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Normalizing Flows for density estimation, sampling
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> Bijective mapping f between data x and latent variable z (z = f(x), z ~ n(z)) dels.himl

o Evaluate density: p(x) = n(f(x)) |det(df/dx)|
o Sample: x = f'1(2) (z~n(2))



Normalizing Flows
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Credit: https://sites.google.com/view/berkeley-cs294-158-sp20/home

e One possible training
objective: maximize

<log p(x)>

p(x) = n(f(x)) |det(df/dx)|

This objective equals to
Kullback-Leibler divergence
minimization between approximate

and true distribution

e Evaluate density:
p(x) = n(f(x)) |det(df/dx)|
e Sample: x =f'(z) (z~ n(z))4



Normalizing Flows

In d dimensions, we need to parametrize d dimensional normalizing flow transformation f =
f,of,o...of and train it on <log p(x)> or some other loss function

Recall that Evaluate density: p(x) = n(f(x)) |det(df/dx)|

Sample: x = f1(z) (z~ n(z)
How to parametrize f, such that its inverse and Jacobian determinant are easy to evaluate?

Many NFs in the literature. Some are continuous (Ordinary Differential Equations, Stochastic DE).

Sliced Iterative Normalizing Flow (Dai & Seljak, ICML 2021) builds the flow as a sequence of
sliced projections



Reconstruction of a 2d image from 1d slices
Invertible, almost the same as Fourier transform

R-1(Rp) (¢, 0))(x) = / (Rp)(-,0) * h)((z, 6))db

Sn—l

re

h has the Fourier transform (k) = c|k|4~.

Computer Axial Tomography (CAT scan)
The Radon transform

\ == —_—
Step 2: Step 3:
Rearrange rows i .

: 2-dimensinal
as diameters

: Fourier transform
of a circle

Output: reconstructed image

Step 1:
Fourier transform
each row

Radon transform can represent a general density distribution with its slices. But too expensive in high dimensions



Rp)(t,6) = [ p@)3(t - (@,0)ds, @
R

where S" 1 denotes the unit sphere 62 + - - - 62 = 1 in R,

d(-) is the Dirac delta function, and (-,-) is the standard

inner product in R"™. For a given 6, the function (Rp)(-,0) :

R — R is essentially the slice (or projection) of p(z) on

axis 0.

Radon transform can represent a general density
distribution with its slices. This motivates

Sliced p—Wasserste;in Distance (SWD), is defined as:

p

SWyor,pa) = ( [ WE(Rps(-6). Rpa(- 6))d9)
®)

This is still very expensive in high dimensions
(curse of dimensionality)

The SWD can be calculated by approximating the high di-
mensional integral with Monte Carlo samples. However, in
high dimensions a large number of projections is required
to accurately estimate SWD. This motivates to use the max-
imum Sliced p-Wasserstein Distance (max SWD):

ma’X'SWp(plap2) = HIGHS%}—(l Wp(Rpl('a 0)) RpZ('a 0))7
(6)

which is the maximum of the Wasserstein distance of the 1D
marginalized distributions of all possible directions. SWD

We generalize the idea of maximum SWD and propose
maximum K-Sliced p-Wasserstein Distance (max K-SWD):

max -K-SWp(p1,p2) = max

{61, ,0K} orthonormal

p

K
(;{ng((npl)(-,ek),(sz)(-,ﬁk))>- )
k=1



When the target is a Gaussian

we are using optimization to find K
orthogonal most non-Gaussian
slices

Then we Gaussianize and repeat

. initial PDF / . Updated PDF Algorithm 1 max K-SWD
s
target PDF ' target PDF Input: {z; ~ pi}iLy, {yi ~ p2}iLy, K, order p, max
iteration Jiaxiter
%z Randomly initialize A € Vi (R?)
for j =1 to Jyaxiter dO
—» ] —»
7~ b Initialize D = 0
Vel for k = 1to K do
0k = A[:, k]
Compute Z; = 0y, - x; and §; = 0y - y; for each ¢
al Sort #; and Z; in ascending order s.t. ) <
\ Zin+1) a0d Y] < Djin+1
find the axes where the - D=D+ 2 SN |#im — Gyml?
1D marginalized PDFs end for
D
are most different o= - 547 LU= [tG’A] ! ";):k[:r‘; ;iG] S
etermine learning rate 7 with backtracking line searc
(defined by max K-SWD) match the 1D marginalized PDFs (1D OT) A= A—1U(Lx + 5VTU) VT A
if A has converged then
Early stop
end if
end for

Output: Dv ~ max-K-SW,, A~ [61,- - ,0k]




Find directions of largest Max-K W distance
Gaussianize the distribution in that direction, repeat
Multiply the Jacobians

Algorithm 2 Sliced Iterative Normalizing Flow

. IIr "IrT 1 Input: {z; ~ p1}¥,, {vi ~ p2},, K, number of
Xl-{-l - l\I’l( l Xl) + Xl iteration Liser
for ] = 1 to Liter do
W; = max K-SWD(z;, y;, K)

X = Wl‘IJ (WlTXl_|_1) + Xl fozf:%([):,[z]do

Compute &; = 0, - z; and §; = 0y, - y; for each 4
Z.m = quantiles(PDF(%;))

K Um = quantiles(PDF(g;))
d t 8 X l +1 d\II l k enfiblfzr: RationalQuadraticSpline(Zy,, Jm)
© ( o0X W =Ty, , Yik]
l - Update z; = z; — WW/z; + W, ¥, (W ;)

end for

This can be trained as a flow from data to Normal (GIS) or viceversa (SIG)

It has a NN structure:

1) linear combination of previous layer (weights), enforced to be orthogonal transforms.
2) Pointwise nonlinearity: spline, more general than RelLU



e (SIG) trains in data space: allows directly optimizing the distribution of samples

Iteration: 1 10 20 30 50 100 200 300 500 800 Table 2. FID scores on different datasets (lower is better). The errors are generally smaller than the differences.
’ Method | MNIST Fashion CIFAR-10 CelebA
iterative SWF 225.1 207.6 - -
SIG (T' = 1) (this work) 4.5 13.7 66.5 37.3
Flow-GAN (ADV) 155.6 216.9 i1 -
adversarial WGAN 6.7 21.5 55.2 41.3
training WGAN GP 20.3 24.5 55.8 30.0
Best default GAN ~ 10 ~ 32 ~ 70 ~ 48
SWAE 29.8 74.3 141.9 53.9
AE based CWAE 23.6 57.1 120.0 49.7
PAE - 28.0 - 49.2
two-stage VAE 12.6 29.3 96.1 44.4
Best default VAE 16.6 43.6 - 53.3
g§835357
A3s58XaAS These are 784-3072
©/ 41362586 dimensions examples
XY L GTYEC
Y/ T/
meE (5700
OR3Iqu¥y 2007.00674
ST 344 _ ‘ https://github.com/b
iweidai/SIG_GIS
(a) MNIST (d) CelebA - 10




GIS lteratively building the NF based on optimal
transport on 1D slices from data to Normal

GIS achieves the best density estimation results on
small training sets. Better inductive bias?

Very few hyperparameters

KDE can be very poor density estimator

GIS is much faster than existing NFs: O(1s) on CPU

Table 3. Averaged training time of different NF models on small
datasets (NVirain = 100) measured in seconds. All the models
are tested on both a cpu and a K80 gpu, and the faster results are
reported here (the results with * are run on gpus.). P: POWER, G:
GAS, H: HEPMASS, M: MINIBOONE, B: BSDS300.

Method | P G H M B
GIS(lowa) | 053 10 063 35 74
GIS (higha) | 68 94 73 441 69.1

GF 113*  539* 360* 375* 122
MAF 184 ' 102 - 321
FFJORD 1051 1622 1596 499* 4548*

RQ-NSF(AR) | 118 127 555 389 391

! Training failures.
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Figure 3. Density estimation on small training sets. The legends
in panel (a) and (b) apply to other panels as well. At 100 training
data GIS has the best performance in all cases.



1 million Pythia simulated background events of an
LHC hadronic event

Unknown number of resonant signal events

Task: find the mass, cross-sectional area etc.

Our approach: find jets, their mass, subjettiness,
determine jet invariant mass MJJ, compute SINF
conditional density p(x|M, ) where x is 4-dimensional.

:2101.08320v1 [hep-ph] 20 Jan 2021
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Olympian algorithm The “anomaly score”, a, as a function of the invariant mass of the leading
two jets of events in “black box 1” of the LHCO data challenge, in the analysis of Stein, Seljak and
Dai, who used an early form of a technique that is now called “Gaussianising iterative slicing”. A
number of anomalous events are seen near 3750 GeV. Credit: arXiv:2101.08320

2

From CERN courier 8/31/2021
(Nachman & van Beekveld)

The best performance on the first black box in the LHCO challenge, as measured by
finding and correctly characterising the anomalous signals, was by a team of
cosmologists at Berkeley (George Stein, Uros Seljak and Biwei Dai) who compared the
phase-space density between a sliding signal region and sidebands (see “Olympian
algorithm” figure). Overall, the algorithms did well on the R&D dataset, and some also
did well on the first black box, with methods that made use of likelihood ratios proving
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> Introduction to Normalizing Flows
o Sliced (Iterative) Normalizing Flow (SINF)
o Anomaly detection application in HEP

> Data analysis: normalizing flows optimization and sampling
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We want posteriors p(y|x) of correlated parameters y, but we only know
p(x,y)=p(X]y)p(y)

Monte Carlo Markov Chain as the method of choice. Many choices:
Metropolis-Hastings, Sequential MC, nested sampling, Hamiltonian MC,
Langevin MC (MALA), Gibbs MC, sliced sampling, affine sampling...

Many issues: samples are correlated, chains may not have converged (burn-in),
some methods do not mix between the separated peaks...

We may also want Bayesian evidence (normalization constant)

For scientific applications likelihood can be expensive (e.g. an ODE or PDE to
make predictions for the data)

We often do not have access to the gradient (score)

15



Let’s surrogate the posterior p(y|x) with SINF q¢(y), where y are parameters and x
data and ¢ are the parameters of SINF

What we have access to is p(x|y)p(y)=p(X,y), but we do not know where it peaks and
where it is low. We also do not know normalization (partition function) Z=p(x), so we

do not know p(y|x)=p(x,y)/p(X)

Previously we had samples of x and we fitted density p(x). Now this is a harder
problem since we do not have samples, so we have to create them

Basic idea: start from the prior p(y), use annealing flow from =0 to =1

We want to fit with small number of samples: SINF is a good choice



Let’s define temperature dependent target p(ﬁ,y)=p(x|y)ﬁp(y): p(B=0,y)=p(y)

Let’s define a loss function L(B) that quantifies the dissimilarity between target p(p,y)
and current density q¢(y) in terms of the samples from the current q¢(y)

E.g. L(B)=E,_,,(In p(B,y)-In q¢(y)-InZ)2 EL20 divergence (no score available)
L(B)=E,_q,,(V,In P(B)-V Inq ¢)2 Fisher divergence (score available)

Annealing Flow: dq¢ldﬂ = -A[V¢L(B)]Tv¢q¢ g is normalized so no need to have
explicit continuity

Let’s unpack this: dq, /dp=[V ,q.]"dd/dp. In terms of the flow of ¢: dd/dp = AV, L(B)
¢ ¢ [ J

So this is a gradient descent of the NF parameters with the loss function gradient so
that q¢(y) relaxes to p(B,y). However, the loss function is continuously modified in
terms of the target density p(B,y). Here A is the learning rate of gradient descent.



Start at =0 by drawing samples from prior p(y)

Adaptive choice of discretization next g__ : choose so that effective sample size
(ESS) evaluated using p(B,_,.Y)/P(B,Y) is 0.5 of total

Apply importance weight IW=p(B__ .y)/p(B,,Y) to the samples,
resample the samples with Bernoulli using IW, eliminating low IW samples

Fit g ¢(y) to p(B,.,-Y) on current samples using a few (stochastic) gradient descents
on the dissimilarity loss function starting from previous fit (ODE/PDE): optimization

Metropolis-Hastings adjustment: Draw new samples y’ from q¢(y): sampling.
Evaluate p(B, _,.y') on new samples. Compare each new sample y’ to one old sample

y. Accept new sample with probability r=min(1,p(8,_ .y )aly)a(y)lp(B, ., Y1) If not
enough samples accepted repeat until 50% acceptance. Repeat until $=1.



Markov chain: new sample y’ depends only on the property of previous sample y. But how do we
choose transition proposal J(y’|y)?

To equilibrate to the stationary target distribution p(y|x) one must satisfy detailed balance
P(B.Y)T(Y'ly)=p(B.y")T(yly’), where T(y'ly) is transition probability of y’ given y. T(y'ly)=rJ(y’ly)

To achieve detailed balance we accept the proposal y’ with probability
r=min(1,p(B,y")J(yly’)p(B.y)J(yY'Iy)])

Two main issues of MCMC: correlated samples (requiring thinning of the chains) and low
acceptance rate

What if the proposal J(y’|y) is independent of y and only given by q(y’)? Then the samples are
uncorrelated: perfect mixing

r=min(1,p(B,y)ay)ay)p(B.y)]). If aly)=p(B.y)/p(x) we have r=1. We achieved perfect acceptance.

We strive for acceptance of the order 0.5 at every 3. Quality of SINF q(y) fits is crucial.



We can view Normalizing Flows as powerful preconditioners. They can handle high
condition numbers varying across parameter space.

If we have a NF map y=f(z) then in latent space the target distribution is
p(B,2)=p(B.f ' (z))|df }(z)/dz| (Parno & Marzouk 2014).

With NF we may simplify the geometry in distribution space: a generalization of second
order (Newton’s) methods for sampling and optimization. Position dependent curvature in
Riemannian geometry. It solves the high condition problem of samplers.

We can draw sample z’ from a Gaussian centered at a previous sample z in NF latent
space z=f(y): Metropolis-Hastings sampling in latent space. Acceptance can be high if Z’
close to z, but correlated, so we do it many times to decorrelate. Acceptance rate is

r=min[1,p(B,2")/p(B,2)].

If we have gradient of p(f§,z) we can use Hamiltonian or Langevin dynamics in latent
space for better sampling acceptance.



In Riemannian geometry metric and curvature are varying with position y

Define NF Jacobian J=df*!(z)/dz and potential U=-log p(3,f(z))

Hamiltonian in latent space is H=U-log|J|+mTm/2: we can run Hamiltonian MC
dynamics

Define position dependent metric G=(JJT)! and m’=JT"'m. G is also called mass
matrix.

Then H=U+m’'G'm' /2+log|G|/2: Hamiltonian in a curved space (Girolami &
Calderhead 2011, Hoffman etal 2019) N

In this view NFs describe the variable metric space and map it to a space where
geometry is simple (latent space: Gaussian with zero mean and unit variance) Rogteridf yalnRgy

—4 —— NeuTra HMC trajectory (50 steps)
—— HMC trajectory (200 steps)

While Hamiltonians are equal, it is easier to solve HMC dynamics in latent space
and map samples to parameter space than to solve it in curved space because
NFs have treatable Jacobians and their gradients i
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Work in progress, but here is a 10 dimensional
correlated Gaussian example with 3,000 samples
drawn in total (parallelized, 200-400 per beta
step) that converged after 10 beta steps to a near
perfect solution (red versus blue). No gradient
(score) used!

This is competitive or better than state of the art:
it takes 2-3 times fewer evaluations than SMC

5 seconds on a laptop

Encouraging, but needs more stress-testing on
harder distributions



Annealing is one of the best (the best?) methods to handle multi-modality in sampling
applications

Since SINF is universal approximator it handles multimodal q(y) there is no change to
the code

Example: 2d Gaussian mixture
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If we have gradient (score) then other NF flows are
possible

We are alternating updating particles (samples) anc
density q(y). Langevin or Hamiltonian dynamics
propagates particles into new regions of previously
unseen posterior mass. Then q(y) gets updated,
enabling better mixing across current q(y).

For Langevin dynamics we are alternately solving
Langevin and Fokker-Planck

Example: donut target starting from a delta function




Global optimization can be a very hard
problem to solve when multiple peaks
are present in high dim.

It requires a combination of exploitation 1.0 1.0 ior samples

(going for the peak) and exploration N \‘ f,"“_'}‘if?\* ¢ o

(exploring regions that have not been el 05 l\\“- 3 \g old point(s)

sampled). x;;_;;’ /i —truth
\\S  ‘ ‘\&J % opt

We use Acquisition Function that is ratio © 0 | = 009 ' o

of q(y) (red contours) divided by density =

of samples (which can also be obtained .05 -0.5 -

from SINF, blue contours): high proposal ¥ *

value (exploitation) or low local density 10 _Lk 10

(exploration) "20 10 00 10 20 2.0 2.0

61
We go through several temperature

levels to beta>>1. Example: six hump
camelback (35 calls)



40 calls

1.0 10 |
prior samples
/}" :\\\\\ ‘ Expl-AF
0.5 0.5 \ ~ (\ “‘l old point(s)
. -1 2 — \ —
\\\\ “II m— truth
-~
= Y opt
@ 0.0 & 0.0 - ouw
@ _—w
*
-0.5 1 _05 -
-1.0 T T T -1.0 I I I
10 05 00 05 10 1.0 05 00 05 10
01 6,

Red contours function we are approximating (surrogate model with SINF)
Blue contours: density of sampling points with SINF

This is competitive with he best GO algorithms (Bayesian Optimization, genetic
algorithms etc.)



Bayesian Evidence=normalizing constant=marginal likelihood=partition function He & Seljak
=integral over the prior of likelihood=average likelihood over the prior (2019)

- Itis the standard Bayesian method for model selection

- When posterior volume << prior volume evidence is very expensive

- Needs specialized methods: Annealed Importance Sampling or Nested Sampling

- Suppose we have samples already: can we get evidence quickly?

SINF fits to samples to obtain normalized q(x). Then GIS (Gaussianized Importance
Sampling) uses importance weights (IW) to obtain normalization of p (alpha=1/q), while GBS

(Gaussianized Bridge Sampling) adds bridge sampling to optimize on alpha using g and p
Let p(x) and ¢(x) be two possibly unnormalized distributions defined on 2, with normalizing

constants Z, and Z,. For any function a(x) on (2, we have
/Qa(-’B)P(w)(J(-’B)dw = Zp (a(z)q(z)), = 24 {a(@)p(2)), 5 (1)

if the integral exists. Suppose that we have samples from both p(x) and g(x), and we know

Z,, then Equation (1) gives Note that GIS with
al(x)p(x alpha=1/q does not

2= {a(@)p( )>qu, (2) require p samples
(a(z)q(x)),
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These examples assume samples are given (e.g. HMC)
GBS/GIS gives evidence basically at no additional cost



Normalizing Flows are universal approximators of probability distributions, SINF is based on
sliced Optimal Transport with good generalization properties.

Annealing Flow of Normalizing Flow combines optimization and sampling (and MH adjustment),
but has very different structure from the Wasserstein flows discussed at this workshop.

Normalizing Flows can simplify the geometry (preconditioning) and make standard
Metropolis-Hastings, Hamiltonian and Langevin sampling more efficient.

Normalizing Flows also offer another way to get samples that are not from a Markov chain
process: samples are independent (parallelization). The acceptance rate depends on
similarity between the target p(y|x) and NF q(y) on validation data.

Which is better? Unclear, but NF annealing has a chance to beat standard sampling.It can
afford to be quite inefficient and still win, since there is no need to thin the chains, or do leapfrog
steps.

What does it depend on? Number of samples, inductive bias of NF (overfitting?), choice of
dissimilarity measure (loss L), use of gradient information in the dissimilarity (e.q. Fisher



