A blob method for degenerate diffusion
and applications to sampling and two layer
neural networks.

Katy Craig
University of California, Santa Barbara

joint with José Antonio Carrillo (Oxford), Francesco Patacchini (IFP Energies), Karthik
Elamvazhuthi (UCLA), Matt Haberland (Cal Poly), Olga Turanova (Michigan State)

Simons Center for Theory of Computing
“Sampling Algorithms and Geometries on Probability Distributions”
September 7th, 2021

e \otivation
e \Nasserstein gradient flows
® Particle methods (discrete < continuum)

e Particle method + regularization = blob method for diffusive PDEs
® Numerics

Sampling/robot coverage algorithms

Consider a target distribution p € P(R9).

Sampling: How can we choose samples {#;};>; € R?, so that
, they accurately represent the desired target distribution?

Coverage: How can we program robots to move so that they distribute their
locations {Z; };-.; € R% according to 5 ?

In both cases, we seek to approximate p by an empirical measure:

PDE’s can inspire new ways to construct the empirical measure.

PDEs and sampling/coverage algs

Suppose p = eV for V:R? > R J-convex.

KL(p(1), p) < e KL(p(0), p)

Particle method: dX, =4/ 2dB, — Vlog p(X))dt

p¥(0) = 3 D0 (1) 2SS it

Diffusion: 0.p = V - <p) = Ap—V - (pVlogp)

KL(u,v) = |ulog(u/v)

KL(p(1), p) < e KL(p(0), p)
Particle method:; 7

Degenerate diffusion: 0,p =V - (p)

S

|Motivation for deg. diff:

Sampling: SVGD, chi-saq.

PDE: porous media,
swarming, ...

|Coverage: deterministic

particle methoad

Optimization: training
neural network with single
hidden layer, RBF

e Motivation
® \\Nasserstein gradient flows
® Particle methods (discrete < continuum)

e Particle method + regularization = blob method for diffusive PDEs
® Numerics

W gradient flows 0,p(1) = — Vy, E(p(2))

Diffusion:
0p =V - (p Vlog (p/p)) E(p) = jp log(p/p) = KL(p, p)

Degenerate Diffusion: , |
op="V - (pV(p/p‘)), E(p) = ﬂlp —pI1p = xX(p.p) = 5J|p|2/p- +C

Aggregation + Drift: ,
dp=V-(pVIE"p)+V-(pVV), Elp)= > HK(X — Y)dp(x)dp(y) + ij

2-layer neural networks: [MMN ’18; [RVE "18] [CRA]
1(Choices of ®:
E(p) == Jd)(x, 2)dp(x) — fo(2) | dv(z) ®(z,2) = 21(Xszi2; + xa)+
|®(z,2) = (|2 - 2]

2,
1

== O(x, 2)D(y, 2)dv(z)dp(xX)dp(y) — | | P(x, 2)fy(2)dv(2)dp(x) + C
N = J(l//*p)za’v .

KGey) Vix)] 6

e Motivation
e \Nasserstein gradient flows
e Particle methods (discrete « continuum)

e Particle method + regularization = blob method for diffusive PDEs
® Numerics

W> gradient flows

Diffusion:]
o=V (pVioz (1)), E@)=|plog(plp) = KLp,

Degenerate Diffusion:

-
0m=V-(pV(p/p‘)>, E(p)=5 p|/p

Aggregation + Drift: []
0p=V-(pVIETp)+V-(pVV), Elp)= 5 (K*p)p+ | Vp

All W2 gradient flows are solutions of continuity equations

OF
dp+V-(pip)=0, vipl=- VE

Particle methods

Consider a continuity equation with uniformly Lipschitz continuous
velocity [o] - 7 — 2

{@tp +V - (prip)) =0,
p(x.0) = po()

|
1. Approximate initial data: py = ~ 2 Oy,
i=1

2. Evolve the locations:

1 N
PO == 00
i=1

d
— XD =1 D) = 0pN+ V(M) =0

N—+o0

3. Since 1 p| unif Lipschitz, W,(p™(9), p(1)) < eVl W, (pY, py) —= 0

...what about v not unif Lipschitz?

Wasserstein gradient flows

Diffusion:

0p =V - (p Vlog (p/p)) E(p) = Jp log(p/p) = KL(p, p)

Degenerate Diffusion:

1
0p =V - (ﬂV(p/p')>, E(p) = EJ\p\z/ﬁ

Aggregation + Drift:

1
op=V-(pPVIE“p)+V-(pVV), Elp)= 5

Lipschitz for D*K, D*V bounded

not Lipschitz

not Lipschitz

J(K*p)p + JVP

Regularize

How can we make degenerate difftusion more like aggregation?

10

e Motivation

e \Nasserstein gradient flows

® Particle methods (discrete < continuum)

e Particle method + regularization = blolb method for diffusion
® Numerics

11

Blob method for diffusion

Degenerate Diffusion:

0p =V - (pV (p/ﬁ)>, E(p) =
Approximation of Degenerate Diffusion: ‘

o=V - (pm * (@, *p/ﬁ)>, E(p) = %J o *p|*1p
Theorem (C., Elamvazhuthi, Haberland, Turanova, in preparation): The velocity
vIpl=—Ve, * (g0€ >X<,0/,5) S CRG_d_z Lipschitz on € C By(0).

Consequently, the particle method is Well—posed'

d
—x(0 ==V * (p. % pN(0)Ip) = = Ve, * < Z P (1) — %)/ p(x; (t)))

and, for fixed € > 0, as N = + 00, this Converges to the GF of E...

E(p) = I(w*p)zv — 2[1//* (fo)p

%

What happensas N - + oo and ¢ — 0 ?

12

Convergence of blob method

Previous work: p = 1
e [Oelschlager '98]: conv. of to smooth, positive solutions

e [Lions, Mas-Gallic 2000]: convergence of bounded entropy solutions as
e — 0 (particles not allowed)

e [Carrillo, C., Patacchini 2017]: convergence of bounded entropy solns;
allow additional GF terms (aggregation, drift,...), d,p = Ap™, m > 2.

e [Javanmard, Mondelli, Montanari 2019]: convergence of
to smooth, strictly positive solns; allow additional GF terms (2 layer NN)

Theorem (C., Elamvazhuthi, Haberland, Turanova, in prep.): Suppose

o p=¢ " for V:R? — R convex, on a bounded, convex domain Q.

1
o Wz(p(])\’ ,Po) = o(e «*?) for p, with bounded entropy

Then pN(t) 29 p(t) forall t € In limiting of 2 layer NN, limiting dynamics are
convex GF for v log-convex and v concave.

13

Implications

Sampling: Spatially discrete, deterministic particle method for sampling
according to chi-squared divergence (c.f. [Chewi, et. al. '20])

PDE: Provably convergent numerical method for diffusive gradient flows
with low regularity (merely bounded entropy)

Coverage: Deterministic particle method well-suited to robotics
Optimization:

e Particle method equivalent to training dynamics for neural networks with
a singular hidden layer, RBF activation.

* Qur result identifies limiting dynamics in the over parametrized regime
(N — + o0) as variance of the RBF decreases to zero (¢ — 0), v # 1.

» Limiting dynamics are convex GF for v log-convex and fyv concave.

E(p) = J(w*p)zv — 2[@//* (fo)p

4 14

e Motivation:

- Diffusive PDEs and sampling/coverage algorithms

- Training dynamics for neural networks with a single hidden layer
e \Nasserstein gradient flows
® Particle methods (discrete <« continuum)

e Particle method + regularization = blob method for diffusive PDEs
® Numerics

15

N u m e ri CS t=0.00e-+00

t=2.50e-02

— t=1.00e-01
— t=1.00e+4-00
""" P
1.0
0.8-
067
=

<4
0.2
0.0 -
20 -15 -1.0 —05 00 05 1.0 15 20

, , 20 -15 —10 —05 00 05 1.0 15 20 —-20 —15 -10 -05 00 05 10 15 20
€T T €T
1.0 1 2997907900000 0000000000 00 . 0qﬂr?QOOOOOOOOOOOOOOQ?T?TO . "'?'T?'?'T.’T"T'?T'?".
0.8 -
0.6 -
-~
0.4 -
0.2
0.0 -
15 —1.0 05 0.0 0.5 1.0 1.15 —1.0 —05 0.0 0.5 1.0 1515 10 05 0.0 05 1.0 15
x;(t) x;(t) Robot Trajectory

L Position at t=1e-03

N =100, ¢ = (1/N)* e FimslPoston 1

Numerics

: V== 9 log concave
107 4 —— N=50 P 109
| —— N=100
© 10_2_@ — N =200
= 3 —— N =400
oo 107 —— N =800
B, 5
2z = ~—== 0.184 exp(—15.963t)
-
—]
:K: 10_5‘5
1076 -
10_7_; - L0t ¢ slope = —0.96
0.00 025 050 075 100 125 150 175
t _—
QL
|
= 102
Zﬁ]
\\S)
X
10_3 ' T — T T T T T T — T T T T
101 102 103

17

Open questions

® general p

® |ess information on p

Jw (%) = — Jcﬂe(x — W)@ (x — 2)/p(x)dx

e Quantitative rate of convergence depending on N and €7

e Can better choice of RBF lead to faster rates of convergence”? Help fight
against curse of dimensionality? O(N ")

e Can random batch method [Jin, Li, Liu "20] lower computational cost
from O(N?) while preserving long-time behavior?

18

Thank you!

