\sigma_i = \sigma_j$, then $i \sim j$ with prob. p
 - If $\sigma_i \neq \sigma_j$, then $i \sim j$ with prob. q

Multiple correlated networks

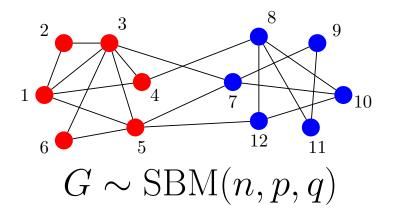
Q: can we synthesize information from multiple correlated networks to better recover communities?

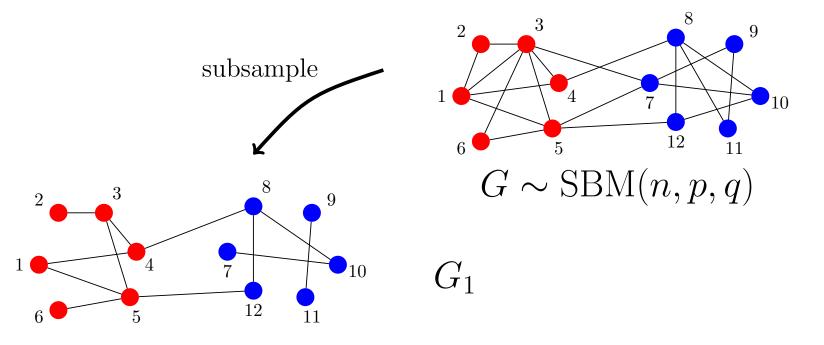
Multiple correlated networks

Q: can we synthesize information from multiple correlated networks to better recover communities?

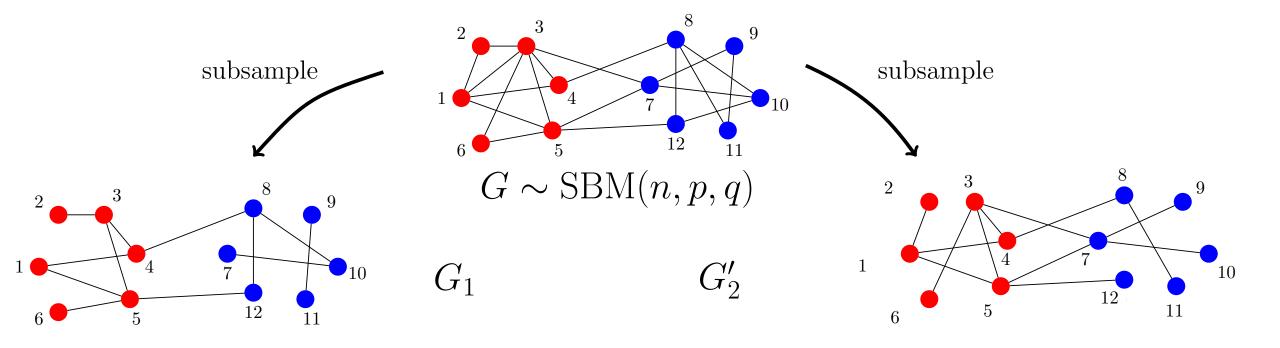
STOCHASTIC BLOCKMODELS: FIRST STEPS *

Paul W. HOLLAND

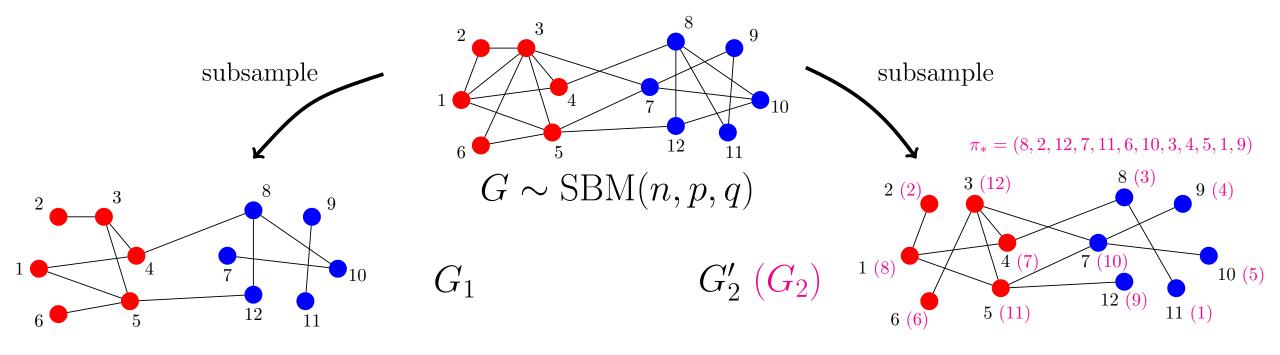

Educational Testing Service **

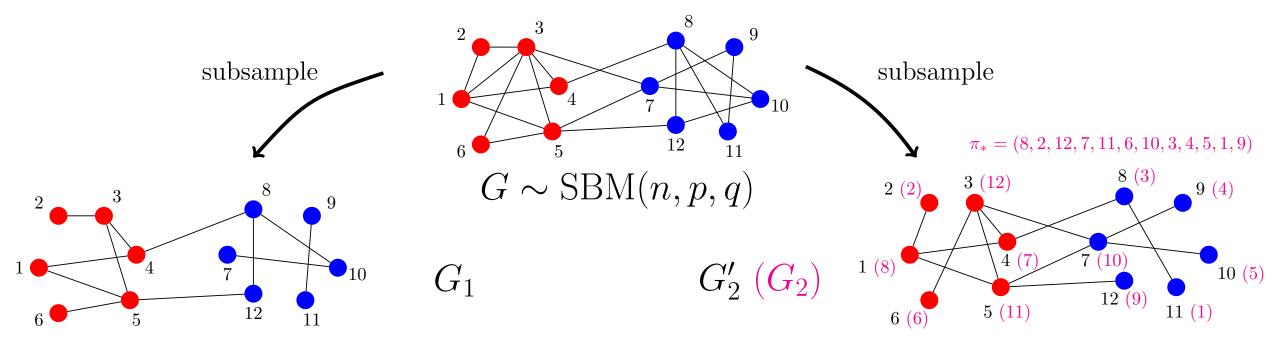

Kathryn Blackmond LASKEY and Samuel LEINHARDT

Carnegie - Mellon University †

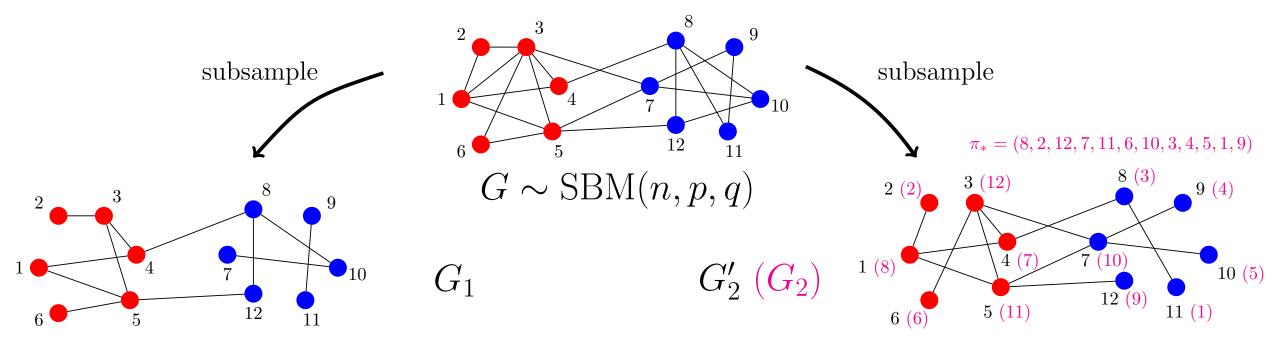

lowercase letters. If X is a random adjacency array for g nodes and m relations, then the probability distribution of X is called a *stochastic multigraph*. We will denote the probability distribution of X by $p(x) = \Pr(X = x)$.

A stochastic blockmodel is a special case of a stochastic multigraph which satisfies the following requirements.



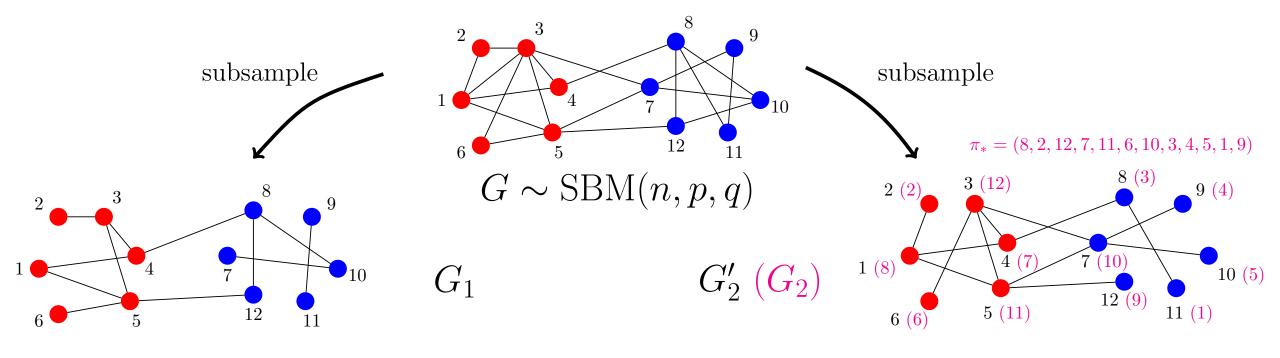

• Subsampling probability $s \in [0,1]$

• Subsampling probability $s \in [0,1]$


- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]

- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]

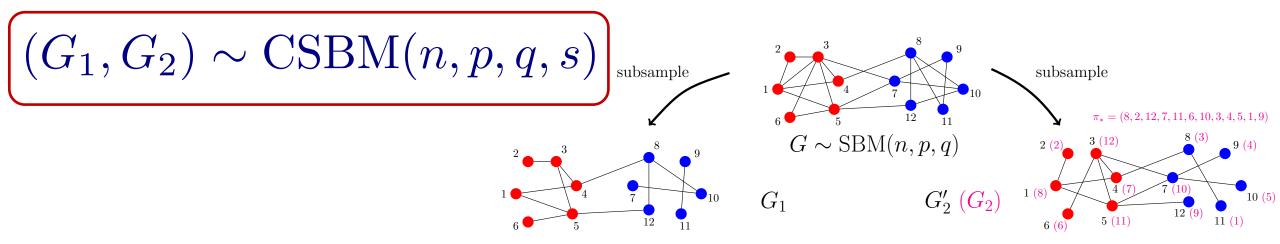
$$(G_1, G_2) \sim \text{CSBM}(n, p, q, s)$$


(Onaran, Garg, Erkip, 2016)

- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]
- Marginally G_1 , $G_2 \sim SBM(n, ps, qs)$
- Corresponding edges are correlated

$$(G_1, G_2) \sim \text{CSBM}(n, p, q, s)$$

(Onaran, Garg, Erkip, 2016)



- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]
- Marginally G_1 , $G_2 \sim SBM(n, ps, qs)$
- Corresponding edges are correlated

$$(G_1, G_2) \sim \text{CSBM}(n, p, q, s)$$

(Onaran, Garg, Erkip, 2016)

HLL83: (G_1, G_2') is a "pair-dependent SBM"

- given (G_1, G_2) , when can we (exactly) recover the communities?
- can we do so in regimes where it is impossible to do so using only G_1 ?

Exact community recovery in the SBM

Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

Exact community recovery in the SBM

Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

Theorem (Abbé, Bandeira, Hall, 2014; Mossel, Neeman, Sly, 2014)

Consider the balanced two-community SBM:
$$G \sim \text{SBM}\left(n, \frac{a \log n}{n}, \frac{b \log n}{n}\right)$$

Exact recovery is possible (in polynomial time) if

Exact recovery is impossible if

$$|\sqrt{a} - \sqrt{b}| > \sqrt{2}$$

$$\left|\sqrt{a} - \sqrt{b}\right| < \sqrt{2}$$

Exact community recovery in the SBM

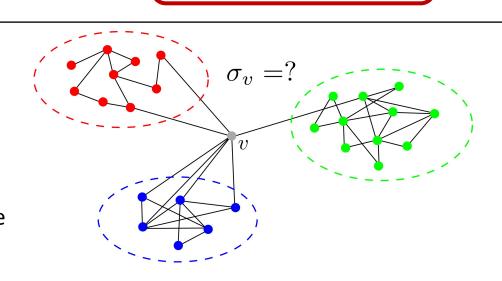
Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

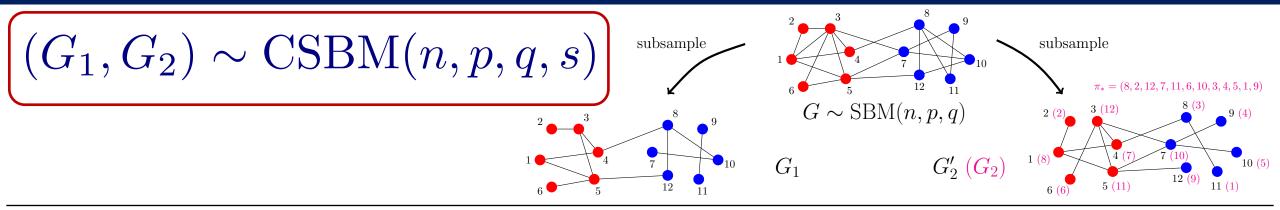
Theorem (Abbé, Bandeira, Hall, 2014; Mossel, Neeman, Sly, 2014)

Consider the balanced two-community SBM: $G \sim \mathrm{SBM}\left(n, \frac{a\log n}{n}, \frac{b\log n}{n}\right)$

Exact recovery is possible (in polynomial time) if

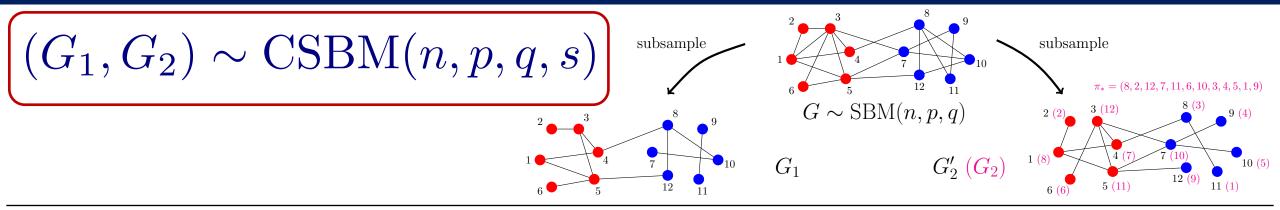
$$\left|\sqrt{a} - \sqrt{b}\right| > \sqrt{2}$$


Exact recovery is **impossible** if


$$\left|\sqrt{a} - \sqrt{b}\right| < \sqrt{2}$$

Abbé, Sandon (2015): threshold for general SBMs

Intuition:


- Testing multivariate Poisson distributions
- Want error probability $n^{-1+o(1)}$
- Error exponent given by Chernoff-Hellinger divergence

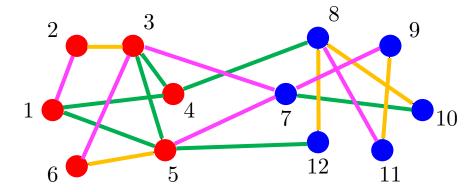
Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s}$$

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s} \right|$$

How can we use both G_1 and G_2 ? Suppose that π_* is known.


$$(G_1,G_2) \sim ext{CSBM}(n,p,q,s)$$
 subsample G_1 subsample G_2 subsample G_3 subsample G_4 subsample G_4 subsample G_5 subsample G_6 subsample G_7 subsample G_8 subsample G_9 subsample

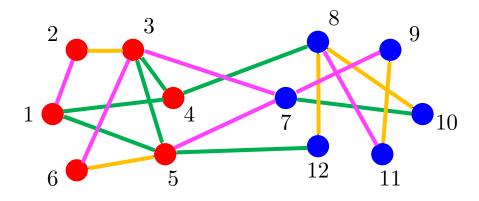
Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s} \right|$$

How can we use both G_1 and G_2 ? Suppose that π_* is known. Then:

- in G_1 and G_2
- in G_1 , not in G_2
- -- not in G_1 , in G_2

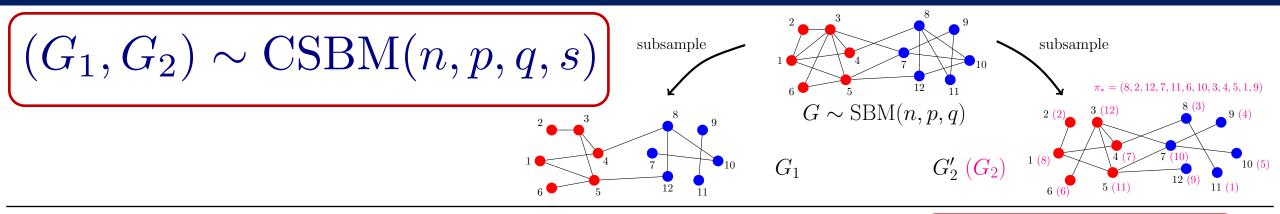
$$G_1 \vee_{\pi_*} G_2 \sim \text{SBM}\left(n, \frac{a(1-(1-s)^2)\log n}{n}, \frac{b(1-(1-s)^2)\log n}{n}\right)$$


$$(G_1,G_2) \sim ext{CSBM}(n,p,q,s)$$
 subsample G_1 subsample G_2 subsample G_3 subsample G_4 subsample G_4 subsample G_5 subsample G_6 subsample G_7 subsample G_8 subsample G_9 subsample

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s} \right|$$

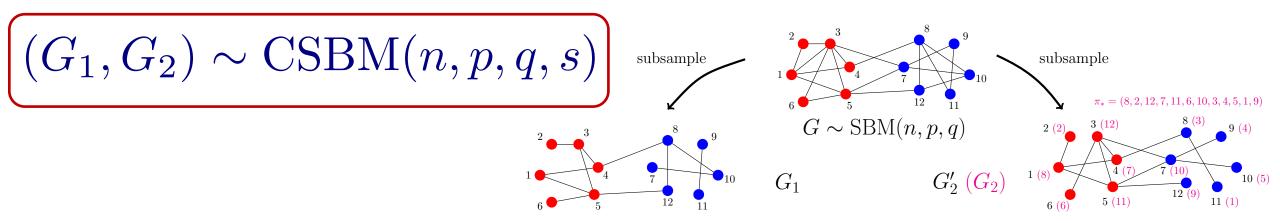
How can we use both G_1 and G_2 ? Suppose that π_* is known. Then:


- in G_1 and G_2
- in G_1 , not in G_2
- -- not in G_1 , in G_2

Thus exact community recovery is possible iff

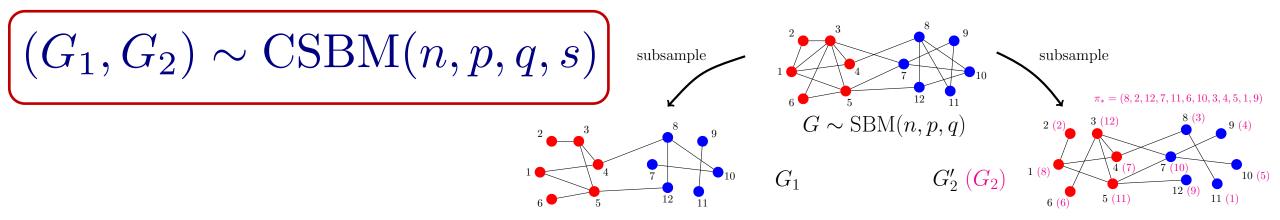
$$|\sqrt{a} - \sqrt{b}| > \sqrt{2/(1 - (1 - s)^2)}$$

$$G_1 \vee_{\pi_*} G_2 \sim \text{SBM}\left(n, \frac{a(1-(1-s)^2)\log n}{n}, \frac{b(1-(1-s)^2)\log n}{n}\right)$$

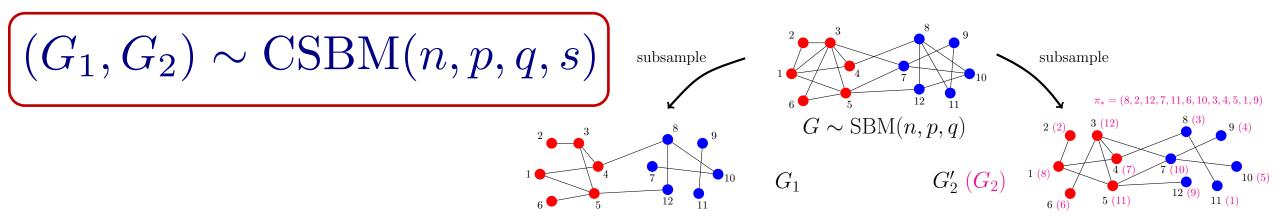

In particular, if π_* is known and

Sin

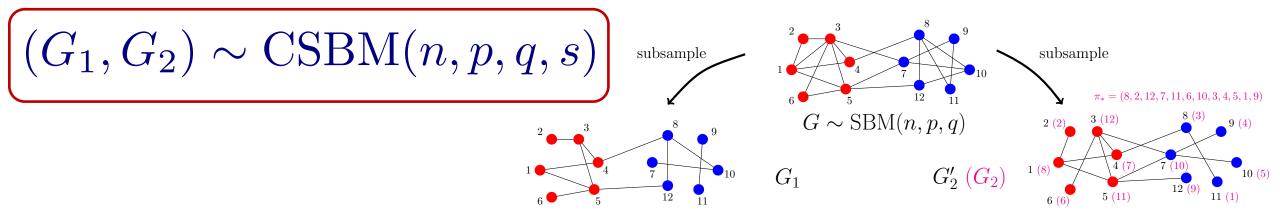
$$\sqrt{2/s} > |\sqrt{a} - \sqrt{b}| > \sqrt{2/(1 - (1-s)^2)}$$


then exact community recovery is possible from G_1 and G_2 , even though it is impossible from G_1 alone

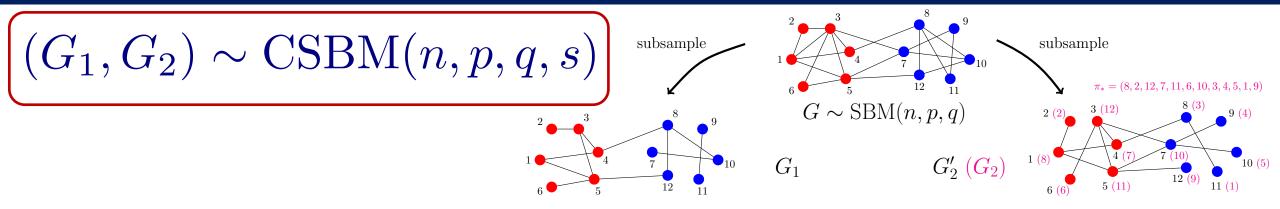
2)



Main Q:


• given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?

- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest



- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest
- Correlated Erdős-Rényi random graphs:
 Pedersani, Grossglauser (2011)

- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest
- Correlated Erdős-Rényi random graphs:
 Pedersani, Grossglauser (2011)
- Many works in probability/statistics/CS/info theory... including:
 - Cullina, Kiyavash (2016, 2017)
 - Barak, Chou, Lei, Schramm, Sheng (2019)
 - Ding, Ma, Wu, Xu (2018)
 - Mossel, Xu (2019)
 - Fan, Mao, Wu, Xu (2019a,b)
 - Ganassali, Massoulié (2020)
- Cullina, Kiyavash, Mittal, Poor (2020)
- Wu, Xu, Yu (2020, 2021)
- Mao, Rudelson, Tikhomirov (2021)
- Ganassali, Lelarge, Massoulié (2021)

Correlated SBMs: graph matching and community recovery

Main Q1 (community recovery):

- given (G_1, G_2) , when can we (exactly) recover the communities?
- can we do so in regimes where it is impossible to do so using only G_1 ?

Main Q2 (graph matching):

• given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?

Results

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then $\lim_{n\to\infty}\mathbb{P}\left(\widehat{\pi}(G_1,G_2)=\pi_*\right)=1$

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

• $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model

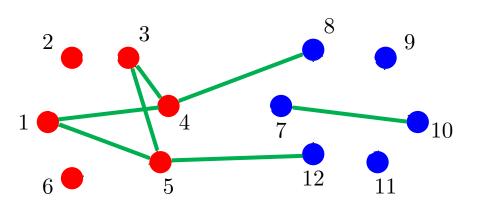
Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then $\lim_{n\to\infty}\mathbb{P}\left(\widehat{\pi}(G_1,G_2)=\pi_*\right)=1$

- $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)

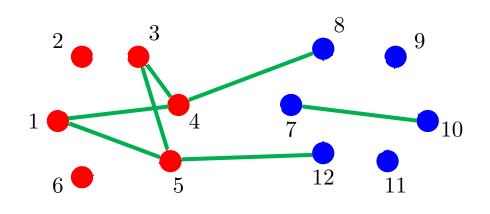

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

- $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)
- Condition: the intersection graph is connected (whp)

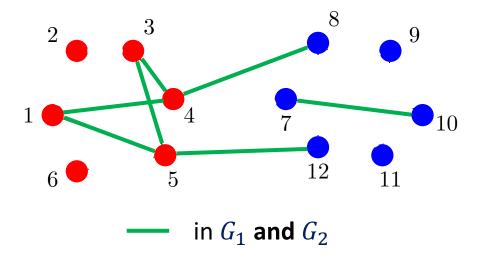

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

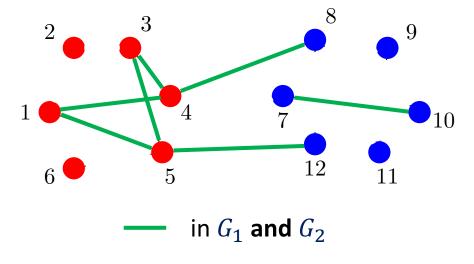
If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

- $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)
- Condition: the intersection graph is connected (whp)
- Onaran, Garg, Erkip (2016): same conclusion under stronger parameter assumptions and assuming all community labels are known

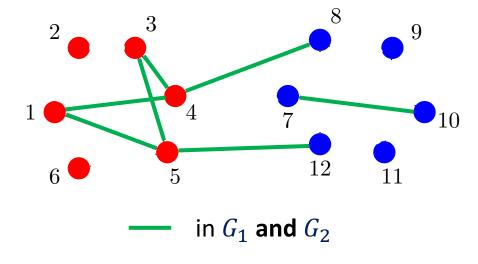

 \longrightarrow in G_1 and G_2

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

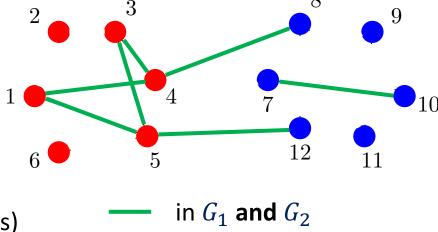
Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)


If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

Condition: the intersection graph is disconnected (whp)


If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices


If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices
- These vertices have non-overlapping neighborhoods in G_1 and G_2

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices
- These vertices have non-overlapping neighborhoods in G_1 and $G_2{}^\prime$
- Such vertices are hard to match due to the lack of shared information (even for optimal estimators that have access to the community labels)

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1$

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\left[\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1\right]$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 and $\left|\sqrt{a}-\sqrt{b}\right| > \sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

Theorem (R., Sridhar, 2021)

Exact community recovery is **impossible**

If
$$|\sqrt{a} - \sqrt{b}| < \sqrt{2/(1 - (1 - s)^2)}$$

then for any estimator
$$\widetilde{\boldsymbol{\sigma}}=\widetilde{\boldsymbol{\sigma}}(G_1,G_2)$$
 we have that $\lim_{n o\infty}\mathbb{P}(\operatorname{ov}(\widetilde{\boldsymbol{\sigma}},\boldsymbol{\sigma})=1)=0$

Theorem (R., Sridhar, 2021)

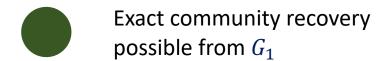
Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

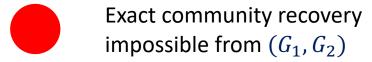
then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\left[\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1\right]$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

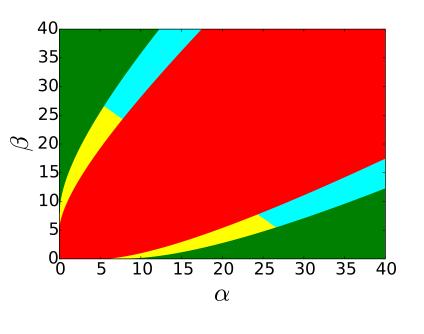
Theorem (R., Sridhar, 2021)

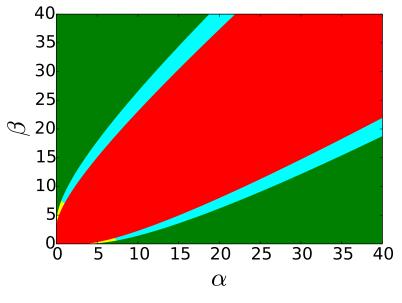

Exact community recovery is **impossible**

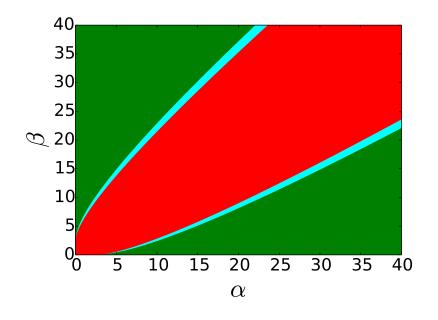
If
$$|\sqrt{a} - \sqrt{b}| < \sqrt{2/(1 - (1 - s)^2)}$$


then for any estimator
$$\ \widetilde{m{\sigma}} = \widetilde{m{\sigma}}(G_1,G_2) \ \ \ ext{we have that} \ \left[\lim_{n o \infty} \mathbb{P}(\operatorname{ov}(\widetilde{m{\sigma}},m{\sigma}) = 1) = 0 \right]$$

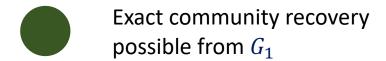
Proof: even if π_* is known, it is impossible to exactly recover the communities from $G_1 \vee_{\pi_*} G_2$


Phase diagrams

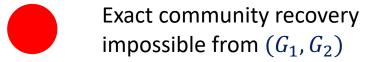



Exact community recovery impossible from G_1 , possible from (G_1, G_2)

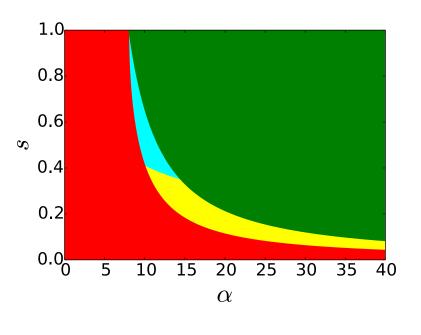
Exact community recovery impossible from G_1 , unknown from (G_1, G_2)

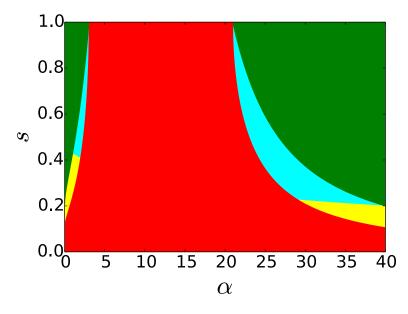


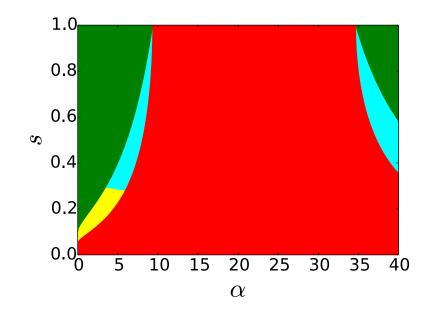
$$s = 0.25$$


$$s = 0.5$$

$$s = 0.75$$


Phase diagrams



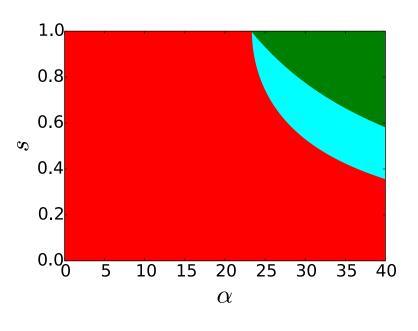

Exact community recovery impossible from G_1 , possible from (G_1, G_2)

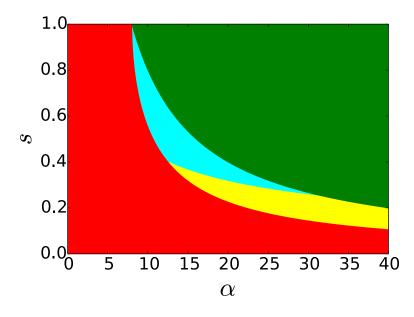
Exact community recovery impossible from G_1 , unknown from (G_1, G_2)

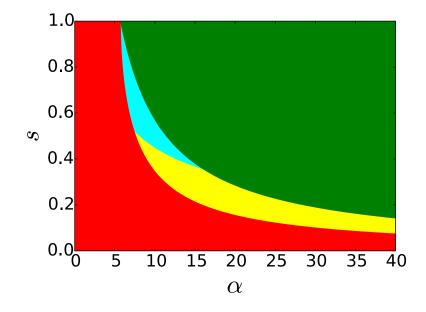
$$b = 2$$

$$b = 10$$

$$b = 20$$


Phase diagrams


Exact community recovery possible from G_1


Exact community recovery impossible from (G_1, G_2)

Exact community recovery impossible from G_1 , possible from (G_1, G_2)

Exact community recovery impossible from G_1 , unknown from (G_1, G_2)

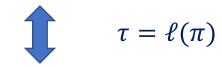
$$a/b = 2$$

$$a/b = 4$$

$$a/b = 6$$

Proof (graph matching)

A, B: adjacency matrices of G_1 , G_2


$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

$$\tau = \ell(\pi)$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

$$X(\tau) := \sum_{e \in \mathcal{E}} A_e B_{\tau_*(e)} - \sum_{e \in \mathcal{E}} A_e B_{\tau(e)} = \sum_{e \in \mathcal{E} : \tau(e) \neq \tau_*(e)} \left(A_e B_{\tau_*(e)} - A_e B_{\tau(e)} \right)$$

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

$$\tau = \ell(\pi)$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

$$X(\tau) := \sum_{e \in \mathcal{E}} A_e B_{\tau_*(e)} - \sum_{e \in \mathcal{E}} A_e B_{\tau(e)} = \sum_{e \in \mathcal{E} : \tau(e) \neq \tau_*(e)} \left(A_e B_{\tau_*(e)} - A_e B_{\tau(e)} \right)$$

If $X(\tau) > 0$ for every $\tau \neq \tau_*$, then $\hat{\pi} = \pi_*$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k_2 vertices are mismatched in V_-

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ • k_2 vertices are mismatched in V_- (relative to π_*)
- From vertex mismatches to edge mismatches: $M^+(\tau) := \left|\left\{e \in \mathcal{E}^+(\boldsymbol{\sigma}) : \tau(e) \neq \tau_*(e)\right\}\right|$ $M^-(\tau) := \left|\left\{e \in \mathcal{E}^-(\boldsymbol{\sigma}) : \tau(e) \neq \tau_*(e)\right\}\right|$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k_2 vertices are mismatched in V_-

From vertex mismatches to edge mismatches:

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$
$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$

Assume that the communities are approximately balanced (this happens whp).

$$\mathcal{F}_{\epsilon} := \left\{ \left(1 - \frac{\epsilon}{2} \right) \frac{n}{2} \le |V_{+}|, |V_{-}| \le \left(1 + \frac{\epsilon}{2} \right) \frac{n}{2} \right\}$$

Lemma

When $k_1 \le \frac{\epsilon}{2} |V_+|$ and $k_2 \le \frac{\epsilon}{2} |V_-|$:

$$M^+(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2),$$

$$M^{-}(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2).$$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k_2 vertices are mismatched in V_-

From vertex mismatches to edge mismatches:

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$
$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$

Assume that the communities are approximately balanced (this happens whp).

$$\mathcal{F}_{\epsilon} := \left\{ \left(1 - \frac{\epsilon}{2} \right) \frac{n}{2} \le |V_{+}|, |V_{-}| \le \left(1 + \frac{\epsilon}{2} \right) \frac{n}{2} \right\}$$

Lemma

When
$$k_1 \leq \frac{\epsilon}{2} |V_+|$$
 and $k_2 \leq \frac{\epsilon}{2} |V_-|$:

$$M^+(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2),$$

$$M^{-}(\tau) \geq (1 - \epsilon) \frac{n}{2} (k_1 + k_2).$$

In general:

$$M^{+}(\tau) \ge (1 - \epsilon) \frac{n}{4} (k_1 + k_2),$$

$$M^{-}(\tau) \ge (1 - \epsilon) \frac{n}{4} (k_1 + k_2).$$

Claim

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then there exists $\delta>0$ such that

$$\mathbb{P}\left(\widehat{\tau} \in S_{k_1,k_2} \mid \boldsymbol{\sigma}, \tau_*\right) \mathbf{1}(\mathcal{F}_{\epsilon}) \leq n^{-\delta(k_1+k_2)}.$$

Claim

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then there exists $\delta>0$ such that
$$\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\mid m{\sigma}, au_*\right)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$$

Proof sketch:

• Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$

Claim

If
$$s^2\left(rac{a+b}{2}
ight)>1$$
 then there exists $\delta>0$ such that $\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\mid m{\sigma}, au_*
ight)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$

Proof sketch:

- Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$
- Individual bound boils down to bounds on the probability-generating function:

$$\mathbb{P}\left(\widehat{\tau} = \tau \mid \boldsymbol{\sigma}, \tau_*\right) \leq \mathbb{P}\left(X(\tau) \leq 0 \mid \boldsymbol{\sigma}, \tau_*\right) = \mathbb{P}\left(n^{-X(\tau)/2} \geq 1 \mid \boldsymbol{\sigma}, \tau_*\right)$$
$$\leq \mathbb{E}\left[\left(1/\sqrt{n}\right)^{X(\tau)} \mid \boldsymbol{\sigma}, \tau_*\right]$$

Claim

If
$$s^2\left(rac{a+b}{2}
ight)>1$$
 then there exists $\delta>0$ such that
$$\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\ \middle|\ oldsymbol{\sigma}, au_*\right)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$$

Proof sketch:

- Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$
- Individual bound boils down to bounds on the probability-generating function:

$$\mathbb{P}\left(\widehat{\tau} = \tau \mid \boldsymbol{\sigma}, \tau_{*}\right) \leq \mathbb{P}\left(X(\tau) \leq 0 \mid \boldsymbol{\sigma}, \tau_{*}\right) = \mathbb{P}\left(n^{-X(\tau)/2} \geq 1 \mid \boldsymbol{\sigma}, \tau_{*}\right)$$

$$\leq \mathbb{E}\left[\left(1/\sqrt{n}\right)^{X(\tau)} \mid \boldsymbol{\sigma}, \tau_{*}\right]$$

$$\leq \exp\left(-(1 - \epsilon)s^{2}\left(aM^{+}(\tau) + bM^{-}(\tau)\right) \frac{\log n}{n}\right)$$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

Lemma

For any $\varepsilon \in (0,1)$ and $1 \le \omega, \zeta \le 3$, and for all n large enough:

$$\Phi^{\tau}\left(1/\sqrt{n},\omega,\zeta\right) \le \exp\left(-(1-\epsilon)s^2\left(\alpha M^+(\tau) + \beta M^-(\tau)\right)\frac{\log n}{n}\right)$$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

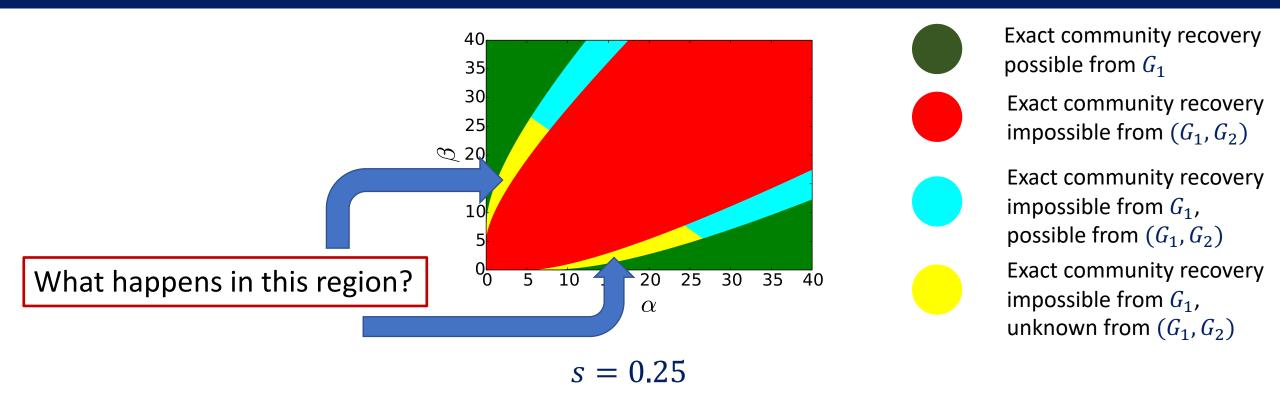
Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

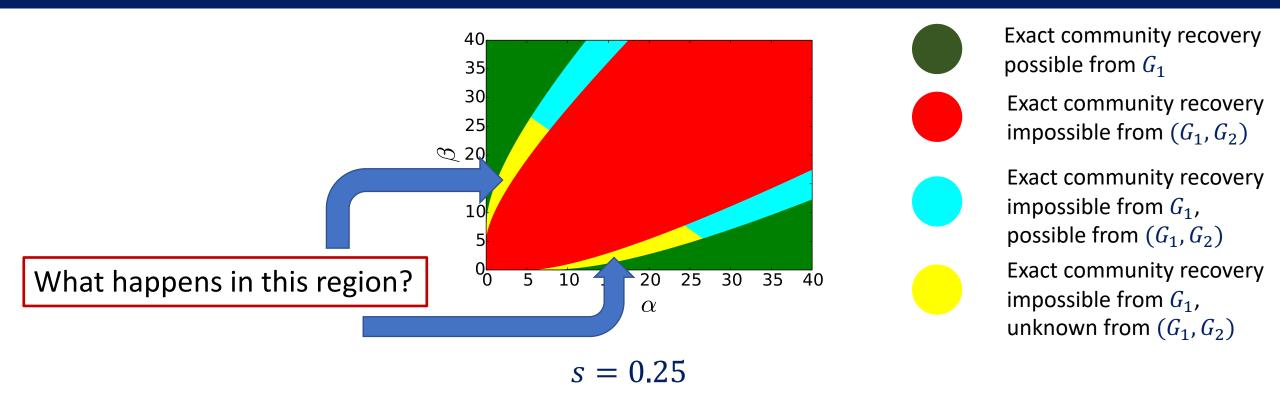
Lemma

For any $\varepsilon \in (0,1)$ and $1 \le \omega, \zeta \le 3$, and for all n large enough:

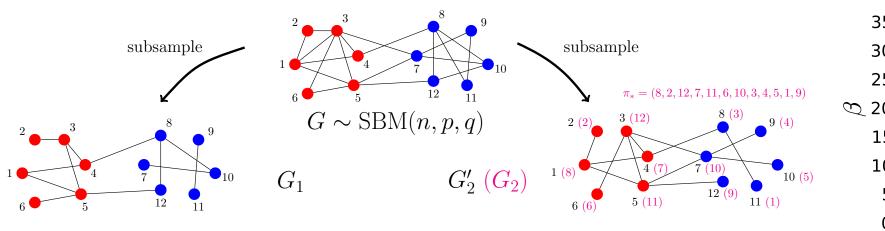

Analysis:

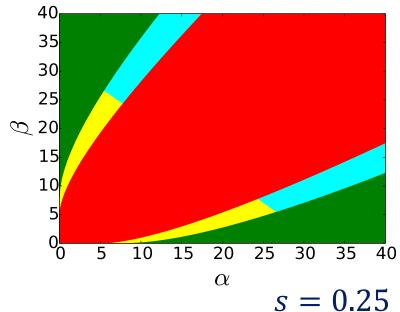
- Decompose according to cycles of $\tau_*^{-1} \circ \tau$; independence across cycles
- For correlated Erdős-Rényi: explicit formulas
- For correlated SBM: recursive bounds

$$\Phi^{\tau}\left(1/\sqrt{n},\omega,\zeta\right) \le \exp\left(-(1-\epsilon)s^2\left(\alpha M^+(\tau) + \beta M^-(\tau)\right)\frac{\log n}{n}\right)$$

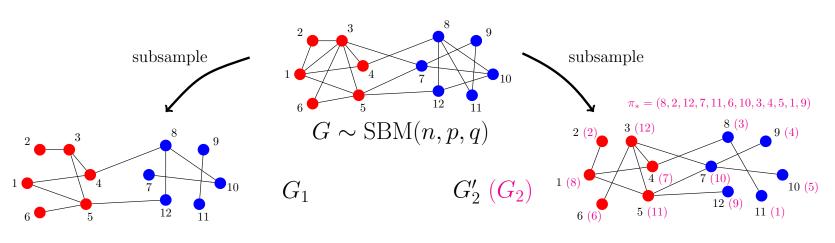

Open problems / future directions

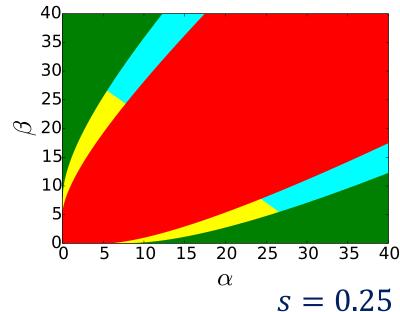
Closing the gap for exact community recovery


- Exact graph matching is impossible
- **Q:** is exact community recovery from (G_1, G_2) possible?


Closing the gap for exact community recovery

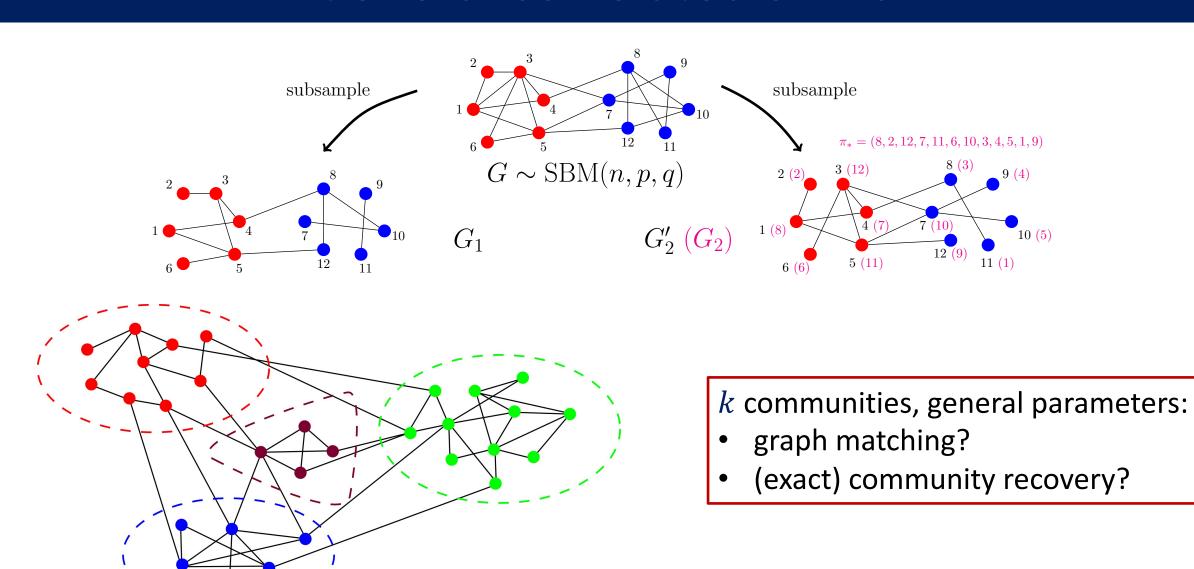
- Exact graph matching is impossible
- **Q:** is exact community recovery from (G_1, G_2) possible?
- Conjecture: in part of the region yes, in part of it no

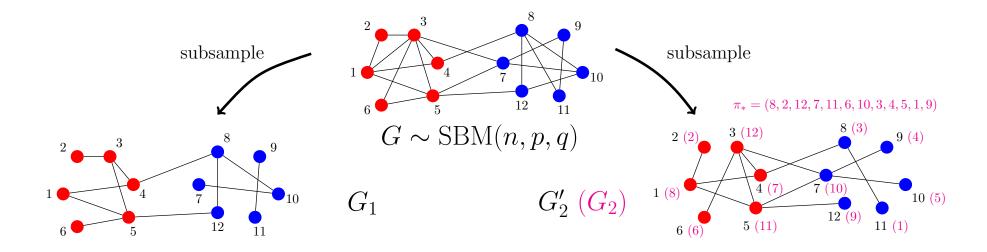

Efficient algorithms



- Current algorithm for exact graph matching is not efficient
- Do there exist efficient algorithms for graph matching?

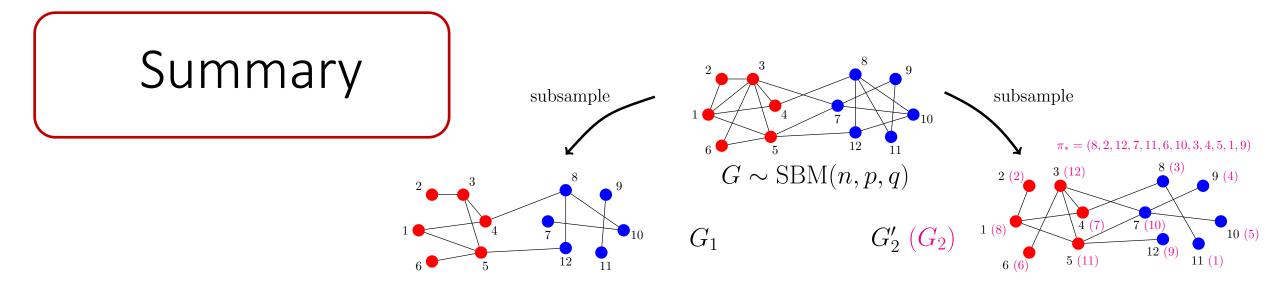
Efficient algorithms



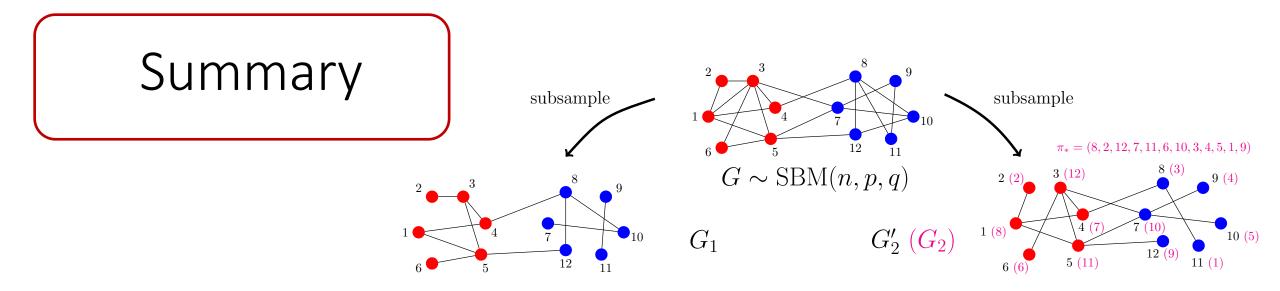

- Current algorithm for exact graph matching is not efficient
- Do there exist efficient algorithms for graph matching?
- If not:
 - Is it possible to recover communities exactly using a polynomial time relaxation of the graph matching subroutine?

General correlated SBMs

10 (5)



Beyond exact community recovery



- Partial recovery?
- Community detection?

Challenge: in these regimes exact graph matching is impossible; cannot use as a black box

- Correlated SBMs: determined the fundamental limits of exact graph matching
- Exact community recovery possible in regimes where it is not possible from G_1 alone
- Correlated random graphs: many challenges and applications

- Correlated SBMs: determined the fundamental limits of exact graph matching
- Exact community recovery possible in regimes where it is not possible from G_1 alone
- Correlated random graphs: many challenges and applications

Thank you!