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Outline
▷ Introduction to Normalizing Flows

○ Sliced (Iterative) Normalizing Flow (SINF)
○ Anomaly detection application in HEP

▷ normalizing flow optimization and sampling
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Normalizing Flows for density estimation, sampling

3

Credit: 
https://lilianwen
g.github.io/lil-lo
g/2018/10/13/fl
ow-based-deep
-generative-mo
dels.html▷ Bijective mapping f between data x and latent variable z  (z = f(x), z ~ π(z))

○ Evaluate density: p(x) = π(f(x)) |det(df/dx)|

○ Sample: x = f-1(z)  (z ~ π(z))



Normalizing Flows
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▷ 1D example ● One possible training 
objective: maximize            
<log p(x)>

            p(x) = π(f(x)) |det(df/dx)|

This objective equals to 
Kullback-Leibler  divergence 
minimization between approximate 
and true distribution
      

● Evaluate density: 
p(x) = π(f(x)) |det(df/dx)|

● Sample: x = f-1(z)  (z ~ π(z))
Credit: https://sites.google.com/view/berkeley-cs294-158-sp20/home

data x NF f latent variable z=f(x)



Normalizing Flows
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In d dimensions, we need to parametrize d dimensional normalizing flow transformation f = 
f1○f2○...○fK and train it on <log p(x)> or some other loss function

Recall that Evaluate density: p(x) = π(f(x)) |det(df/dx)|

Sample: x = f-1(z)  (z ~ π(z)
How to parametrize f, such that its inverse and Jacobian determinant are easy to evaluate?

Many NFs in the literature. Some are continuous (Ordinary Differential Equations, Stochastic DE). 

Sliced Iterative Normalizing Flow (Dai & Seljak, ICML 2021) builds the flow as a sequence of 
sliced projections



Radon transform
Reconstruction of a 2d image from 1d slices
Invertible, almost the same as Fourier transform

Computer Axial Tomography (CAT scan)

Radon transform can represent a general density distribution with its slices. But too expensive in high dimensions



Sliced Wasserstein distances

Radon transform can represent a general density 
distribution with its slices. This motivates

This is still very expensive in high dimensions 
(curse of dimensionality)



Sliced Iterative Normalizing Flow: find 
directions of largest deviation from 

target distribution
When the target is a Gaussian 
we are using optimization to find K 
orthogonal most non-Gaussian 
slices

Then we Gaussianize and repeat



Sliced Iterative Normalizing Flow
Find directions of largest Max-K W distance
Gaussianize the distribution in that direction, repeat
Multiply the Jacobians

This can be trained as a flow from data to Normal (GIS) or viceversa (SIG)
It has a NN structure: 
1) linear combination of previous layer (weights), enforced to be orthogonal transforms.
2) Pointwise nonlinearity: spline, more general than ReLU 
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SINF as a generative model: SIG
● (SIG) trains in data space: allows directly optimizing the distribution of samples

2007.00674
https://github.com/b

iweidai/SIG_GIS

These are 784-3072 
dimensions examples
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● GIS Iteratively building the NF based on optimal 
transport on 1D slices from data to Normal

● GIS achieves the best density estimation results on 
small training sets. Better inductive bias?

● Very few hyperparameters
● KDE can be very poor density estimator
● GIS is much faster than existing NFs: O(1s) on CPU

SINF as a density estimator (GIS)



SINF is an Outlier or Anomaly Detector

1 million Pythia simulated background events of an 
LHC hadronic event
Unknown number of resonant signal events 
Task: find the mass, cross-sectional area etc. 

Our approach: find jets, their mass, subjettiness, 
determine jet invariant mass MJJ, compute SINF 
conditional density p(x|MJJ) where x is 4-dimensional. 

Take the ratio of signal to background and look for a 
peak 



From CERN courier 8/31/2021 
(Nachman & van Beekveld)



Outline
▷ Introduction to Normalizing Flows

○ Sliced (Iterative) Normalizing Flow (SINF)
○ Anomaly detection application in HEP

▷ Data analysis: normalizing flows optimization and sampling
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Normalizing Flows for Bayesian posteriors

● We want posteriors p(y|x) of correlated parameters y, but we only know 
p(x,y)=p(x|y)p(y)

● Monte Carlo Markov Chain as the method of choice. Many choices: 
Metropolis-Hastings, Sequential MC, nested sampling, Hamiltonian MC, 
Langevin MC (MALA), Gibbs MC, sliced sampling, affine sampling… 

● Many issues: samples are correlated, chains may not have converged (burn-in), 
some methods do not mix between the separated peaks...

● We may also want Bayesian evidence (normalization constant)
● For scientific applications likelihood can be expensive (e.g. an ODE or PDE to 

make predictions for the data)
● We often do not have access to the gradient (score)



Optimization view: surrogating the posteriors 

Let’s surrogate the posterior p(y|x) with SINF q𝞍(y), where y are parameters and x 
data and 𝞍 are the parameters of SINF 

What we have access to is p(x|y)p(y)=p(x,y), but we do not know where it peaks and 
where it is low. We also do not know normalization (partition function) Z=p(x), so we 
do not know p(y|x)=p(x,y)/p(x)

Previously we had samples of x and we fitted density p(x). Now this is a harder 
problem since we do not have samples, so we have to create them

Basic idea: start from the prior p(y), use annealing flow from 𝛃=0 to 𝛃=1

We want to fit with small number of samples: SINF is a good choice



Annealing Flow ODE/PDE 
Let’s define temperature dependent target p(𝛃,y)=p(x|y)𝛃p(y): p(𝛃=0,y)=p(y)

Let’s define a loss function L(𝛃) that quantifies the dissimilarity between target p(𝛃,y) 
and current density q𝞍(y) in terms of the samples from the current q𝞍(y)

E.g. L(𝛃)=Ey~q(y)(ln p(𝛃,y)-ln q𝞍(y)-lnZ)2 EL2O divergence (no score available)

L(𝛃)=Ey~q(y)(𝝯yln p(𝛃)-𝝯yln q𝞍)2  Fisher divergence (score available)

Annealing Flow: dq𝞍/d𝛃 = -𝝺[𝝯𝞍L(𝛃)]T𝝯𝞍q𝞍  : q𝞍 is normalized so no need to have 
explicit continuity

Let’s unpack this: dq𝞍/d𝛃=[𝝯𝞍q𝞍]Td𝞍/d𝛃.  In terms of the flow of 𝞍: d𝞍/d𝛃 = -𝝺𝝯𝞍L(𝛃)

So this is a gradient descent of the NF parameters with the loss function gradient so 
that q𝞍(y) relaxes to p(𝛃,y). However, the loss function is continuously modified in 
terms of the target density p(𝛃,y). Here 𝝺𝛃 is the learning rate of gradient descent. 



Algorithm 
Start at 𝛃=0 by drawing samples from prior p(y)

Adaptive choice of discretization next 𝛃new: choose so that effective sample size 
(ESS) evaluated using p(𝛃new,y)/p(𝛃old,y) is 0.5 of total 

Apply importance weight IW=p(𝛃new,y)/p(𝛃old,y) to the samples, 
resample the samples with Bernoulli using IW, eliminating low IW samples

Fit q𝞍(y) to p(𝛃new,y) on current samples using a few (stochastic) gradient descents 
on the dissimilarity loss function starting from previous fit (ODE/PDE): optimization

Metropolis-Hastings adjustment: Draw new samples y’ from q𝞍(y): sampling. 
Evaluate p(𝛃new,y’) on new samples. Compare each new sample y’ to one old sample 
y. Accept new sample with probability r=min(1,p(𝛃new,y’)q(y)/q(y’)[p(𝛃new,y)]). If not 
enough samples accepted repeat until 50% acceptance. Repeat until 𝛃=1. 



Markov Process view
Markov chain: new sample y’ depends only on the property of previous sample y. But how do we 
choose transition proposal J(y’|y)? 

To equilibrate to the stationary target distribution p(y|x) one must satisfy detailed balance 
p(𝛃,y)T(y’|y)=p(𝛃,y’)T(y|y’), where T(y’|y) is transition probability of y’ given y. T(y’|y)=rJ(y’|y)

To achieve detailed balance we accept the proposal y’ with probability 
r=min(1,p(𝛃,y’)J(y|y’)/[p(𝛃,y)J(y’|y)])

Two main issues of MCMC: correlated samples (requiring thinning of the chains) and low 
acceptance rate

What if the proposal J(y’|y) is independent of y and only given by q(y’)? Then the samples are 
uncorrelated: perfect mixing

r=min(1,p(𝛃,y’)q(y)/q(y’)[p(𝛃,y)]). If q(y)=p(𝛃,y)/p(x) we have r=1. We achieved perfect acceptance.

We strive for acceptance of the order 0.5 at every 𝛃. Quality of SINF q(y) fits is crucial. 



Preconditioner view
We can view Normalizing Flows as powerful preconditioners. They can handle high 
condition numbers varying across parameter space.

If we have a NF map y=f(z) then in latent space the target distribution is 
p(𝛃,z)=p(𝛃,f-1(z))|df-1(z)/dz| (Parno & Marzouk 2014).

With NF we may simplify the geometry in distribution space: a generalization of second 
order (Newton’s) methods for sampling and optimization. Position dependent curvature in 
Riemannian geometry. It solves the high condition problem of samplers. 

We can draw sample z’ from a Gaussian centered at a previous sample z in NF latent 
space z=f(y):  Metropolis-Hastings sampling in latent space. Acceptance can be high if z’ 
close to z, but correlated, so we do it many times to decorrelate. Acceptance rate is 
r=min[1,p(𝛃,z’)/p(𝛃,z)].

If we have gradient of p(𝛃,z) we can use Hamiltonian or Langevin dynamics in latent 
space for better sampling acceptance.



Riemannian geometry view
In Riemannian geometry metric and curvature are varying with position y

Define NF Jacobian J=df-1(z)/dz and potential U=-log p(𝛃,f-1(z))

Hamiltonian in latent space is H=U-log|J|+mTm/2: we can run Hamiltonian MC 
dynamics 

Define position dependent metric G=(JJT)-1 and m’=JT-1m. G is also called mass 
matrix. 

Then H=U+m’TG-1m' /2+log|G|/2: Hamiltonian in a curved space (Girolami & 
Calderhead 2011, Hoffman etal 2019)

In this view NFs describe the variable metric space and map it to a space where 
geometry is simple (latent space: Gaussian with zero mean and unit variance)

While Hamiltonians are equal, it is easier to solve HMC dynamics in latent space 
and map samples to parameter space than to solve it in curved space because 
NFs have treatable Jacobians and their gradients



Does it work for Bayesian posteriors in higher dimensions? 
Work in progress, but here is a 10 dimensional 
correlated Gaussian example with 3,000 samples 
drawn in total (parallelized, 200-400 per beta 
step) that converged after 10 beta steps to a near 
perfect solution (red versus blue). No gradient 
(score) used!

This is competitive or better than state of the art: 
it takes 2-3 times fewer evaluations than SMC

5 seconds on a laptop 

Encouraging, but needs more stress-testing on 
harder distributions



Multi-modal problems
Annealing is one of the best (the best?) methods to handle multi-modality in sampling 
applications

Since SINF is universal approximator it handles multimodal q(y) there is no change to 
the code

                    Example: 2d Gaussian mixture

𝛃=0.04 𝛃=1



Score based NF Flows 

If we have gradient (score) then other NF flows are 
possible

We are alternating updating particles (samples) and 
density q(y). Langevin or Hamiltonian dynamics 
propagates particles into new regions of previously 
unseen posterior mass. Then q(y) gets updated, 
enabling better mixing across current q(y).   

For Langevin dynamics we are alternately solving 
Langevin and Fokker-Planck

Example: donut target starting from a delta function



A related problem: global optimization
Global optimization can be a very hard 
problem to solve when multiple peaks 
are present in high dim. 

It requires a combination of exploitation 
(going for the peak) and exploration 
(exploring regions that have not been 
sampled). 

We use Acquisition Function that is ratio 
of q(y) (red contours) divided by density 
of samples (which can also be obtained 
from SINF, blue contours): high proposal 
value (exploitation) or low local density 
(exploration)

We go through several temperature 
levels to  beta>>1. Example: six hump 
camelback (35 calls)



Double Gaussian example in 2d
40 calls

Red contours function we are approximating (surrogate model with SINF)

Blue contours: density of sampling points with SINF

This is competitive with he best GO algorithms (Bayesian Optimization, genetic 
algorithms etc.)



SINF applications to Bayesian inference: evidence
Bayesian Evidence=normalizing constant=marginal likelihood=partition function
=integral over the prior of likelihood=average likelihood over the prior

- It is the standard Bayesian method for model selection
- When posterior volume << prior volume evidence is very expensive
- Needs specialized methods: Annealed Importance Sampling or Nested Sampling
- Suppose we have samples already: can we get evidence quickly?

SINF fits to samples to obtain normalized q(x). Then GIS (Gaussianized Importance 
Sampling) uses importance weights (IW) to obtain normalization of p (alpha=1/q), while GBS 
(Gaussianized Bridge Sampling) adds bridge sampling to optimize on alpha using q and p 
samples

He & Seljak 
(2019)

Note that GIS with 
alpha=1/q does not 
require p samples



These examples assume samples are given (e.g. HMC)
GBS/GIS gives evidence basically at no additional cost



Discussion 
● Normalizing Flows are universal approximators of probability distributions, SINF is based on 

sliced Optimal Transport with good generalization properties.

● Annealing Flow of Normalizing Flow combines optimization and sampling (and MH adjustment), 
but has very different structure from the Wasserstein flows discussed at this workshop.

● Normalizing Flows can simplify the geometry (preconditioning) and make standard 
Metropolis-Hastings, Hamiltonian and Langevin sampling more efficient.

● Normalizing Flows also offer another way to get samples that are not from a Markov chain 
process: samples are independent (parallelization).  The acceptance rate depends on 
similarity between the target p(y|x) and NF q(y) on validation data. 

● Which is better? Unclear, but NF annealing has a chance to beat standard sampling.It can 
afford to be quite inefficient and still win, since there is no need to thin the chains, or do leapfrog 
steps.

● What does it depend on? Number of samples, inductive bias of NF (overfitting?), choice of 
dissimilarity measure (loss L), use of gradient information in the dissimilarity (e.g. Fisher 
divergence)... We are currently investigating all of these. 


