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Notation

v

Unless specified otherwise, all variables are real valued.

v

Householder notation:

> A, matrix; b, column vector; b; is the i*" entry in a column vector
> Q, set; w, scalar.

> #(x) is a scalar valued function of a vector variable

> f(x) is a vector valued function of a vector variable

| is an identity matrix
1 is a vector of ones

[A, B] horizontal concatenation of two matrices

vV v.v .Yy

log(x) is the component-wise logarithm of each element
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> Generic modelling
> Mathematical modelling approaches that do not satisfy any mechanistic principles
> e.g. network inference with no limitation on the class of network topology being
inferred
» Mechanistic modelling
> Mathematical model that satisfy certain mechanistic principles

> e.g. network inference where the inferred biochemical network topology must satisfy
mass conservation
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Main mechanistic modelling approaches

> Differential equation based modelling
> input: biochemical network topology, uniquely specified initial conditions and
parameters
> output: unique temporal trajectory
» Constraint-based modelling

> input: biochemical network topology, non-unique initial conditions and parameters
> output: non-unique set of temporal trajectories



A reversible elementary reaction
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2 H, + 0, = 2 H>,O
—_——  —— ——
cl c c3

> An example elementary reaction
> ¢1 ¢ and c3 denote the concentration of molecular species H,, O» and H,O
respectively
> Chemically all reactions are reversible in principal, but in practice only one
direction may be biochemically feasible.



Dynamics under elementary rection kinetics

2 Hb + O =22H,0
SN~ — S~——
C1 2 Cc3
> Assuming elementary kinetics, the forward and reverse elementary rate functions
are v¢(c) = kfc12C2 and v,(c) = krc32, where k¢,k, are (elementary) kinetic
parameters.

> The dynamical equations are

pr = —2kfcyco+2k,c3
dC2 2 2
E = —ka1C2+er3
dC3

T —2er32+2ka12C2



Dynamics under elementary rection kinetics

» The dynamical equations are

% = —2kfc12c2+2k,c§
% = —kfc12c2+k,c§
% = —2k.c3+2kscic
-2
> Let N:=| —1 | € Z™" denote a stoichiometric matrix, then given k¢,k, we have
2
& = N(wr(c) - (<)

> One approach is to define v(c) := vr(c)— v,(c) as some composite of many
elementary reactions.
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Disadvantages of a differential equation approach
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v

c(t) = ¢ +f%

Initial condition, cg, is often not known

Most of the kinetic parameters ks and k, are also not known

Given kg, k., cg, the criteria for convergence to a non-equilibrium steady state are
not known

Difficult to fit the parameters kf and k, to (partial) experimental data on ¢

Reformulation into composite rate laws an application of generic parameter fitting
approaches

> lower dimensionality but still all end up in local minima even for small problems

Currently computationally intractable at genome-scale (high dimensional systems)
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Principles of constraint-based modelling

> Eliminate infeasible biochemical network states with mathematically specified
constraints
» Physicochemical constraints, e.g., mass conservation
> Biochemical constraints, e.g., vitamin C is essential for human but not murine
metabolism

> Underdetermined systems of equations —> Non-unique predictions
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Mass conservation and steady-state

> Assume mass conservation and steady state
> internal production + external input = internal consumption + external output

> We know that each steady state is a solution to

& = N(wr(c) - (e = 0.

> Instead, we assume that the set of feasible steady states is defined implicitly by
Nv=0

where v € R" is a variable vector of net reaction rates (fluxes) and N € Z™" is a
given stoichiometric matrix, typically m < n < rank(N).
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Flux balance analysis

> A prototypical constraint-based modelling approach (Orth, J.et. al. (2010) Nat
Biotech 28, 245-248)

> Hypothesise a particular linear objective coefficient vector d € R”, then obtain

bounds on net reaction rates /,u € R" from, e.g., thermochemical data, then
minimise d'v
veRn

s.t. Nv =0 (FBA)

where N € Z™" is a stoichiometric matrix, typically m < n < rank(N).



Advantages of flux balance analysis

v

Given a linear objective coefficient vector ¢ € R", a stoichiometric matrix N € Z™"
and bounds on net reaction rates /,u € R"
minimise d’v
veRn

s.t. Nv =0 (FBA)

v

Convex (linear) optimisation problem
> efficient optimisation software

v

Applicable to genome-scale models (high dimensional)

v

Methodology is accessible to a broad user base
> wide variety of variations and applications



A disadvantage of flux balance analysis

> We must first hypothesise a particular biochemical objective, i.e., d € R" in
minimise d’v
veR"?

s.t. Nv =0 (FBA)

> |t is unknown what the biochemical objective function is for many systems
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Uniform sampling of polyhedral convex constraint-based models
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» Herrmann, H.A., et al. Flux sampling

is a powerful tool to study metabolism
under changing environmental
conditions. npj Syst Biol Appl 5, 32
(2019).

CHRR: coordinate hit-and-run with
rounding (MATLAB, Haraldsdottir, H.
S., et al. Bioinformatics 33,
1741-1743 (2017))

OPTGP: optimized general parallel
sampler (Python; Megchelenbrink, W.,
et al. PLoS ONE 9, e86587 (2014).)
ACHR: artificially centered hit-and-run
(MATLAB, Python, Kaufman, D. E. et
al. Oper. Res. 46, 11998).)


https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0

CHRR: coordinate hit-and-run with rounding

» Haraldsdéttir, H. S., Cousins, B., Thiele, I., Fleming, R. M. T. & Vempala, S. Bioinformatics 33,
1741-1743 (2017).

» Laddha, A. & Vempala, S. S. Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes
Fast. 12 (2021).

» Aditi Laddha, Algorithms for Sampling Convex Bodies, Simons Institute Workshop on Sampling
Algorithms and Geometries on Probability Distributions, 2021 . B

DA


https://simons.berkeley.edu/talks/algorithms-sampling-convex-bodies
https://simons.berkeley.edu/talks/algorithms-sampling-convex-bodies

Sampling challenge 1: anisotropy
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A multiscale stoichiometric matrix

Stoichiometric matrix,

dim(N) = 60,000 x 80,000, of an integrated
metabolic and macromolecular expression
model in E. coli (Thiele et. al. 2012).

Coefficients are sparse, but spread over 5
orders of magnitude.

Colorbar: tiny absolute values are light
orange, large magnitudes are black. In the
midrange, the median of logl0 of the nonzero
values, 1 one standard deviation, range from
light green to deep blue.

Flux bounds are also spread over multiple
orders of magnitude (not shown)


https://doi.org/10.1371/journal.pone.0045635

minimise d7
VER"

Adapting to anisotropy with novel linear optimisation methods

Nv=>b

-y
I<v<u
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Sampling challenge 2: dimensionality

huge-scale
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> Models will continue to grow in size



Sampling challenge 3: convergence criteria
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» Convergence to a stationary sampling distribution, but when is it uniform?

> Pre- (red and orange) and post- (green) convergence margninal sampling
distributions of thioredoxin reductace flux samples obtained with CHRR in a
constraint-based model of human metabolism (Recon 2, dim(Q2) = 2,430).


https://vmh.uni.lu/#reaction/TRDR2
https://doi.org/10.1093/bioinformatics/btx052
https://www.nature.com/articles/nbt.2488
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Log-concave sampling of polyhedral convex constraint-based models

» Uniform sampling of a polyhedral convex set

Q:={Sv=0,/<v<u}

> Sampling of certain log-concave functions over a polyhedral convex set

K = {Sv=0,
I<v<u,

vj oc exp(= > £(v)},

where f;(v;) is a convex function.

> Think of a log-concave function as roughtly equivalent to a unimodal function,
e.g., propability density of a normal distribution



Log-concave sampling of polyhedral convex constraint-based models

» Example: Biochemical reaction flux constraints from experimental data: mean
v € R" + covariance matrix X € R™"

exp(-5(v - )2 (v - 7)),

1
e V(@2r)det(X)
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Riemannian Hamiltonian Monte Carlo sampling in COBRA Toolbox
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Moving items in external

Moving remaining items in external
moving dependencies into place
added mptoolbox

Renaming submodule

tolerance set by feasTol

Moving remaining items in external

3 Settings

® Unwatch ~

Faster Polytope Volume Computation. arXiv:1710.06261 (2017).
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COBRA Toolbox: shared interface to multiple sampling algorithms

& opencobra/cobratoolbox  public ® Unwatch ~ 31 W Unstar 168 % Fork 246
<>Code () Issues 62 11 Pullrequests 1 ) Discussions ® Actions @ Ssecurity |~ Insights 3 Settings. Implementation'
Ben Cousins,
P master - cobratoolbox / src / analysis / sampling / sampleCbModel.m Go to file

Hulda
@ vinTat Update sampleCbModel.m Latest commit f9bacag on 7 Jul D) History Haraldsdotti r,

maconbuos @@ B 3 Ruogi Shen,
Yin Tat Lee,

278 lines (250 sloc) = 9.99 KB Raw Bame CJ @ 2 O Sa ntosh
1 function [modelsampling, samples,volune] = sampleCbModel(model, sampleFile, samplerName, options, modelsampling)
2 % Samples the solution-space of a constraint-based model Vem pa|a,
3 %
4 % USAGE: German
5 %
6 %  [nodelsampling, samples] = sampleCbModel(model, sampleFile, samplerName, options, modelSampling) Preciat, Ronan
7%
8 % INPUTS: F|em|ng &
9 % model: COBRA model structure with fields
0 % * .S - Stoichionetric matrix others.
1 % * .b - Right hand side vector
12 % * .1b — Lower bounds
3 % * .ub ~ Upper bounds
1 % % .C- 'k x n' matrix of additional inequality constraints
15 % % .d - 'k x 1' rhs of the above constraints
6 % * .dsense - 'k x 1' the sense of the above constraints ('L' or 'G')
7 %
18 % OPTIONAL INPUTS:
19 %  sampleFile:  File names for sampling output files (only implemented for ACHR)
20 %  samplerName: {('CHRR'), 'ACHR', 'RHMC'} Name of the sampler to be used to
2 % sample the solution.



Sampling challenge 4: FAIR software

> Findability, Accessibility, Interoperability, and Reuse (FAIR) of sampling software is
essential to increase the impact of theoretical and computational sampling
research. https://www.go-fair.org/fair-principles/
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Sampling challenge 4: FAIR software

> Findability, Accessibility, Interoperability, and Reuse (FAIR) of sampling software is
essential to increase the impact of theoretical and computational sampling
research. https://www.go-fair.org/fair-principles/

> Increasing the impact of theoretical and computational sampling research will
facilitate greater investment in fundamental and applied research in this area.


https://www.go-fair.org/fair-principles/

A disadvantage of flux balance analysis

> Even if we know the biochemical objective, i.e., d € R" in
minimise d’v
veRn

s.t. Nv=b (FBA)

> Important constraints are missing, e.g., energy conservation, the second law of
thermodynamics, etc.



Biochemistry as a linear resistive network

> Assume that we are given a vector of resistances r e R, and that Maxwell's
minimum heat theorem is the variational principle underlying this network, that is

e 1. T
minimise 3 v diag(r)v

s.t. Nv=b :y
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> Assume that we are given a vector of resistances r e R, and that Maxwell's
minimum heat theorem is the variational principle underlying this network, that is

e 1. T
minimise 3 v diag(r)v
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> The optimality conditions are
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> Assume that we are given a vector of resistances r e R, and that Maxwell's
minimum heat theorem is the variational principle underlying this network, that is

e 1. T
minimise 3 v diag(r)v

s.t. Nv=b :y (QP)

> The optimality conditions are

diag(t/)NTy* = v*
N* = b

|
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= Ndiag(}/)N"y* = b

» Kirchhoff's current & voltage laws. Ohm's law: current linearly proportional to
change in electrical potential.



Biochemistry as a linear resistive network

> Assume that we are given a vector of resistances r e R, and that Maxwell's
minimum heat theorem is the variational principle underlying this network, that is

. . 1 T .
minimise 3 v diag(r)v

s.t. Nv=b :y (QP)

> The optimality conditions are
diag(/)NTy* = v*
Nv* = b

|
<

= Ndiag(}/)N"y* = b
» Kirchhoff's current & voltage laws. Ohm's law: current linearly proportional to

change in electrical potential.

> However, r is unknown, motivating efforts to sample the non-convex set of optimal
solutions to QP.



Sampling challenge 5: Interdisciplinary communication

> Several papers have been published in the biochemical literature that report
algorithms and software for sampling non-convex feasible sets that are broadly of
the form
J ={reR?,,y eR™| Ndiag(t/r)N "y = b}.


https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1093/bioinformatics/btw132
https://doi.org/10.1093/bioinformatics/btw132

Sampling challenge 5: Interdisciplinary communication

> Several papers have been published in the biochemical literature that report
algorithms and software for sampling non-convex feasible sets that are broadly of
the form
J ={reR?,,y eR™| Ndiag(t/r)N "y = b}.

> What is the relationship between these algorithms in the computational biology
literature and the theoretical and computational results of the mathematics and
computer science community?
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Sampling challenge 5: Interdisciplinary communication

> Several papers have been published in the biochemical literature that report
algorithms and software for sampling non-convex feasible sets that are broadly of

the form
J ={reR?,,y eR™| Ndiag(t/r)N "y = b}.

> What is the relationship between these algorithms in the computational biology
literature and the theoretical and computational results of the mathematics and
computer science community?
> For example, the following papers:
> Gollub, M.G., Kaltenbach H.M., Stelling, J. Probabilistic thermodynamic analysis of
metabolic networks, Bioinformatics, 2021, btab194.
> Saldida, J. et al. Unbiased metabolic flux inference through combined
thermodynamic and 13C flux analysis bioRxiv 2020.06.29.177063.
> Pedro A. Saa, Lars K. Nielsen, [IFACHRB: a scalable algorithm for sampling the
feasible solution space of metabolic networks, Bioinformatics, Volume 32, Issue 15, 1
August 2016, Pages 2330-2337.


https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1093/bioinformatics/btw132
https://doi.org/10.1093/bioinformatics/btw132

Sampling challenge 6: relationship to optimial solution sets?

> Every constraint-based modelling problem may be formulated as an optimisation
problem

> Development of constraint-based modelling requires consideration of more general
optimisation problems, e.g.,

minilg}nise #(2)
s.t. f(z)=0 (1)
g(z)<0

where ¢ is a scalar valued continuous and convex function, and where f and g are
vector valued functions.

» How do the established sampling algorithms map onto the sets of solutions to
different classes of optimisation problems?



Nonlinear resistive network

> Introduce unidirectional fluxes vs,v, € R7 such that vi—v, = v
> Maximise weighted linear sum of forward and reverse flux ¢ (v¢ + v,)

> Maximise entropy of unidirectional fluxes (Fleming, et. al. J. Theor. Biol. 292,
71-77 (2011)).

minimise va log(ve) +v,” log(v,)+c T (ve+v,)
vr,v, >0

s.t. Nve—Nv, =b
I<vi—v,<u



Nonlinear resistive network

v

Introduce unidirectional fluxes vs,v, € RZ such that vi—v, = v

v

Maximise weighted linear sum of forward and reverse flux ¢’ (v + v;)

v

Maximise entropy of unidirectional fluxes (Fleming, et. al. J. Theor. Biol. 292,
71-77 (2011)).

minimise va log(ve) +v,” log(v,)+c T (ve+v,)
vr,v, >0

s.t. Nve—Nv, =b (EP)
I<vi—v,<u

v

Energy conservation, 2nd law of thermodynamics hold at optimal solution.
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> Introduce unidirectional fluxes vs,v, € R7 such that vi—v, = v
> Maximise weighted linear sum of forward and reverse flux ¢ (v¢ + v,)

> Maximise entropy of unidirectional fluxes (Fleming, et. al. J. Theor. Biol. 292,
71-77 (2011)).
minimise va log(ve) +v,” log(v,)+c T (ve+v,)
vr,v, >0
s.t. Nve—Nv, =b (EP)
I<vi—-v,<u

> Energy conservation, 2nd law of thermodynamics hold at optimal solution.

> Information theory interpretation as the least biased prediction, given the data.



Nonlinear resistive network

> Introduce unidirectional fluxes vs,v, € R7 such that vi—v, = v
> Maximise weighted linear sum of forward and reverse flux ¢ (v¢ + v,)

> Maximise entropy of unidirectional fluxes (Fleming, et. al. J. Theor. Biol. 292,
71-77 (2011)).
minimise va log(ve) +v,” log(v,)+c T (ve+v,)
vr,v, >0
s.t. Nve—Nv, =b (EP)
I<vi—-v,<u

> Energy conservation, 2nd law of thermodynamics hold at optimal solution.
> Information theory interpretation as the least biased prediction, given the data.

> However, again, ¢ € R" is a vector of free parameters. How to sample the set of
optimal solutions?



Sampling and entropy optimisation

Entropy maximisation

minirgise cTx+xT log(x)
x>

s.t. Ax=b
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Entropy maximisation
minimise ¢’ x+x 7 log(x)
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s.t. Ax=b
may be reformulated as a linear maximisation problem, subject to an intersection of
linear and exponential cone constraints
minimise c¢'x—-1"t
x>0
s.t. Ax=b
1
€ Kexp



Sampling and entropy optimisation

Entropy maximisation

minimise ¢’ x+x 7 log(x)
x>0 (EP)
s.t. Ax=b

may be reformulated as a linear maximisation problem, subject to an intersection of
linear and exponential cone constraints

minimise c¢'x—-1T¢

x>0
s.t. Ax=b
1 (EXP)
€ Kexp
t

where Ky, denotes a set of n exponential cones. For p,q,r eR
Kexp =1{p:q.r | p= qexp (é), g > 0}. Can the set of solutions to this optimisation

problem, as a function of a convex and compact set of parameters ¢, be sampled?



Summary

» Constraint-based modelling of biochemical networks provides a strong demand for
sampling algorithms and a host of challenges

Intrinsic anisotropy

High dimensionality

Convergence criteria

FAIR software

Interdisciplinary communication

Feasible sampling problems and parametric solution sets of optimisation problems
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