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Optimization and Sampling

Optimization Sampling
objective function f : RY — R target distribution 7 o< exp(—V/)
gradient descent, mirror descent, Langevin, mirror-Langevin,
proximal methods . .. proximal Langevin ...
non-asymptotic theory of in progress!
complexity
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Complexity of Sampling

Problem: What is the minimum number of queries to V' and
V'V needed to output an approximate sample from the target
distribution 7 oc exp(—V/) on R9?

Throughout, we assume that argmin V' =0 and
aly = V2V < Bly, =

where ~ is the
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Outline

an improved complexity bound for the Metropolis-adjusted
Langevin algorithm (MALA)

lower bounds for MALA

recent progress towards
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Metropolis-Hastings Algorithms
1. initialize at xg ~ o
2. forn=0,1,2,...:
propose

Yn4+1 ™~ Q(Xn- )
——

‘ proposal kernel ‘

accept ypt+1 with probability

T(Yn+1) Q(Yn+1,Xn)
7T(Xn) Q(Xna _)/n+1)

a(Xn, Yn+1) = 1 A
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Examples

Metropolized random walk (MRW):

Q(x,-) = normal(x, 2hly)

Metropolis-adjusted Langevin algorithm (MALA):

Q(x,-) = normal(x — hV V/(x), 2hly)

Metropolized Hamiltonian Monte Carlo (HMC): Q(x,-) = K
steps of leapfrog integrator of HMC
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Analysis of MH Algorithms

the good:
e Markov chain with correct stationary distribution 7
o typically polylog(1/c) dependence on the accuracy ¢
e widely used in practice

the bad:

e difficult to control the acceptance probability

[ What can we say about the non-asymptotic complexity? ]
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Known Results

algorithm | gradient queries
MRW | O(dx?log?l)
MALA | O(dklogl)
MHMC | O(dk polylog )

Non-asymptotic bounds: [Chen, Dwivedi, Wainwright, Yu '19] [Dwivedi,
Chen, Wainwright, Yu '19] [Lee, Shen, Tian '20]

Better bounds under higher-order smoothness: [Chen, Dwivedi,
Wainwright, Yu '19] [Mangoubi and Vishnoi '19]
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Diffusion Scaling Heuristic

Roberts and Rosenthal '98 showed that for product distributions,
MALA with step size £/d/3 converges (d — o) to a Langevin
diffusion with speed s(¢).

Assumption: higher-order regularity of V.

(1) MALA should have dimension dependence ©(d'/3);

(2) there is an explicit and optimal choice of /.

’What can be achieved non-asymptotically?‘
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Our Result

Theorem: Under a
—_————

we obtain an improved mixing time bound for MALA ,
~ 1
O(\/g poly(/i, log g)) ,

to reach e-accuracy in any standard metric (TV, Wa, KL, x?).
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Proof: Conductance

Let T denote the MALA kernel. Define the conductance

C:= mf{fs T(X7 Sc) dﬂ-(X)

1
05 Sng,O<7r(S)<f}.

2

Standard result for Markov chain convergence: the mixing time in
TV is bounded by

1 Mo

Nmix = O(C2 ?) 9

Mo = warm start parameter .

[Lovdsz and Simonovits '93]
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Proof: s-Conductance

Let T denote the MALA kernel. Define the s-conductance

{fs x, 5%) dm(x)
7(S) —

C. = SCRY, <7T(5)<7}.

Standard result for Markov chain convergence: the mixing time in
TV is bounded by

1 Mo

nmlx—O(C2 - )a

My = warm start parameter,

where . [Lovdsz and Simonovits '93]
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Proof: Conductance Lemma

Lemma [Lee and Vempala, '18]: Suppose that
Ix=yll<r = || Tx—Ty|rv < %. Then, C 2= ar.
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Proof: s-Conductance Lemma

Lemma [Lee and Vempala, '18]: Suppose that
Ix=yll <r = [|[Tx— Ty|lTv < % Then, C = /ar.

Lemma: Suppose that [[x —y|| <r = || Tx — T |lov < 2 for all
x, y in an event of m-probability > 1 — O(rs). Then, C. 2 ar.

= | Goal: Bound the “overlap” || Tx — T, ||rv w.h.p.
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Proof: Bounding the Overlap

Prior work used the bound
[T = Tyllrv < 1 Tx = Qcllrv + [|Qc = Qlley + | Ty — Q) [y

where () is the proposal kernel.

e middle term is easy to bound

e key step: how to bound first and last terms?
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Proof: Projection Property

| Goal: Bound || Ty — Qullrv whp.

Theorem [Billera and Diaconis, '01]: The MH kernel T is the projection
of Q to {reversible Markov chains with stationary distribution }.
- EXNTI’H Tx - QX“TV S 2Ex~7rHQx - QXHTV

Idea: Take @ to be the continuous-time Langevin dynamics run for
time h.
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Proof: Pointwise Projection Property

’Goal: Bound || Tx — Q«|lTv ‘

We extend the projection theorem:

Theorem: For any reversible kernel Q w.r.t. m and any increasing
convex function @, for x ~ 7 and y ~ Qx,

2E (]| Ti = Qcllrv)

<E®(4]Qx — Qulltv) +E®(2] EX ﬁ e

Reduces the study of MALA to discretization of Langevin!
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Recap

improved dimension dependence of MALA to O(v/d) under a

new technique for studying Metropolis-Hastings chains which
relies on well-studied discretization analysis
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Two Questions

1. Can we remove the dependence on the
?

> [Feasible start: My = k%/2]

2. Are there lower bounds for MALA?

> [We showed: spectral gap = O(1/v/d).]
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Lower Bounds for MALA

Recently, [Lee, Shen, and Tian '21] show that there exist initializations
with My = exp(d) for which the mixing time of MALA is Q(d).

See also Yuansi's talk on Thursday.

ssssssss
II |ntv
Technology



Outline

an improved complexity bound for the Metropolis-adjusted
Langevin algorithm (MALA)

lower bounds for MALA

recent progress towards
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Sampling Lower Bounds

Key challenge for the theory of sampling:

[ Can we prove lower complexity bounds for sampling? ]

Some past work:
algorithm-specific bounds

discretization of underdamped Langevin [Cao, Lu, Wang '20]
MALA [Chewi et al. '21] [Lee, Shen, Tian '20, '21]

stochastic gradient queries [Chatterji, Bartlett, Long '20]

estimating the normalizing constant [Ge, Lee, Lu '20]
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A Result in One Dimension

Theorem: The query complexity of sampling from strongly
log-concave distributions in one dimension is ©(log log ).

Some details:
e performance criterion: sample to within 6—14 in TV distance
e holds for any oracle evaluating (V, V', V")

e upper bound achieved via rejection sampling
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Lower Bound Construction

Strategy of the proof:

Construct family P of distributions such that
e a single sample from p € P identifies p, and

e each oracle query reveals only O(1) bits of information.
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Lower Bound Construction

Vi'(x/V/K)

2i71 2i 2i+1 %2i+1 2i+2 %2i+3 %2m+2
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Open Questions

MALA:
> Can we obtain a warm start?
> What other Metropolis-Hastings algorithms can we analyze?

> How can we Metropolize other algorithms?

Lower bounds:

> What is the complexity of sampling?
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Complexity of Sampling Working Group

Meetings: Tuesdays 10am PST, Fridays 11am PST
Email me for a Zoom link!

Logged in as: Sinho Chewi (schewi) %, Update Profile (1) Logout
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You are here: start » gmos21
gmos21:start
Geometric Methods in Optimization and Sampling =
Complexity of Sampling Working Group
Meetings

Tentative weekly meeting times: Tuesdays 10am, Fridays 11am (with additional informal times to meet up and work on problems).

Meeting schedule:

Tues. 9/7: A brief overview of the state-of-the-art on sampling (@ slides,
Fri. 9/10: Mirror-Langevin (Sinho). Riemannian Langevin (Mufan). (4 Sinho's slides, & Mufan's notes, & recording)

Tues. 9/14: Sampling from polytopes (Kevin). (4 notes, & recording)

Simons Wiki (recordings of previous meetings)
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Thank You

Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le
Gouic, Philippe Rigollet, Optimal dimension dependence of the
Metropolis-adjusted Langevin algorithm.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe
Rigollet, The query complexity of sampling from strongly
log-concave distributions in on dimension.
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