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Sampling Problems

» The goal is to generate samples X from the probability density function

(dx).

» |n many cases, the target distribution Is represented by 7 e_f(x), where
d

the negative log-density function f(X) : R“ — R is known and satisfies

certain regularity conditions, i.e., (strongly) convex, smooth, etc.



Sampling Problems in Large-Scale Bayesian Learning

» In Bayesian Learning, the target distribution 7 is typically the posterior

given i.i.d. observations {Z; }

i=1,....n"
n
r=pXx|z,...,Z,) o<—'p(X) = p(X) - HP(Zi‘X)
=1
Posterior Likelihood Prior

» Then iz can be rewritten as

rox e T® = o~ ZL ™ where f(x) = —log(p(z;|x)) —n~! - log(p(x))



Markov Chain Monte Carlo methods

» MCMC method

o Forr=1,...,T

A random vector depending on f and X,

 Reject: X, ;| = X, with probability 1 — , M

Metropolis-Hasting acceptance probability

» Examples: random walk Metropolis [Mengersen and Tweedie, 1996], ball
walk [Lovasz and Simonovits, 1990|, Metropolis-adjusted Langevin
algorithms (MALA) [Robert and Tweedie 1996], Hamiltonian Monte Carlo
(HMC) [Duane et. al., 1987]



Hamiltonian Monte Carlo

» ODE description Hamiltonian energy H(X, p) = f(X) + HpH%/Z

dx(r) _ oH(x(®),p(») _ 0 dp(r) _ 0H(x(z), p(?))
dr op P dt OX

= — Vf(x(0))
» (ldealized) Hamiltonian Monte Carlo Method

. X, =X+ f:io p(7)dz, where x(0) = x,, p(0) ~ N(0,I)

Key property: When t — 0, X, ~ 7 & e /¥

Duane et. al., Hybrid monte carlo. Physics letters B, 1987



Underdamped Langevin Dynamics

» SDE description  Friction  Potential ~ Brownian motion

dv(?) = — yv(0)dt — u Vf(x(2)dt + /2yu - dB(7)
dx(¢) = v(r)dt

> (ldealized) Underdamped Langevin MCMC Method

m
e X=X+ L:o v(7)dr,

Vior = Vo + [ = [rv@ + uVAX(@)|de +/2pun - €,
where v(0) = v, x(0) = x,, & ~ N(0,I)

Key property: When  — o0, (X,,V,) ~ 7 o e 70~ IIVI32

Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940.



MCMC with Stochastic Gradients

» Both HMC and underdamped LMC involve the calculation of the gradient
V f(Xx), which becomes inefficient when 7 is large.

» A commonly used solution is to calculate the stochastic gradient using a
randomly sampled mini-batch of data.



HMC with Stochastic Gradients

» Stochastic Gradient Hamiltonian Monte Carlo Method
> Input X, 17, 1, K
» Fort=0,..., T

Proposal: Numerically solving Hamilton’s
equation via stochastic gradients g(q;, &;)

Leapfrog numerical integrator

> Output X
Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021



Key Questions in the Convergence Analysis

> Inner Loop: What’s the approximation error of the Leapfrog integrator
using stochastic gradients”?

» Outer Loop: Can the approximate ODE solutions lead to small sampling
error?



Assumptions on the Target Distribution

» Assumptions:

» Strongly log-concave distribution: f(X) is u-strongly convex
 Log-smooth distribution: f(X) is L-smooth,

» Define k = L/u be the condition number

» Bounded variance: For all iterate q,, E[|[g(q;, &) — Vf(qk)H%] < ¢°, where

the expectation is taken on both (, and ¢,.



Approximation Error of the Numerical ODE Solver (Inner
Loop)

» Define 3 sequences (q, = X,):

(CS’”qk, CS’npk) = (Qs1> Prsy) HMC with stochastic gradient
gradient HMC update

> Approximation error: we want to characterize the difference between

cS’KqO and ?/ﬂ qo-




Decomposition of the Approximation Error (Inner Loop)

| 9« i 9o L

&, = —[u&gzo — %ﬁzo\@]

. [u&gzo — sensg—lzo + ‘ﬁné’ﬁ‘lzo — %’,;zoug]
E [usgzo — :‘5,7&5—1%”5] + [E [u?ns’,;—lzo — %gzoug]
T

One-step statistical error between & . and ?n: = O(L_1 . 6° - 172)

- [use,,,&ﬁ—lzo — %gzoug] —

16,8y 2y — H,S8y 2y + H,S 2y — vzl

<(+a)-LE [H%n&ﬁ_lzo — %szo”%]

+(1 + Va) - E[Il%,8," 2 = 7,8, %|l5]
T

One-step “discretization error” between &, and #,: = O(Ld - n)



Decomposition of the Approximation Error (Inner Loop)

» Bound on [H%né’ﬁ_llo — %ﬁzouﬂ

— B
CS)k—lz ./ %r] %ncsjs 1ZO

n 0

AN o« Z, T L

n

> A " does not have contraction property on any two different points but has

bounded expansion property

k—1 ky 112 211> k—1 k=1, 112 211>
I, Sy 2y — Haolls| < et - ESy 20— ) 2ll5| = € - &



Upper Bound of the Approximation Error

> Putting things together
Expansion term One-step error

E<(+a)- -8, +_

0 QL n+a)k

s 2L\ 2+ a (1+1/a)- O(Ld-n*) + O(L™" - 6* - n*)|

» Then we can set a = 2L"*y such that if Kn < 1/(4L"?),

&x = E[II8Kqy — #Xqll3] < On® + L2 - 6% - )




Convergence Analysis of Outer Loop

> The key Is to show that the approximation error will not explode.

> Analysis framework:

HMC with stochastic [ ;}
70

SKx, (;S’ZKX A ES’TKX
gradients (’7 v =0 =0

T X Hx" s

» Sampling error: we will characterize the difference between &, “x, and 7, " x".

|dealized HMC |
with stationary initialization | X*




Contraction Property in the Outer Loop

» # , has a good contraction property for any two points with the same velocity

[Chen and Vempala19]: for any two points (q, p) and (q’, p), then for any
0 <1< 1/(24/L),

m [H%tq — %tq’\@] < (1l - //ttz)Hq — q’H% Strongly log-concave parameter

» Decomposition of the error propagation (Kn = 1/(4L"?))

“[IlSKqy — ZFagll3] < (1 + Pl ey — Zyaglls + (1 + 1/pE[ISHay — %5 all5|

Contracting term Approximation error
< (1 —1/(16x) g9 — qgll5 = O(dn*+ L™ 06" - 1)

Setting f = 1/(32k) can avoid error explosion.

Chen and Vempala, Optimal convergence rate of Hamiltonian Monte Carlo for strongly log-concave distributions, APPROX-RANDOM 2019



Convergence Rates of Stochastic Gradient HMC

Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set
K = 1/(4y/Ln), then,

W%(P(XT), 71') < e—T/(32K) . [F [HXO — X”H%] + O(a'iy2 + L7 62 ° 7])

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021



Application to Different Stochastic Gradient Estimators

» Stochastic gradients

® Mini-batch stochastic gradient (SG)

e Stochastic variance reduced gradient (SVRG)

[Johnson and Zhang, 2013]

° Stochastlc averaged gradient (SAGA) [Defazio et

., 2013]

e (Control variate gradient (CVG) [Baker et. al. 2018]

» Warm start: the initial point X, is found

via SGD such that ||x, — X*H% =

» Additional Assumptions
 f(X)is L/n-smooth
* L,y = 0(n)

O(d/ ).

)

\‘O\U‘-';w
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Algorlthm 2 Stochastlc Gradlent Estlmators

random sampled mini- batch L
Mini-batch Stochastic gradient

g(qr, &) = % Zigzk V fi(ax)
Stochastic variance reduced gradient

if £ + Kt mod N = 0 then
g(ar, &) = Vi(ak), 9= qx

else
5 Yier, | VSilaw) = Vfi(@)] + f(@ |

g(qk, &k) =
if £+ Kt = 0 then
g(qr, &) = Vf(ar), G = {Vfi(ar) }i=1,..n
else
gk = Z?:l G;
g(ar, &) = 5 D ier, | VSilar) — Gi] + 8k,
Update G; < V f;(qy) forall ¢ € 7,
end if

Control variate gradient

g(ar, &) = V(@) + 5 2ier, [VSilar) — V/i(Q)]
Olltpllt: g(qka gk)




Variance of Different Stochastic Gradient Estimators

» Mini-batch stochastic gradients

= [Hg(qka Sp) — Vf((lk)H%] — L

s V@) z, 1Vf<q|k>||

n
- - which we assume to
» Stochastic variance-reduced gradlents be bounded by O(d)

(2@, &0 = VAQIB] = E||§ 2., [VA@) = VA@] + V@ - VAo

< , q=q,forsomeu € [k—N,k—1]

Ella—alil] = onvzar?

19



Convergence Rates of Stochastic Gradient HMC

Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set
K = 1/(4y/Ln), then,

W5(P(xp), m) < e O™ El||xy — x"||3]| + O@dn* + L™ - 6* - 1)

e Mini-batch SG-HMC o’ = O(B~'n’d)

e SVRG-HMC o> = O(B~'L’N?%dn?)
e SAGA-HMC 6> = OB~ L*n*dn?)
® CVG-HMC o> = O(B~'Ld)

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021



Comparison of Gradient Complexities

» Number of stochastic gradient calculations such that 7 ,(P(x;), n) < e/\/ﬁ,
where L, u = O(n).

Query

Algorithm

Complexity

n
€2

SGLD [Dalalyan and Karagulyan, 2019] O( ) LD

SVRG/SAGA-LD [Zou et. al., 2018b] 0‘(2> LD

1SG-HMC [Zou and Gu, 2021] ) HMC
€

a3
ISVRG/SAGA-HMC [Zou and Gu, 2021] 0( — ) HMC
lﬁ'_ € €

1

{CVG-HMC [Zou and Gu, 2021] (=) HMC

Dalalyan and Karagulyan, User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient.
Stochastic Processes and their Applications, 2019.

Zou et. al., Subsampled stochastic variance-reduced gradient Langevin dynamics UAI 2018b



Underdamped Langevin MCMC with Stochastic Gradients

> SDE description y :Friction parameter, u : inverse mass
dv(r) = — yv(t)dt — u Vf(x(¢))dt + v/ 2yu - dB(?) dx(¢) = v(?)dzt

» Partially solve the SDE |[Cheng et. al., 2018]

® (Can be exactly calculated ® (Cannot be exactly calculated via stochastic gradient

» Discrete update using stochastic gradient (u = 1/L,y = 2)
Vi,pg=e v, — ufg e " =Yg(x, £)ds +1/2yu - f: e 7=IdB(s)

X, 1 = X + 1 _;_m v, + J(;? uj(: e " ga(x, . & )dsdr +4/2yu - I(;? jg e 7" dB(s)dr

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018




Convergence Analysis Framework

» Define 3 sequences:

— ULD with stochastic gradient

Update via exact SDE solution

» Sampling error: we want to characterize the difference between & ; X, and x”.



Sampling Error Decomposition

Xk XO X

-z — Z527|I5| = E|llSyzg — €, 8y 2y + E,8 2 — Ly2"|I3)]
= E||S)z0 — €,8, '%lls| + E|IIC, Sy 20 — Zi2” |15
T

One-step statistical error between & , and c‘577: = O(L™* - 6% - n?)
- [H?né’ﬁ_lzo — Sffgz”H%] = [ [H ?né’ﬁ_lzo — oncS’ﬁ_le + SZﬂcS’ﬁ_le — EZ@Z”H%]
= (1 + oE|I|Z,S 2y — Ly2"||5]
+(1 + V/a)E(I€, Sy 29 — Z,S %)
T

One-step discretization error between &, and £, 1 = O(u='d - n%




Contraction Property

> SZH has a good contraction property for any two points Z and z’

2 — 2
N Zz—= 2,215 < e lz—7/|3

» Error decomposition (set a = n/(2x) )

|z — Lz ll5] < e - (1 + @) - B[l = 2372711
+(1+ 1/a)-0d-n* + OL™2- 6% n?)
< e E||lzy - 27|I3] + O(u~'d - n*) + OL™2 - 6% - 1)

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018



Convergence Rates of Stochastic Gradient ULD

Theorem [Zou et. al., 2018a, Chatterji et. al., 2018] Suppose all assumptions are
satisfied, then,

W3 (P(xp),7) < (1 - ;7/(21<))T- |lIxg — %7II5| + Ow™'d - n* + L% 6% - 1)

e Mini-batch SG-ULD c* = O(B~'n’*d)

e SVRG-ULD o> = O(B~'L*N%dn?)
e SAGA-ULD 6> = OB~ L*n’dn®)
e CVG-ULD o* = O(B™'Ld)

Zou et. al., Stochastic variance-reduced Hamilton Monte Carlo methods, ICML 2018

Chatterji et. al., On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo, ICML 2018



Comparison of Gradient Complexities

» Number of stochastic gradient calculations such that 7 ,(P(x;), n) < e/\/ﬁ,

where L, u = O(n).

Query
Complexity

SGLD [Dalalyan and Karagulyan, 2019] 0 LD

Algorithm Type

SVRG/SAGA-LD [Zou et. al., 2018Db]

{SG-ULD [Chatteriji et. al., 2018]

ISVRG/SAGA-ULD [Zou et. al., 2018a]
JCVG-ULD [Chatterji et. al., 2018]
1SG-HMC [Zou and Gu, 2021]

JSVRG/SAGA-HMC [Zou and Gu, 2021]

’:}\CVG-HMC [Zou and Gu, 2021]

i e i Ace B Lo o e P T e TNV TR IR E T P



Summary

> We provided a unified analysis for HMC and ULD with stochastic gradients.
> The analysis is based on three sequences of Markov chains:
* Markov chain of the stochastic gradient MCMC
* Markov chain of the conditional expected stochastic gradient MCMC
* Markov chain of the idealized HMC/ULD
> The analyses are different since HMC and ULD has different contraction property:

 ULD has contraction property for any two points (so can be used in every
iteration)

« HMC has contraction property for any two points with the same velocity (so
can only be used in every K iterations)



What’s next?

> |f the target distribution is not log-concave, the contraction property does not hold.
Then how to control the approximation error of numerical solvers?

* Show that the target distribution satisfies log-sobolev or Poincare inequality,
which can give a weaker version of the contraction [Raginsky et. al., 2017,
Vempala and Wibisono, 2019, Xu et al., 2018, Ma et. al., 2019, Zou et. al.,

2021].
> Metropolis-Hasting step is skipped when using stochastic gradients, is it possible
to approximately estimate this accept/reject probability to improve the sampling
accuracy?

* Develop an (nearly) unbiased estimator of the MH probability using the
randomly sampled mini-batch data [Lee et. al., 2021]
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