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Sampling Problems

2

‣ In many cases, the target distribution is represented by , where 
the negative log-density function  is known and satisfies 
certain regularity conditions, i.e., (strongly) convex, smooth, etc.

π ∝ e−f(x)

f(x) : ℝd → ℝ

‣ The goal is to generate samples  from the probability density function 
.

x
π(dx)



Sampling Problems in Large-Scale Bayesian Learning
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‣ In Bayesian Learning, the target distribution  is typically the posterior 
given i.i.d. observations .

π
{zi}i=1,…,n

π = p(x |z1, …, zn) ∝ p(z1, …, zn |x) ⋅ p(x) = p(x) ⋅
n

∏
i=1

p(zi |x)

Posterior Likelihood Prior

‣ Then  can be rewritten asπ

π ∝ e−f(x) = e−∑n
i=1 fi(x) fi(x) = − log(p(zi |x)) − n−1 ⋅ log(p(x))where



Markov Chain Monte Carlo methods

‣ MCMC method

• For 


• Proposal: 


• Reject:  with probability 

t = 1,…, T

xt+1 = xt + gf(xt)

xt+1 = xt 1 − αf(xt, xt+1)

A random vector depending on  and f xt

Metropolis-Hasting acceptance probability

‣ Examples: random walk Metropolis [Mengersen and Tweedie, 1996], ball 
walk [Lovasz and Simonovits, 1990], Metropolis-adjusted Langevin 
algorithms (MALA) [Robert and Tweedie 1996], Hamiltonian Monte Carlo 
(HMC) [Duane et. al., 1987]



Hamiltonian Monte Carlo

‣ ODE description

dx(t)
dt

=
∂H(x(t), p(t))

∂p
= p(t)

dp(t)
dt

= −
∂H(x(t), p(t))

∂x
= − ∇f(x(t))

H(x, p) = f(x) + ∥p∥2
2/2Hamiltonian energy

‣ (Idealized) Hamiltonian Monte Carlo Method

• , where xt+1 = xt + ∫ τ0

τ=0
p(τ)dτ x(0) = xt, p(0) ∼ N(0,I)

Key property: When  t → ∞, xt ∼ π ∝ e−f(x)

Duane et. al., Hybrid monte carlo. Physics letters B, 1987



Underdamped Langevin Dynamics

‣ SDE description

‣ (Idealized) Underdamped Langevin MCMC Method

•  ,  


          


          where , , 

xt+1 = xt + ∫ η
τ=0

v(τ)dτ

vt+1 = vt + ∫ η
τ=0

− [γv(τ) + u∇f(x(τ))]dτ + 2γuη ⋅ ξt

v(0) = vt x(0) = xt ξt ∼ N(0,I)

Key property: When  t → ∞, (xt, vt) ∼ π ∝ e−f(x)−∥v∥2
2/2

dv(t) = − γv(t)dt − u∇f(x(t))dt + 2γu ⋅ dB(t)

dx(t) = v(t)dt

Friction Potential Brownian motion

Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940.



MCMC with Stochastic Gradients

‣ Both HMC and underdamped LMC involve the calculation of the gradient 
, which becomes inefficient when  is large.∇f(x) n

‣ A commonly used solution is to calculate the stochastic gradient using a 
randomly sampled mini-batch of data.



HMC with Stochastic Gradients

‣ Stochastic Gradient Hamiltonian Monte Carlo Method
‣ Input , , , 


‣ For 


• Let 


• Let 


• For 


• 


• 


• 


• Let 


‣ Output 

x0 η T K
t = 0,…, T

p0 ∼ 𝒩(0,I)
q0 = xt

k = 0,…, K − 1
pk+1/2 = pk −

η
2

g(qk, ξk)

qk+1 = qk + ηpk+1/2

pk+1 = pk −
η
2

g(qk+1, ξk+1/2)

xt+1 = qK

xT

Proposal: Numerically solving Hamilton’s 
equation via stochastic gradients g(qk, ξk)

Skip the MH step

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021

Leapfrog numerical integrator



Key Questions in the Convergence Analysis

‣ Inner Loop: What’s the approximation error of the Leapfrog integrator 
using stochastic gradients?

‣ Outer Loop: Can the approximate ODE solutions lead to small sampling 
error?



Assumptions on the Target Distribution

‣ Assumptions:


• Strongly log-concave distribution:  is -strongly convex


• Log-smooth distribution:  is -smooth, 


• Define  be the condition number


• Bounded variance: For all iterate , , where 
the expectation is taken on both  and .

f(x) μ
f(x) L

κ = L/μ
qk 𝔼[∥g(qk, ξk) − ∇f(qk)∥2

2] ≤ σ2

qk ξk



Approximation Error of the Numerical ODE Solver (Inner 
Loop)

‣ Define 3 sequences :(q0 = xt)

(𝒮ηqk, 𝒮ηpk) = (qk+1, pk+1)

(𝒢ηqk, 𝒢ηpk) = (𝔼[qk+1 |pk, qk], 𝔼[pk+1 |pk, qk])

(ℋηqk, ℋηpk) = (qk + ∫ η
0

p(t)dt, pk − ∫ η
0

∇f(q(t))dt)

HMC with stochastic gradient

Conditionally expected stochastic 
gradient HMC update

Update via exact ODE solution

‣ Approximation error: we want to characterize the difference between 
 and .𝒮K

η q0 ℋK
η q0



Decomposition of the Approximation Error (Inner Loop)

‣ Define , thenzk = ( qk

L−1/2pk) = 𝒮k
η ( q0

L−1/2p0) = 𝒮k
ηz0

ℰk := 𝔼[∥𝒮k
ηz0 − ℋk

ηz0∥2
2] = 𝔼[∥𝒮k

ηz0 − 𝒢η𝒮k−1
η z0 + 𝒢η𝒮k−1

η z0 − ℋk
ηz0∥2

2]
= 𝔼[∥𝒮k

ηz0 − 𝒢η𝒮k−1
η z0∥2

2] + 𝔼[∥𝒢η𝒮k−1
η z0 − ℋk

ηz0∥2
2]

One-step statistical error between  and : 𝒮η 𝒢η = O(L−1 ⋅ σ2 ⋅ η2)

𝔼[∥𝒢η𝒮k−1
η z0 − ℋk

ηz0∥2
2] = 𝔼[∥𝒢η𝒮k−1

η z0 − ℋη𝒮k−1
η z0 + ℋη𝒮k−1

η z0 − ℋk
ηz0∥2

2]
≤ (1 + α) ⋅ 𝔼[∥ℋη𝒮k−1

η z0 − ℋk
ηz0∥2

2]
+(1 + 1/α) ⋅ 𝔼[∥𝒢η𝒮k−1

η z0 − ℋη𝒮k−1
η z0∥2

2]

One-step “discretization error” between  and : 𝒢η ℋη = O(Ld ⋅ η4)



Decomposition of the Approximation Error (Inner Loop)

‣ Bound on 𝔼[∥ℋη𝒮k−1
η z0 − ℋk

ηz0∥2
2]

ℋη

ℋη𝒮k−1
η z0

ℋk−1
η z0

ℋη𝒮k−1
η z0

ℋk
ηz0

‣  does not have contraction property on any two different points but has 
bounded expansion property
ℋη

𝔼[∥ℋη𝒮k−1
η z0 − ℋk

ηz0∥2
2] ≤ e2L1/2η ⋅ 𝔼[∥𝒮k−1

η z0 − ℋk−1
η z0∥2

2] = e2L1/2η ⋅ ℰk−1



Upper Bound of the Approximation Error

‣ Putting things together

ℰk ≤ (1 + α) ⋅ e2L1/2η ⋅ ℰk−1 + (1 + 1/α) ⋅ O(Ld ⋅ η4) + O(L−1 ⋅ σ2 ⋅ η2)

≤
e(2L1/2η+α)k

2L1/2η + α
⋅ [(1 + 1/α) ⋅ O(Ld ⋅ η4) + O(L−1 ⋅ σ2 ⋅ η2)]

‣ Then we can set  such that if ,α = 2L1/2η Kη ≤ 1/(4L1/2)

ℰK = 𝔼[∥𝒮K
η q0 − ℋK

η q0∥2
2] ≤ O(dη2 + L−3/2 ⋅ σ2 ⋅ η)

Expansion term
 One-step error




Convergence Analysis of Outer Loop

‣ The key is to show that the approximation error will not explode.

‣ Analysis framework:

x0

xπ

𝒮K
η x0 𝒮2K

η x0 … 𝒮TK
η x0

ℋK
η xπ ℋ2K

η xπ ℋTK
η xπ…

HMC with stochastic 
gradients 

Idealized HMC 

with stationary initialization

‣ Sampling error: we will characterize the difference between  and .𝒮TK
η x0 ℋTK

η xπ



‣  has a good contraction property for any two points with the same velocity 
[Chen and Vempala19]: for any two points  and , then for any 

,

ℋt

(q, p) (q′￼, p)
0 ≤ t ≤ 1/(2 L)

𝔼[∥ℋtq − ℋtq′￼∥2
2] ≤ (1 − μt2)∥q − q′￼∥2

2

Contraction Property in the Outer Loop

‣  Decomposition of the error propagation ( )Kη = 1/(4L1/2)

𝔼[∥𝒮K
η q0 − ℋK

η q′￼0∥2
2] ≤ (1 + β)∥ℋK

η q0 − ℋK
η q′￼0∥2

2 + (1 + 1/β)𝔼[∥𝒮K
η q0 − ℋK

η q0∥2
2]

Contracting term

≤ (1 − 1/(16κ))∥q0 − q′￼0∥2

2

Approximation error

= O(dη2 + L−3/2 ⋅ σ2 ⋅ η)

Setting  can avoid error explosion.β = 1/(32κ)
Chen and Vempala, Optimal convergence rate of Hamiltonian Monte Carlo for strongly log-concave distributions, APPROX-RANDOM 2019

Strongly log-concave parameter



Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set 
, then,K = 1/(4 Lη)

Convergence Rates of Stochastic Gradient HMC

𝒲2
2(P(xT), π) ≤ e−T/(32κ) ⋅ 𝔼[∥x0 − xπ∥2

2] + O(dη2 + L−3/2 ⋅ σ2 ⋅ η)

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021



On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

follow from (Dubey et al., 2016). SVRG estimator adopts a
reference gradientrf(eq) associate with a reference point eq,
both of which are updated in a low frequency (updated every
N leapfrog steps). In each update, we will sample a fresh
mini-batch of training examples and leveragerf(eq) and eq
as control variate to help reduce the variance. SAGA estima-
tor maintains a table G that stores all stochastic gradients
{fi(x)}k=1,...,n. In each iteration, it queries a mini-batch of
training examples Ik and computes the stochastic gradient
by combining the mini-batch stochastic gradients on the
new examples and the most recent history gradients in the
table, including the stochastic gradients for new examples
{Gi}i2Ik and the sum of all stochastic gradients in the ta-
ble (i.e., egk =

Pn
i=1 Gi). Afterward, the newly computed

mini-batch stochastic gradient will be used to update the
table. Similar to the SVRG estimator, CVG estimator also
maintains a reference point bq, which is typically set to be an
approximate minimizer of the function f(x), and queries a
new mini-batch of training examples to compute the stochas-
tic gradient jointly. Different from the SVRG estimator that
slowly updates the reference point, the reference point bq
adopted in CVG is fixed during the entire algorithm.

Algorithm 2 Stochastic Gradient Estimators
1: input: Current point qk, index of the HMC proposal t,

random sampled mini-batch Ik

Mini-batch Stochastic gradient
2: g(qk, ⇠k) =

n
B

P
i2Ik
rfi(qk)

Stochastic variance reduced gradient
3: if k +Kt mod N = 0 then
4: g(qk, ⇠k) = rf(qk), eq = qk

5: else
6: g(qk, ⇠k) =

n
B

P
i2Ik

⇥
rfi(qk)�rfi(eq)

⇤
+ f(eq)

7: end if
Stochastic averaged gradient

8: if k +Kt = 0 then
9: g(qk, ⇠k) = rf(qk), G = {rfi(qk)}i=1,...,n

10: else
11: egk =

Pn
i=1 Gi

12: g(qk, ⇠k) =
n
B

P
i2Ik

⇥
rfi(qk)�Gi

⇤
+ egk,

13: Update Gi  rfi(qk) for all i 2 Ik

14: end if
Control variate gradient

15: g(qk, ⇠k) = rf(bq) + n
B

P
i2Ik

[rfi(qk)�rfi(bq)]
16: output: g(qk, ⇠k)

5.2. Convergence Results of Specific Stochastic
Gradient HMC Algorithms

Note that the convergence guarantee of stochastic gradient
HMC in Theorem 4.4 is established based on Assumption
4.3. Therefore, in order to prove the convergence rates for
HMC equipped with the aforementioned stochastic gradi-

ent estimators, it suffices the verify Assumption 4.3 and
characterize the magnitude of the variance parameter �.
In the subsequent analysis, we will use a stronger version
of Assumption 4.2 by requiring all component functions
{fi(x)}ni=1 are L/n-smooth.

Assumption 5.1. For any x,y 2 Rd and i 2 [n], there
exists a positive constant L such that

krfi(x)�rfi(y)k2 
L

n
kx� yk2.

This Assumption has also been made in many prior works
(Baker et al., 2018; Chatterji et al., 2018; Brosse et al.,
2018) for studying the convergence of stochastic gradient
Langevin MCMC algorithms. Note that Assumption 5.1
immediately implies Assumption 4.2 and thus the result in
Theorem 4.4 applies. We would also like to point out that
we only need all component functions to be smooth but not
necessarily to be strongly convex. Additionally, we follow
the similar setting in Baker et al. (2018); Chatterji et al.
(2018) that assumes L/n and µ/n are in the constant order,
which implies that L, µ = O(n)

By combining Algorithm 1 and the corresponding stochastic
gradient estimator presented in Algorithm 2, we can obtain
four specific stochastic gradient HMC algorithms, namely
SG-HMC, SVRG-HMC, SAGA-HMC and CVG-HMC. We
assume that the initial point x(0) satisfies kx(0)

� x⇤
k
2
2 

d/µ. Note that this can be achieved by running SGD for
roughly O(n) steps (Baker et al., 2018; Brosse et al., 2017).
In the sequel, we will provide the convergence guarantees
for these four algorithms.

Mini-batch stochastic gradient HMC (SG-HMC). The
following theorem characterizes the convergence results of
SG-HMC in 2-Wasserstein distance.

Theorem 5.2. Under Assumptions 4.1 and 5.1, assume
kx(0)

� x⇤
k
2
2  d/µ and let µt be the distribution of x(t),

then if the step size satisfies ⌘ = O(L�1/2
^dµ�1��1

1 ) and
set K = 1/(4

p
L⌘), the output of SG-HMC satisfies

W2

�
µT ,⇡

�
 2

s
d

µ

�
1� (128)�1

�T/2
+ �1⌘

1/2 + �2⌘,

where the constants �1 and �2 satisfy,

�2
1 = O

�
L�1/2B�13d+ L�3/2B�12n2d

�

�2
2 = O

�
3d+ L�1/2B�1n22d⌘

�
.

Gradient complexity of SG-HMC. Similar to (Chatterji
et al., 2018; Baker et al., 2018; Brosse et al., 2018), we
assume L = O(n) for simplicity. This further implies that
K = O(n�1/2⌘�1) and ⌘ = O(L�1/2) = O(n1/2). Then
if ignoring the dependency on the condition number  and

Application to Different Stochastic Gradient Estimators

‣ Warm start: the initial point  is found 
via SGD such that .

x0
∥x0 − x*∥2

2 = O(d/μ)

‣ Additional Assumptions


•  is -smooth


•
fi(x) L/n

L, μ = O(n)

‣ Stochastic gradients

• Mini-batch stochastic gradient (SG)


• Stochastic variance reduced gradient (SVRG) 
[Johnson and Zhang, 2013]


• Stochastic averaged gradient (SAGA) [Defazio et. 
al., 2013]


• Control variate gradient (CVG) [Baker et. al., 2018]
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Variance of Different Stochastic Gradient Estimators

‣Mini-batch stochastic gradients 

𝔼[∥g(qk, ξk) − ∇f(qk)∥2
2] = 𝔼[ n

B ∑i∈ℐk
∇fi(qk) − ∑n

i=1 ∇fi(qk)
2

2
]

≤
n2

B
𝔼[ ∇fi(qk) − 1

n ∑n
i=1 ∇fi(qk)

2

2]
‣Stochastic variance-reduced gradients

𝔼[∥g(qk, ξk) − ∇f(qk)∥2
2] = 𝔼[ n

B ∑i∈ℐk
[∇fi(qk) − ∇fi(q̃)] + ∇f(q̃) − ∇f(qk)

2

2
]

≤
n2

B
𝔼[ ∇fi(qk) − ∇fi(q̃)

2

2]
≤

L2

B
𝔼[∥qk − q̃∥2

2]

= O(𝔼[∥∇fi(x*)∥2
2])

= O(N2dη2)

 for some q̃ = qu u ∈ [k − N, k − 1]

which we assume to 
be bounded by O(d)



Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set 
, then,K = 1/(4 Lη)

• Mini-batch SG-HMC σ2 = O(B−1n2d)

• SVRG-HMC

• SAGA-HMC

• CVG-HMC

σ2 = O(B−1L2N2dη2)

σ2 = O(B−1Ld)

Convergence Rates of Stochastic Gradient HMC

𝒲2
2(P(xT), π) ≤ e−T/(32κ) ⋅ 𝔼[∥x0 − xπ∥2

2] + O(dη2 + L−3/2 ⋅ σ2 ⋅ η)

σ2 = O(B−3L2n2dη2)

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021



Comparison of Gradient Complexities

Algorithm Query 
Complexity Type

SGLD [Dalalyan and Karagulyan, 2019] LD

SVRG/SAGA-LD [Zou et. al., 2018b] LD

SG-HMC [Zou and Gu, 2021] HMC

SVRG/SAGA-HMC [Zou and Gu, 2021] HMC

CVG-HMC [Zou and Gu, 2021] HMC

Õ( n
ϵ2 )

Õ( n
ϵ )

Õ( n
ϵ2 )

Õ( n2/3

ϵ2/3
+

1
ϵ )

Õ( 1
ϵ2 )

‣ Number of stochastic gradient calculations such that , 

where .

𝒲2(P(xT), π) ≤ ϵ/ n
L, μ = O(n)

Zou et. al., Subsampled stochastic variance-reduced gradient Langevin dynamics UAI 2018b

Dalalyan and Karagulyan, User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. 
Stochastic Processes and their Applications, 2019.



‣ Partially solve the SDE [Cheng et. al., 2018]

Underdamped Langevin MCMC with Stochastic Gradients

dv(t) = − γv(t)dt − u∇f(x(t))dt + 2γu ⋅ dB(t) dx(t) = v(t)dt
‣ SDE description

v(t) = e−γt ⋅ v(0) − u ∫ t
0

e−γ(t−s) ∇f(x(s))ds + 2γu ⋅ ∫ t
0

e−γ(t−s)dB(s)

x(t) = x(0) + 1 − e−γt

γ v(0) + ∫ t
0

u ∫ r
0

e−γ(r−s) ∇f(x(s))dsdr + 2γu ⋅ ∫ t
0

∫ r
0

e−γ(r−s)dB(s)dr

‣ Discrete update using stochastic gradient ( )u = 1/L, γ = 2
vk+1 = e−γη ⋅ vk − u ∫ η

0
e−γ(η−s)g(xk, ξk)ds + 2γu ⋅ ∫ η

0
e−γ(η−s)dB(s)

xk+1 = xk + 1 − e−γη

γ vk + ∫ η
0

u ∫ r
0

e−γ(r−s)g(xk, ξk)dsdr + 2γu ⋅ ∫ η
0

∫ r
0

e−γ(r−s)dB(s)dr

Can be exactly calculated Cannot be exactly calculated via stochastic gradient

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018

Friction parameter,  inverse mass γ : u :



Convergence Analysis Framework

‣ Define 3 sequences:

(𝒮ηxk, 𝒮ηvk) = (xk+1, vk+1)

(𝒢ηxk, 𝒢ηvk) = (𝔼[xk+1 |xk, vk], 𝔼[vk+1 |xk, vk])

(ℒηxk, ℒηvk) = (xk + ∫ η
0

v(s)ds, vk − ∫ η
0

[ − γv(s) − u∇f(x(s))]ds + 2γu ∫ η
0

dB(s))

‣ Sampling error: we want to characterize the difference between  and .𝒮T
η x0 xπ

ULD with stochastic gradient

gradient ULD update

Update via exact SDE solution



Sampling Error Decomposition

‣ Let  and zk = ( xk
xk + vk) = 𝒮k

η ( x0
x0 + v0) zπ = ( xπ

xπ + vπ)
𝔼[∥zk − ℒk

ηzπ∥2
2] = 𝔼[∥𝒮k

ηz0 − 𝒢η𝒮k−1
η z0 + 𝒢η𝒮k−1

η z0 − ℒk
ηzπ∥2

2]
= 𝔼[∥𝒮k

ηz0 − 𝒢η𝒮k−1
η z0∥2

2] + 𝔼[∥𝒢η𝒮k−1
η z0 − ℒk

ηzπ∥2
2]

One-step statistical error between  and : 𝒮η 𝒢η = O(L−2 ⋅ σ2 ⋅ η2)

𝔼[∥𝒢η𝒮k−1
η z0 − ℒk

ηzπ∥2
2] = 𝔼[∥𝒢η𝒮k−1

η z0 − ℒη𝒮k−1
η z0 + ℒη𝒮k−1

η z0 − ℒk
ηzπ∥2

2]
= (1 + α)𝔼[∥ℒη𝒮k−1

η z0 − ℒk
ηzπ∥2

2]
+(1 + 1/α)𝔼[∥𝒢η𝒮k−1

η z0 − ℒη𝒮k−1
η z0∥2

2]

One-step discretization error between  and : 𝒢η ℒη = O(μ−1d ⋅ η4)



Contraction Property

‣  has a good contraction property for any two points  and  [Cheng et. 
al., 2018]
ℒη z z′￼

𝔼[∥ℒηz − ℒηz′￼∥2
2] ≤ e−η/κ ⋅ ∥z − z′￼∥2

2

‣ Error decomposition (set  )α = η/(2κ)

𝔼[∥zk − ℒk
ηzπ∥2

2] ≤ e−η/κ ⋅ (1 + α) ⋅ 𝔼[∥zk−1 − ℒk−1
η zπ∥2

2]
+(1 + 1/α) ⋅ O(d ⋅ η4) + O(L−2 ⋅ σ2 ⋅ η2)

≤ e−kη/(2κ) ⋅ 𝔼[∥z0 − zπ∥2
2] + O(μ−1d ⋅ η2) + O(L−2 ⋅ σ2 ⋅ η)

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018



Convergence Rates of Stochastic Gradient ULD

Theorem [Zou et. al., 2018a, Chatterji et. al., 2018] Suppose all assumptions are 
satisfied, then,

𝒲2
2(P(xT), π) ≤ (1 − η/(2κ))T ⋅ 𝔼[∥x0 − x̂π∥2

2] + O(μ−1d ⋅ η2 + L−2 ⋅ σ2 ⋅ η)

• Mini-batch SG-ULD σ2 = O(B−1n2d)

• SVRG-ULD

• SAGA-ULD

• CVG-ULD

σ2 = O(B−1L2N2dη2)

σ2 = O(B−1Ld)

σ2 = O(B−3L2n2dη2)

Zou et. al., Stochastic variance-reduced Hamilton Monte Carlo methods, ICML 2018

Chatterji et. al., On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo, ICML 2018



Comparison of Gradient Complexities

Algorithm Query 
Complexity

Type

SGLD [Dalalyan and Karagulyan, 2019] LD

SVRG/SAGA-LD [Zou et. al., 2018b] LD

SG-ULD [Chatterji et. al., 2018] ULD

SVRG/SAGA-ULD [Zou et. al., 2018a] ULD

CVG-ULD [Chatterji et. al., 2018] ULD

SG-HMC [Zou and Gu, 2021] HMC

SVRG/SAGA-HMC [Zou and Gu, 2021] HMC

CVG-HMC [Zou and Gu, 2021] HMC

Õ( n
ϵ2 )

Õ( n
ϵ2 )

Õ( n
ϵ )

Õ( n2/3

ϵ2/3
+

1
ϵ )

Õ( 1
ϵ2 )

Õ( n
ϵ2 )

Õ( n2/3

ϵ2/3
+

1
ϵ )

Õ( 1
ϵ2 )

‣ Number of stochastic gradient calculations such that , 

where .

𝒲2(P(xT), π) ≤ ϵ/ n
L, μ = O(n)



Summary

‣ We provided a unified analysis for HMC and ULD with stochastic gradients. 


‣ The analysis is based on three sequences of Markov chains: 


• Markov chain of the stochastic gradient MCMC 


• Markov chain of the conditional expected stochastic gradient MCMC


• Markov chain of the idealized HMC/ULD


‣ The analyses are different since HMC and ULD has different contraction property:


• ULD has contraction property for any two points (so can be used in every 
iteration)


• HMC has contraction property for any two points with the same velocity (so 
can only be used in every  iterations)K



What’s next?

‣ If the target distribution is not log-concave, the contraction property does not hold. 
Then how to control the approximation error of numerical solvers?


• Show that the target distribution satisfies log-sobolev or Poincare inequality, 
which can give a weaker version of the contraction [Raginsky et. al., 2017, 
Vempala and Wibisono, 2019, Xu et al., 2018, Ma et. al., 2019, Zou et. al., 
2021].


‣ Metropolis-Hasting step is skipped when using stochastic gradients, is it possible 
to approximately estimate this accept/reject probability to improve the sampling 
accuracy?


• Develop an (nearly) unbiased estimator of the MH probability using the 
randomly sampled mini-batch data [Lee et. al., 2021]
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