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Sampling/robot coverage algorithms

Consider a target distribution p € P(R9).

Sampling: How can we choose samples {#;};>; € R?, so that
, they accurately represent the desired target distribution?

Coverage: How can we program robots to move so that they distribute their
locations {Z; };-.; € R% according to 5 ?

In both cases, we seek to approximate p by an empirical measure:

PDE’s can inspire new ways to construct the empirical measure.



PDEs and sampling/coverage algs

Suppose p = eV for V:R? > R J-convex.

KL(p(1), p) < e KL(p(0), p)

Particle method: dX, =4/ 2dB, — Vlog p(X))dt

p¥(0) = 3 D0 (1) 2SS it

Diffusion: 0.p = V - <p ) = Ap—V - (pVlogp)

KL(u,v) = |ulog(u/v)

KL(p(1), p) < e KL(p(0), p)
Particle method:; 7

Degenerate diffusion: 0,p =V - (p )

S

|Motivation for deg. diff:

Sampling: SVGD, chi-saq.

PDE: porous media,
swarming, ...

|Coverage: deterministic

particle methoad

Optimization: training
neural network with single
hidden layer, RBF
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W gradient flows 0,p(1) = — Vy, E(p(2))

Diffusion:
0p =V - (p Vlog (p/p) ) E(p) = jp log(p/p) = KL(p, p)

Degenerate Diffusion: , |
op="V - (pV(p/p‘)), E(p) = ﬂlp —pI1p = xX(p.p) = 5J|p|2/p- +C

Aggregation + Drift: ,
dp=V-(pVIE"p)+V-(pVV), Elp)= > HK(X — Y)dp(x)dp(y) + ij

2-layer neural networks: [MMN ’18; [RVE "18] [CRA]
1( Choices of ®:
E(p) == Jd)(x, 2)dp(x) — fo(2) | dv(z) ®(z,2) = 21(Xszi2; + xa)+
|®(z,2) = (|2 - 2]

2,
1

== O(x, 2)D(y, 2)dv(z)dp(xX)dp(y) — | | P(x, 2)fy(2)dv(2)dp(x) + C
N = J(l//*p)za’v .
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W> gradient flows

Diffusion: ]
o=V (pVioz (1)), E@)=|plog(plp) = KLp,

Degenerate Diffusion:

-
0m=V-(pV(p/p‘)>, E(p)=5 p|/p

Aggregation + Drift: [ ]
0p=V-(pVIETp)+V-(pVV), Elp)= 5 (K*p)p+ | Vp

All W2 gradient flows are solutions of continuity equations

OF
dp+V-(pip)=0, vipl=- VE




Particle methods

Consider a continuity equation with uniformly Lipschitz continuous
velocity [ o] - 7 — 2

{@tp +V - (prip)) =0,
p(x.0) = po()

|
1. Approximate initial data: py = ~ 2 Oy,
i=1

2. Evolve the locations:

1 N
PO == 00
i=1

d
— XD =1 D) = 0pN+ V(M) =0

N—+o0

3. Since 1 p| unif Lipschitz, W,(p™(9), p(1)) < eVl W, (pY, py) —= 0

...what about v not unif Lipschitz?




Wasserstein gradient flows

Diffusion:

0p =V - (p Vlog (p/p) ) E(p) = Jp log(p/p) = KL(p, p)

Degenerate Diffusion:

1
0p =V - (ﬂV(p/p')>, E(p) = EJ\p\z/ﬁ

Aggregation + Drift:

1
op=V-(pPVIE“p)+V-(pVV), Elp)= 5

Lipschitz for D*K, D*V bounded

not Lipschitz

not Lipschitz

J(K*p)p + JVP

Regularize

How can we make degenerate difftusion more like aggregation?
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Blob method for diffusion

Degenerate Diffusion:

0p =V - (pV (p/ﬁ)>, E(p) =
Approximation of Degenerate Diffusion: ‘

o=V - (pm * (@, *p/ﬁ)>, E(p) = %J o *p|*1p
Theorem (C., Elamvazhuthi, Haberland, Turanova, in preparation): The velocity
vIpl=—Ve, * (g0€ >X<,0/,5) S CRG_d_z Lipschitz on € C By(0).

Consequently, the particle method is Well—posed'

d
—x(0 ==V * (p. % pN(0)Ip) = = Ve, * < Z P (1) — %)/ p(x; (t)))

and, for fixed € > 0, as N = + 00, this Converges to the GF of E...

E(p) = I(w*p)zv — 2[1//* (fo)p

%

What happensas N - + oo and ¢ — 0 ?
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Convergence of blob method

Previous work: p = 1
e [Oelschlager '98]: conv. of to smooth, positive solutions

e [Lions, Mas-Gallic 2000]: convergence of bounded entropy solutions as
e — 0 (particles not allowed)

e [Carrillo, C., Patacchini 2017]: convergence of bounded entropy solns;
allow additional GF terms (aggregation, drift,...), d,p = Ap™, m > 2.

e [Javanmard, Mondelli, Montanari 2019]: convergence of
to smooth, strictly positive solns; allow additional GF terms (2 layer NN)

Theorem (C., Elamvazhuthi, Haberland, Turanova, in prep.): Suppose

o p=¢ " for V:R? — R convex, on a bounded, convex domain Q.

1
o Wz(p(])\’ ,Po) = o(e «*?) for p, with bounded entropy

Then pN(t) 29 p(t) forall t € In limiting of 2 layer NN, limiting dynamics are
convex GF for v log-convex and v concave.
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Implications

Sampling: Spatially discrete, deterministic particle method for sampling
according to chi-squared divergence (c.f. [Chewi, et. al. '20])

PDE: Provably convergent numerical method for diffusive gradient flows
with low regularity (merely bounded entropy)

Coverage: Deterministic particle method well-suited to robotics
Optimization:

e Particle method equivalent to training dynamics for neural networks with
a singular hidden layer, RBF activation.

* Qur result identifies limiting dynamics in the over parametrized regime
(N — + o0) as variance of the RBF decreases to zero (¢ — 0), v # 1.

» Limiting dynamics are convex GF for v log-convex and fyv concave.

E(p) = J(w*p)zv — 2[@//* (fo)p
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Numerics
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Open questions

® general p

® |ess information on p

Jw (%) = — Jcﬂe(x — W)@ (x — 2)/p(x)dx

e Quantitative rate of convergence depending on N and €7

e Can better choice of RBF lead to faster rates of convergence”? Help fight
against curse of dimensionality? O(N ")

e Can random batch method [Jin, Li, Liu "20] lower computational cost
from O(N?) while preserving long-time behavior?
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Thank you!



