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Optimization and Sampling

Optimization

objective function f : Rd → R

gradient descent, mirror descent,
proximal methods . . .

non-asymptotic theory of
complexity

Sampling

target distribution π ∝ exp(−V )

Langevin, mirror-Langevin,
proximal Langevin . . .

in progress!
?



Complexity of Sampling

Problem: What is the minimum number of queries to V and
∇V needed to output an approximate sample from the target
distribution π ∝ exp(−V ) on Rd?

Throughout, we assume that arg minV = 0 and

αId � ∇2V � βId , κ :=
β

α
.

where κ is the condition number.



Outline

an improved complexity bound for the Metropolis-adjusted
Langevin algorithm (MALA)

lower bounds for MALA

recent progress towards general sampling lower bounds



Metropolis-Hastings Algorithms

1. initialize at x0 ∼ µ0
2. for n = 0, 1, 2, . . . :

propose

yn+1 ∼ Q(xn, ·)︸ ︷︷ ︸
proposal kernel

accept yn+1 with probability

a(xn, yn+1) = 1 ∧ π(yn+1)Q(yn+1, xn)

π(xn)Q(xn, yn+1)



Examples

Metropolized random walk (MRW):

Q(x , ·) = normal(x , 2hId)

Metropolis-adjusted Langevin algorithm (MALA):

Q(x , ·) = normal
(
x − h∇V (x), 2hId

)

Metropolized Hamiltonian Monte Carlo (HMC): Q(x , ·) = K
steps of leapfrog integrator of HMC



Analysis of MH Algorithms

the good:

• Markov chain with correct stationary distribution π

• typically polylog(1/ε) dependence on the accuracy ε

• widely used in practice

the bad:

• difficult to control the acceptance probability

What can we say about the non-asymptotic complexity?



Known Results

algorithm gradient queries

MRW Õ(dκ2 log 1
ε )

MALA Õ(dκ log 1
ε )

MHMC Õ(dκ polylog 1
ε )

Can we do better?

Non-asymptotic bounds: [Chen, Dwivedi, Wainwright, Yu ’19] [Dwivedi,

Chen, Wainwright, Yu ’19] [Lee, Shen, Tian ’20]

Better bounds under higher-order smoothness: [Chen, Dwivedi,

Wainwright, Yu ’19] [Mangoubi and Vishnoi ’19]



Diffusion Scaling Heuristic

Roberts and Rosenthal ’98 showed that for product distributions,
MALA with step size `/d1/3 converges (d →∞) to a Langevin
diffusion with speed s(`).

Assumption: higher-order regularity of V .

They concluded:

(1) MALA should have dimension dependence Θ(d1/3);

(2) there is an explicit and optimal choice of `.

What can be achieved non-asymptotically?



Our Result

Theorem: Under a warm start︸ ︷︷ ︸
sup

µ0
π
≤ O(1)

we obtain an improved mixing time bound for MALA ,

Õ
(√

d poly
(
κ, log

1

ε

))
,

to reach ε-accuracy in any standard metric (TV, W2, KL, χ2).



Proof: Conductance

Let T denote the MALA kernel. Define the conductance

C := inf
{∫

S T (x , Sc) dπ(x)

π(S)

∣∣∣ S ⊆ Rd , 0 < π(S) <
1

2

}
.

Standard result for Markov chain convergence: the mixing time in
TV is bounded by

nmix = O
( 1

C2
log

M0

ε

)
, M0 = warm start parameter .

[Lovász and Simonovits ’93]



Proof: s-Conductance

Let T denote the MALA kernel. Define the s-conductance

Cs := inf
{∫

S T (x , Sc)dπ(x)

π(S)− s

∣∣∣ S ⊆ Rd , s < π(S) <
1

2

}
.

Standard result for Markov chain convergence: the mixing time in
TV is bounded by

nmix = O
( 1

C2
s

log
M0

ε

)
, M0 = warm start parameter ,

where s = ε/(2M0). [Lovász and Simonovits ’93]



Proof: Conductance Lemma

Lemma [Lee and Vempala, ’18]: Suppose that
‖x − y‖ ≤ r =⇒ ‖Tx − Ty‖TV ≤ 3

4 . Then, C &
√
α r .



Proof: s-Conductance Lemma

Lemma [Lee and Vempala, ’18]: Suppose that
‖x − y‖ ≤ r =⇒ ‖Tx − Ty‖TV ≤ 3

4 . Then, C &
√
α r .

Lemma: Suppose that ‖x − y‖ ≤ r =⇒ ‖Tx − Ty‖TV ≤ 3
4 for all

x , y in an event of π-probability ≥ 1− O(rs). Then, Cs &
√
α r .

=⇒ Goal: Bound the “overlap” ‖Tx − Ty‖TV w.h.p.



Proof: Bounding the Overlap

Prior work used the bound

‖Tx − Ty‖TV ≤ ‖Tx − Qx‖TV + ‖Qx − Qy‖TV + ‖Ty − Qy‖TV

where Q is the proposal kernel.

• middle term is easy to bound

• key step: how to bound first and last terms?



Proof: Projection Property

Goal: Bound ‖Tx − Qx‖TV w.h.p.

Theorem [Billera and Diaconis, ’01]: The MH kernel T is the projection
of Q to {reversible Markov chains with stationary distribution π}.
=⇒ Ex∼π‖Tx − Qx‖TV ≤ 2Ex∼π‖Q̄x − Qx‖TV

Idea: Take Q̄ to be the continuous-time Langevin dynamics run for
time h.



Proof: Pointwise Projection Property

Goal: Bound ‖Tx − Qx‖TV w.h.p.

We extend the projection theorem:

Theorem: For any reversible kernel Q̄ w.r.t. π and any increasing
convex function Φ, for x ∼ π and y ∼ Q̄x ,

2EΦ(‖Tx − Qx‖TV)

≤ EΦ(4 ‖Q̄x − Qx‖TV) + EΦ
(
2
∣∣Q(x , y)

Q̄(x , y)
− 1
∣∣) .

Reduces the study of MALA to discretization of Langevin!



Recap

improved dimension dependence of MALA to Õ(
√
d) under a

warm start

new technique for studying Metropolis-Hastings chains which
relies on well-studied discretization analysis



Two Questions

1. Can we remove the dependence on the warm start
M0 := sup µ0

π ?

. [Feasible start: M0 = κd/2.]

2. Are there lower bounds for MALA?

. [We showed: spectral gap = O(1/
√
d).]



Lower Bounds for MALA

Recently, [Lee, Shen, and Tian ’21] show that there exist initializations
with M0 = exp(d) for which the mixing time of MALA is Ω̃(d).

See also Yuansi’s talk on Thursday.
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Sampling Lower Bounds

Key challenge for the theory of sampling:

Can we prove lower complexity bounds for sampling?

Some past work:

algorithm-specific bounds

discretization of underdamped Langevin [Cao, Lu, Wang ’20]

MALA [Chewi et al. ’21] [Lee, Shen, Tian ’20, ’21]

stochastic gradient queries [Chatterji, Bartlett, Long ’20]

estimating the normalizing constant [Ge, Lee, Lu ’20]



A Result in One Dimension

Theorem: The query complexity of sampling from strongly
log-concave distributions in one dimension is Θ(log log κ).

Some details:

• performance criterion: sample to within 1
64 in TV distance

• holds for any oracle evaluating (V ,V ′,V ′′)

• upper bound achieved via rejection sampling



Lower Bound Construction

Strategy of the proof:

Construct family P of distributions such that

• a single sample from p ∈ P identifies p, and

• each oracle query reveals only O(1) bits of information.



Lower Bound Construction

x

V ′′i (x/
√
κ)

1

κ

2i−1 2i 2i+1 5
42i+1 2i+2 5

42i+3 . . . 5
42m+2



Open Questions

MALA:

D Can we obtain a warm start?

D What other Metropolis-Hastings algorithms can we analyze?

D How can we Metropolize other algorithms?

Lower bounds:

D What is the complexity of sampling?



Complexity of Sampling Working Group

Meetings: Tuesdays 10am PST, Fridays 11am PST
Email me for a Zoom link!

Simons Wiki (recordings of previous meetings)
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Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le
Gouic, Philippe Rigollet, Optimal dimension dependence of the
Metropolis-adjusted Langevin algorithm.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe
Rigollet, The query complexity of sampling from strongly
log-concave distributions in on dimension.


