
Current and future applications of sampling algorithms in
modelling biochemical networks

Ronan M.T. Fleming

School of Medicine, National University of Ireland, Galway, Ireland
& Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.

Sampling Algorithms and Geometries on Probability Distributions
Simons Insitute for the Theory of Computing

29 Sept. 2021



Outline

I Constraint-based modelling of biochemical networks

I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models

I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models

I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets

I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling

I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Outline

I Constraint-based modelling of biochemical networks
I Uniform sampling of polyhedral convex constraint-based models
I Non-uniform sampling of polyhedral convex constraint-based models
I Sampling non-convex feasible sets
I Entropy optimisation and constraint-based modelling
I Sampling the intersection of polyhedral convex and convex cone constraints



Notation

I Unless specified otherwise, all variables are real valued.
I Householder notation:

I A, matrix; b, column vector; bi is the i th entry in a column vector
I Ω, set; ω, scalar.
I φ(x) is a scalar valued function of a vector variable
I f (x) is a vector valued function of a vector variable

I I is an identity matrix
I 1 is a vector of ones
I [A,B] horizontal concatenation of two matrices
I log(x) is the component-wise logarithm of each element



Generic versus mechanistic modelling

I Generic modelling
I Mathematical modelling approaches that do not satisfy any mechanistic principles

I e.g. network inference with no limitation on the class of network topology being
inferred

I Mechanistic modelling
I Mathematical model that satisfy certain mechanistic principles

I e.g. network inference where the inferred biochemical network topology must satisfy
mass conservation
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Main mechanistic modelling approaches

I Differential equation based modelling
I input: biochemical network topology, uniquely specified initial conditions and

parameters
I output: unique temporal trajectory

I Constraint-based modelling
I input: biochemical network topology, non-unique initial conditions and parameters
I output: non-unique set of temporal trajectories
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A reversible elementary reaction

+

H2 O2 H2O

2 H2︸︷︷︸
c1

+ O2︸︷︷︸
c2


 2 H2O︸︷︷︸
c3

I An example elementary reaction
I c1 c2 and c3 denote the concentration of molecular species H2, O2 and H2O

respectively

I Chemically all reactions are reversible in principal, but in practice only one
direction may be biochemically feasible.



Dynamics under elementary rection kinetics
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I Assuming elementary kinetics, the forward and reverse elementary rate functions
are vf (c)B kf c

2
1c2 and vr (c)B krc

2
3 , where kf ,kr are (elementary) kinetic

parameters.
I The dynamical equations are

dc1
dt

= −2kf c2
1c2+2krc

2
3

dc2
dt

= −kf c
2
1c2+krc

2
3

dc3
dt

= −2krc2
3 +2kf c

2
1c2



Dynamics under elementary rection kinetics
I The dynamical equations are

dc1
dt

= −2kf c2
1c2+2krc

2
3

dc2
dt

= −kf c
2
1c2+krc

2
3

dc3
dt

= −2krc2
3 +2kf c

2
1c2

I Let N B

−2
−1
2

 ∈ Zm×n denote a stoichiometric matrix, then given kf ,kr we have

dc

dt
= N (vf (c)− vr (c))

I One approach is to define v (c)B vf (c)− vr (c) as some composite of many
elementary reactions.



Advantages of a differential equation approach

I Correct representation of known chemical rate laws
I reaction rates are explicit nonlinear functions of molecular species concentration

I Steady-state and dynamic modelling are both possible
I can be compared with both types of experimental data

I Necessary for modelling certain biochemical processes
I e.g. dynamics of signalling networks

I A rich variety of mathematical and computational tools are already in existence
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Disadvantages of a differential equation approach

I c(t) = c0+
∫

dc
dt

I Initial condition, c0, is often not known

I Most of the kinetic parameters kf and kr are also not known
I Given kf , kr , c0, the criteria for convergence to a non-equilibrium steady state are

not known
I Difficult to fit the parameters kf and kr to (partial) experimental data on c
I Reformulation into composite rate laws an application of generic parameter fitting

approaches
I lower dimensionality but still all end up in local minima even for small problems

I Currently computationally intractable at genome-scale (high dimensional systems)
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Principles of constraint-based modelling

I Eliminate infeasible biochemical network states with mathematically specified
constraints
I Physicochemical constraints, e.g., mass conservation

I Biochemical constraints, e.g., vitamin C is essential for human but not murine
metabolism

I Underdetermined systems of equations –> Non-unique predictions
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Mass conservation and steady-state

I Assume mass conservation and steady state
I internal production + external input = internal consumption + external output

I We know that each steady state is a solution to

dc

dt
= N (vf (c)− vr (c))C 0.

I Instead, we assume that the set of feasible steady states is defined implicitly by

Nv = 0

where v ∈ Rn is a variable vector of net reaction rates (fluxes) and N ∈ Zm×n is a
given stoichiometric matrix, typically m < n < rank(N).
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Flux balance analysis

I A prototypical constraint-based modelling approach (Orth, J.et. al. (2010) Nat
Biotech 28, 245–248)

I Hypothesise a particular linear objective coefficient vector d ∈ Rn, then obtain
bounds on net reaction rates l,u ∈ Rn from, e.g., thermochemical data, then

minimise
v ∈Rn

dT v

s.t. Nv = 0
l ≤ v ≤ u

(FBA)

where N ∈ Zm×n is a stoichiometric matrix, typically m < n < rank(N).
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Advantages of flux balance analysis

I Given a linear objective coefficient vector c ∈ Rn, a stoichiometric matrix N ∈ Zm×n

and bounds on net reaction rates l,u ∈ Rn

minimise
v ∈Rn

dT v

s.t. Nv = 0
l ≤ v ≤ u

(FBA)

I Convex (linear) optimisation problem
I efficient optimisation software

I Applicable to genome-scale models (high dimensional)
I Methodology is accessible to a broad user base

I wide variety of variations and applications



A disadvantage of flux balance analysis

I We must first hypothesise a particular biochemical objective, i.e., d ∈ Rn in
minimise

v ∈Rn
dT v

s.t. Nv = 0
l ≤ v ≤ u

(FBA)

I It is unknown what the biochemical objective function is for many systems



Uniform sampling of polyhedral convex constraint-based models
I Sample polyhedral convex sets of the form ΩB {Nv = 0, l ≤ v ≤ u}.

I Many applications, some early examples ...
I Design of Experiments

I predict the most informative measurements (l & u) to make (Savinell, J. M., and
Palsson, B. (1992) J. Theor. Biol. 155, 201–214).

I Volume computation
I genetic defects that decreased the volume of Ω most significantly were more likely to

have a clinical effect in vivo (Price, N.D. et. al.(2004) Biophys. J. 87, 2172–2186)
I Interpretation of marginal distributions, i.e. distribution of vj given sample of
Ω

I identify set of reactions that are always required for growth of a microorganism in
different conditions, same N, but differentl & u (Almaas, et al (2004) Nature 427,
839–843)

I identification of mass conservation constraints as the reason for changes in rates of
human metabolic reactions in diabetes (Thiele, I.,et al (2005) J. Biol. Chem. 280,
11683–11695)
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Uniform sampling of polyhedral convex constraint-based models

I Herrmann, H.A., et al. Flux sampling
is a powerful tool to study metabolism
under changing environmental
conditions. npj Syst Biol Appl 5, 32
(2019).

I CHRR: coordinate hit-and-run with
rounding (MATLAB, Haraldsdottir, H.
S., et al. Bioinformatics 33,
1741–1743 (2017))

I OPTGP: optimized general parallel
sampler (Python; Megchelenbrink, W.,
et al. PLoS ONE 9, e86587 (2014).)

I ACHR: artificially centered hit-and-run
(MATLAB, Python, Kaufman, D. E. et
al. Oper. Res. 46, 1 (1998).)

https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0
https://doi.org/10.1038/s41540-019-0109-0


CHRR: coordinate hit-and-run with rounding

I Haraldsdóttir, H. S., Cousins, B., Thiele, I., Fleming, R. M. T. & Vempala, S. Bioinformatics 33,
1741–1743 (2017).

I Laddha, A. & Vempala, S. S. Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes
Fast. 12 (2021).

I Aditi Laddha, Algorithms for Sampling Convex Bodies, Simons Institute Workshop on Sampling
Algorithms and Geometries on Probability Distributions, 2021

https://simons.berkeley.edu/talks/algorithms-sampling-convex-bodies
https://simons.berkeley.edu/talks/algorithms-sampling-convex-bodies


Sampling challenge 1: anisotropy

(b) ME-Model

(a) M-Model
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I Multiscale constraint-based models
I Examples

I Metabolism ± integration with
Macromolecular Expression

I Macro & micronutrients
I Organ & cellular scales



A multiscale stoichiometric matrix

I Stoichiometric matrix,
dim(N) = 60,000×80,000, of an integrated
metabolic and macromolecular expression
model in E. coli (Thiele et. al. 2012).

I Coefficients are sparse, but spread over 5
orders of magnitude.

I Colorbar: tiny absolute values are light
orange, large magnitudes are black. In the
midrange, the median of log10 of the nonzero
values, 1 one standard deviation, range from
light green to deep blue.

I Flux bounds are also spread over multiple
orders of magnitude (not shown)

https://doi.org/10.1371/journal.pone.0045635


Adapting to anisotropy with novel linear optimisation methods

I Ma, D. et al. Reliable and efficient solution of genome-scale models of Metabolism
and macromolecular Expression. Scientific Reports 7, srep40863 (2017).



Sampling challenge 2: dimensionality
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I Models will continue to grow in size



Sampling challenge 3: convergence criteria
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I Convergence to a stationary sampling distribution, but when is it uniform?
I Pre- (red and orange) and post- (green) convergence margninal sampling

distributions of thioredoxin reductace flux samples obtained with CHRR in a
constraint-based model of human metabolism (Recon 2, dim(Ω) = 2,430).

https://vmh.uni.lu/#reaction/TRDR2
https://doi.org/10.1093/bioinformatics/btx052
https://www.nature.com/articles/nbt.2488


COBRA Toolbox

The COBRA Toolbox is
a MATLAB software suite
for quantitative prediction
of cellular and
multicellular biochemical
networks with
constraint-based
modelling.

https://opencobra.github.io/cobratoolbox


COBRA Toolbox

I Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the
COBRA Toolbox v.3.0. Nature Protocols 14, 639 (2019).

I 421 citations (Google scholar, 28/9/21), ~1000 website visits/month, ~120 git clones/month.



Log-concave sampling of polyhedral convex constraint-based models

I Uniform sampling of a polyhedral convex set

ΩB {Sv = 0, l ≤ v ≤ u}.

I Sampling of certain log-concave functions over a polyhedral convex set

K B {Sv = 0,
l ≤ v ≤ u,

vj ∝ exp(−
∑

fj (vi ))},

where fi (vi ) is a convex function.
I Think of a log-concave function as roughtly equivalent to a unimodal function,

e.g., propability density of a normal distribution
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Log-concave sampling of polyhedral convex constraint-based models

I Example: Biochemical reaction flux constraints from experimental data: mean
v̄ ∈ Rn ± covariance matrix Σ ∈ Rn×n

K B {Sv = 0,
l ≤ v ≤ u,

v ∝
1√

(2π)ndet(Σ)
exp(−

1
2
(v − v̄ )Σ−1(v − v̄ ))},



Riemannian Hamiltonian Monte Carlo sampling

I Implementation: Ruoqi Shen, Yin
Tat Lee, Santosh Vempala

I Lee, Y. T. & Vempala, S. S.
Convergence Rate of Riemannian
Hamiltonian Monte Carlo and
Faster Polytope Volume
Computation. arXiv:1710.06261
(2017).

I Santosh Vempala Sampling Convex
Bodies: A Status Report, Simons
Institute Workshop on Sampling
Algorithms and Geometries on
Probability Distributions, 2021

https://simons.berkeley.edu/talks/sampling-convex-bodies
https://simons.berkeley.edu/talks/sampling-convex-bodies
https://simons.berkeley.edu/talks/sampling-convex-bodies
https://simons.berkeley.edu/talks/sampling-convex-bodies
https://simons.berkeley.edu/talks/sampling-convex-bodies


Riemannian Hamiltonian Monte Carlo sampling

I Riemannian
Hamiltonian
Monte Carlo
sample
predictions
compared with
experimentally
measured
metabolite
uptake and
secretion.

I 1000 samples
from ~900
dimensional
model



Riemannian Hamiltonian Monte Carlo sampling in COBRA Toolbox

I Lee, Y. T. & Vempala, S. S. Convergence Rate of Riemannian Hamiltonian Monte Carlo and
Faster Polytope Volume Computation. arXiv:1710.06261 (2017).

I Santosh Vempala: Sampling Convex Bodies: A Status Report, Simons Institute Workshop on
Sampling Algorithms and Geometries on Probability Distributions, 2021

https://simons.berkeley.edu/talks/sampling-convex-bodies
https://simons.berkeley.edu/talks/sampling-convex-bodies


COBRA Toolbox: shared interface to multiple sampling algorithms

I
Implementation:
Ben Cousins,
Hulda
Haraldsdottir,
Ruoqi Shen,
Yin Tat Lee,
Santosh
Vempala,
German
Preciat, Ronan
Fleming &
others.



Sampling challenge 4: FAIR software

I Findability, Accessibility, Interoperability, and Reuse (FAIR) of sampling software is
essential to increase the impact of theoretical and computational sampling
research. https://www.go-fair.org/fair-principles/

I Increasing the impact of theoretical and computational sampling research will
facilitate greater investment in fundamental and applied research in this area.

https://www.go-fair.org/fair-principles/
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A disadvantage of flux balance analysis

I Even if we know the biochemical objective, i.e., d ∈ Rn in
minimise

v ∈Rn
dT v

s.t. Nv = b
l ≤ v ≤ u

(FBA)

I Important constraints are missing, e.g., energy conservation, the second law of
thermodynamics, etc.



Biochemistry as a linear resistive network
I Assume that we are given a vector of resistances r ∈ Rn++ and that Maxwell’s

minimum heat theorem is the variational principle underlying this network, that is

minimise
v

1
2v

Tdiag(r )v

s.t. Nv = b : y

(QP)

I The optimality conditions are

diag(1/r)NT y? = v?

Nv? = b

⇒ Ndiag(1/r)NT y? = b

I Kirchhoff’s current & voltage laws. Ohm’s law: current linearly proportional to
change in electrical potential.

I However, r is unknown, motivating efforts to sample the non-convex set of optimal
solutions to QP.
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Sampling challenge 5: Interdisciplinary communication
I Several papers have been published in the biochemical literature that report

algorithms and software for sampling non-convex feasible sets that are broadly of
the form

J B {r ∈ Rn++,y ∈ R
m |Ndiag(1/r)NT y = b}.

I What is the relationship between these algorithms in the computational biology
literature and the theoretical and computational results of the mathematics and
computer science community?

I For example, the following papers:
I Gollub, M.G., Kaltenbach H.M., Stelling, J. Probabilistic thermodynamic analysis of

metabolic networks, Bioinformatics, 2021, btab194.
I Saldida, J. et al. Unbiased metabolic flux inference through combined

thermodynamic and 13C flux analysis bioRxiv 2020.06.29.177063.
I Pedro A. Saa, Lars K. Nielsen, ll-ACHRB: a scalable algorithm for sampling the

feasible solution space of metabolic networks, Bioinformatics, Volume 32, Issue 15, 1
August 2016, Pages 2330–2337.

https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1093/bioinformatics/btw132
https://doi.org/10.1093/bioinformatics/btw132
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Sampling challenge 6: relationship to optimial solution sets?

I Every constraint-based modelling problem may be formulated as an optimisation
problem

I Development of constraint-based modelling requires consideration of more general
optimisation problems, e.g.,

minimise
z ∈Rm

φ(z)

s.t. f (z) = 0
g (z) ≤ 0

(1)

where φ is a scalar valued continuous and convex function, and where f and g are
vector valued functions.

I How do the established sampling algorithms map onto the sets of solutions to
different classes of optimisation problems?



Nonlinear resistive network

I Introduce unidirectional fluxes vf ,vr ∈ Rn≥0 such that vf − vr C v

I Maximise weighted linear sum of forward and reverse flux cT (vf + vr )

I Maximise entropy of unidirectional fluxes (Fleming, et. al. J. Theor. Biol. 292,
71–77 (2011)).

minimise
vf ,vr>0

vTf log(vf )+ v
T
r log(vr )+ c

T (vf + vr )

s.t. Nvf −Nvr = b
l ≤ vf − vr ≤ u

(EP)

I Energy conservation, 2nd law of thermodynamics hold at optimal solution.
I Information theory interpretation as the least biased prediction, given the data.
I However, again, c ∈ Rn is a vector of free parameters. How to sample the set of

optimal solutions?
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Sampling and entropy optimisation
Entropy maximisation

minimise
x>0

cT x + xT log(x)

s.t. Ax = b

(EP)

may be reformulated as a linear maximisation problem, subject to an intersection of
linear and exponential cone constraints

minimise
x>0

cT x −1T t

s.t. Ax = b
1
x
t

 ∈ Kexp

(EXP)

where Kexp denotes a set of n exponential cones. For p,q,r ∈ R

,Kexp B {p,q,r | p ≥ q exp
(
r
q

)
, q > 0}. Can the set of solutions to this optimisation

problem, as a function of a convex and compact set of parameters c , be sampled?
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Summary

I Constraint-based modelling of biochemical networks provides a strong demand for
sampling algorithms and a host of challenges
1. Intrinsic anisotropy
2. High dimensionality
3. Convergence criteria
4. FAIR software
5. Interdisciplinary communication
6. Feasible sampling problems and parametric solution sets of optimisation problems
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