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Set-Up, Notation

Clustering Problem: Given n points in Rd with

Promise: ∃ “nice” “Ground Truth (GT) ‘’ clustering C1,C2, . . . ,Ck .
Find k exactly and the GT approximately.

Examples: Data generated by mixtures.
Our results are general. Don’t assume stochastic model,
but they subsume Gaussian, log-concave ... mixtures.
Previous (provable) poly time algorithms, even for special
mixtures, assumed k given.
Notation Set S of points (in Rd ), µ(S),σ(S) are respy their mean
and (maximum) standard deviation (in a 1-d projection).
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Importance of knowing k

An objective function like k−means, k−center, ...can be defined

Formulation as optimization problem.
Led to elegant algorithms/heuristics, eg. Lloyd’s for k−means.
Exact k needed. k dictates what cluster is.

Many algorithms work in k−dim. SVD projection.

For mixture of k Gaussians, k−SVD projection “works”. Vempala,
Wang; Achlioptas, McSherry; Kannan, Salmasian, Vempala
Even without a mixture model, under “proximity” and given k , SVD
works.Kumar, Kannan; Awashti, Sheffet

Distance based Clustering: Points at distance ≤ τ from data point
are “cluster-mates” . Need τ, don’t need k . Beware:

For mixture of 2 std Gaussians, means Ω∗(1) apart, no τ works!

Special methods for GMM’s: Kalai, Moitra, Valiant; Regev,
Vijayaraghavan; Kwan, Caramanis;... need k .
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Nice GT: Means Separated by X Standard Deviations

Mean-Separation Assumption ∀Cℓ in GT,

mean of any other cluster is Ω∗(σ(Cℓ)) away:

|µ(Cℓ)−µ(Cℓ′ | ≥σ(Cℓ)
log4 n

wc
0

, w0 = Min weight of a cluster.

2 Gaussians Ω(σ) apart. In most 1-d projections close to k = 1.
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Infer k from plot of k−means cost?

An often-used criterion for finding k : Plot k versus the optimal
k−means cost.

Take biggest drop. Elbow Method Hartigan; Milligan, Cooper. No
proof in the generality of set-up here.
Under assumption of a big drop, can find clustering: Ostravsky,
Rabani, Schulman, Swamy. Such big drops not present in general
under our setting.
Gap Statistic Take k with good ratio of k−means cost to 1-means
under a prior. Tibshirani; . Proofs for special cases.
Even for spherical Gaussian mixtures, not true that largest drop
occurs at correct k . In fact, for every m, there is a m−component
spherical GMM with largest drop at k = 2
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k in spherical Gaussian Mixtures

𝜎 = 1

𝜎 = 𝑐 ≫ 1

1000 𝑐



Conditions for “nice” GT

k = n consistent with Mean Sep. Need more than Mean-Sep

Add Min Wt. assumption: w0 ≥ n−.01.
Still k not identifiable from data. Eg. k = 1 works.
Usual Fix for identifiability of k : Assume k given.
Theoretically, k being given helps:

Define objective functions, eg k−means. Reduces to Optimization.
Indirectly define what a cluster is.
Also: n1−ε approximation of k is NP-hard.

Practically: How do we know k?
Worse: In non-TCS talks, someone always asks question. My
answer so far: vigorous handwaving
Here: A proper answer.
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Baby Eg.: d = 1, one or two Gaussians

d = 1 GT mixture of one or 2 Gaussians satisfying Mean Sep and Min

wt.



Anti-Concentration: Last Condition for “Nice”

Set S of points in Rd satisfies anti-concentration if

∀ lines L, ∀ intervals I, |I| ≥ εσ(SL),

|SL ∩ I| ≤ c|I|σ(SL). (xL is proj on L.)

Clustering is nice if each cluster has anti-concentration and
Mean Sep, Min Wt. hold.
Identifiability Theorem C1,C2 2 nice clusterings of data
=⇒ #(C1)=#(C2) and distance(C1,C2)≤ εn. (Proof 3 pages)
Theorem says: k is pinned down by data (no additional info
needed)
Paper also has poly time algorithm to find exact k , approx. nice
clustering (assuming exists).
Considerably harder. Here, some intuition/ideas behind it.
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Considerably harder. Here, some intuition/ideas behind it.



No Large Sub-Cluster (NLSC) Property

A subset S of data points has NLSC if:

∀T ⊆S, |T | ≥ c
p

n,σ(T )≥ |T |
12|S|σ(S).

Lemma Anti-concentration implies NLSC.
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Main Theorem

Main Theorem There is a poly time alg. which given data with a
GT clustering {C1,C2, . . . ,Ck }, satisfying

Mean Sep
Min Wt. and
each Cℓ satisfying) NLSC

finds k exactly and GT approximately.
Corollary For stochastic mixture of pdf’s, each pdf satisfying
anti-concentration, mixture satisfying Mean Sep. and Min wt.
can find k exactly and GT approximately provided number of
samples is at least O∗(1/w0) times max no. of samples needed to
learn mean and Std. Dev. of a single component.
Corollary For any log-concave mixture satisfying Mean Sep and
Min Wt., the algorithm finds k exactly and GT approximately.
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First Cut: Data +w0 are given

1 Set S of data which minimizes σ(S) subject to |S| =w0n
essentially contained in single Cℓ. Call S “nucleus” of Cℓ

2 An Attempt: Find S with |S| =w0n minimizing σ(S).
3 Peel S off, repeat. Next S may be from same or different cluster.
4 If S has µ(S) within O∗(σ(S′)+σ(S)) of an already found S′, S,S′

(we prove) are (essentially) from same Cℓ, so, discard S.
5 At termination, we prove k S’s (one nucleus per cluster) left.
6 The nuclii can be used also to grow all clusters.
7 All Steps use quantities determined by DATA+w0. Except step 2,

all doable with some technical work. Focus now on Step 2.
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Minimizing σ among subsets of given size

Is NP-hard to solve exactly.

But as a bi-criterion problem (size of set, σ of set), we show can
be solved approximately. Gives a poly time alg to find k given data
+ w0. Stepping stone to (harder) problem of finding k given only
data.
Namely, if there is a set of cardinality αn with σ, then we show in
poly time, can find a set S of cardinality α2n/12 with
σ(S)≤(polylog) σ/α3.
Via Semi-Definite-Programming relaxation Plus Rounding.



Minimizing σ among subsets of given size

Is NP-hard to solve exactly.
But as a bi-criterion problem (size of set, σ of set), we show can
be solved approximately. Gives a poly time alg to find k given data
+ w0. Stepping stone to (harder) problem of finding k given only
data.

Namely, if there is a set of cardinality αn with σ, then we show in
poly time, can find a set S of cardinality α2n/12 with
σ(S)≤(polylog) σ/α3.
Via Semi-Definite-Programming relaxation Plus Rounding.



Minimizing σ among subsets of given size

Is NP-hard to solve exactly.
But as a bi-criterion problem (size of set, σ of set), we show can
be solved approximately. Gives a poly time alg to find k given data
+ w0. Stepping stone to (harder) problem of finding k given only
data.
Namely, if there is a set of cardinality αn with σ, then we show in
poly time, can find a set S of cardinality α2n/12 with
σ(S)≤(polylog) σ/α3.

Via Semi-Definite-Programming relaxation Plus Rounding.



Minimizing σ among subsets of given size

Is NP-hard to solve exactly.
But as a bi-criterion problem (size of set, σ of set), we show can
be solved approximately. Gives a poly time alg to find k given data
+ w0. Stepping stone to (harder) problem of finding k given only
data.
Namely, if there is a set of cardinality αn with σ, then we show in
poly time, can find a set S of cardinality α2n/12 with
σ(S)≤(polylog) σ/α3.
Via Semi-Definite-Programming relaxation Plus Rounding.



Spectrally Tight Subsets: An Independent problem

Problem Given set X of n points in Rd and α ∈ (0,1), find
S ⊆X , |S| =αn minimizing ||AS ||, where, AS = {x −µ(S) : x ∈S}.

If instead we had to min ||AS ||F , can do 2-approx: Just try each
x ∈S as a center.
Easy to see that taking a data point as center doesn’t give a good
approx for spectral norm even for GMM’s.
Aside: Role of Spectral Norm instead of Frobenius norm in
Clustering not studied enough.
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Expanders and Spectrally tight sets

1 S = {a1,a2, . . .as} set of points. σ(S)= ||{ai −µ(S) : i = 1,2, . . .s}||/ps.

2 σ(S)2 = 1
s2 ||{ai−aj : i , j = 1, . . . ,s}||2 = 1

s2 Max|u|=1
∑

i ,j(u ·(ai−aj))
2...(∗)

3 Suppose H(V ,E) is an Ω(1)- expander graph with |V | = s and
i ∈V ↔ ai .

4 Cheeger =⇒ for every unit vector u, an upper bound on (*) in
terms of the sum over only the edges of H (instead of all (i , j).)

5 So, a spectrally tight subset S can be found by just constructing
an expander graph with sum (over edges) of (*) bounded well.

6 Another line of work helps: Leighton, Rao; Bernstein, Brand,..:
Every dense graph contains a large expander. (Studied under
“Expander Decomposition”, used in Clustering :Kannan, Vempala,
Vetta)

7 Can substitute “expander” by “dense” in (5)
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Dense graphs Via Semi-Definite Program

vi vector label on data point ai . uij = |(ai −aj) ·u|. Solve SDP below.
{(i , j) : vi ·vj ≥Ω(1)} ∈Ω(n2)→ dense.
(4) says (*) summed over edges small.

min . σ2

n∑
i=1

vi ·vi =αn (1)∑
i ,j

vi ·vj ≥α2n2 (2)

|vi | ≤ 1 ∀i ∈ [n]. (3)∑
i ,j

u2
ij vi ·vj ≤ 2α2σ2n2 ∀ unit directions u. (4)

vi ·vj ≥ 0 ∀i , j (5)



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.

Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.

2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.

3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.

Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Getting by with just data, w0 not given

Try w = 1,1− (1/n),1− (2/n), ..... When we hit the correct w0, the
correct k would be found by above. What can go wrong before
that ? Recall our alg finds nuclii of clusters.
Three possible failures:

1 Some nucleus has significant parts from two different Cℓ.
2 Two different nuclii may have large parts of a single Cℓ.
3 One of the Cℓ may have been left out of all nuclii.

Intuitively: ¬ (1)=⇒ Each Nuleus is from exactly one Cℓ.
¬(2)∧¬(3) =⇒ each Cℓ in a unique nuclues. QED.
Failure 1 =⇒ NLSC violted. Failure 2 =⇒ the two nuclii have µ

too close. Failure 3 =⇒ ???? NOT enough to deal only with
nuclii... Complexity...



Open Questions

In practice: High running time SDP based solution. Faster
Algorithms for k?

Other applications of Spectrally tight subsets.
Analog of k−means: Find the partition into k subsets which
minimizes weighted sum of spectral norms of the sets. Algorithm ?
Hueristic ? For k−means, it is not true in general that for data from
a mixture of k Mean-Separated spherical Gaussians, approximate
optimal k− means partition finds the correct clustering. Prove it is
true for spectral norm based measure in some generality. A. Sinop



Open Questions

In practice: High running time SDP based solution. Faster
Algorithms for k?
Other applications of Spectrally tight subsets.

Analog of k−means: Find the partition into k subsets which
minimizes weighted sum of spectral norms of the sets. Algorithm ?
Hueristic ? For k−means, it is not true in general that for data from
a mixture of k Mean-Separated spherical Gaussians, approximate
optimal k− means partition finds the correct clustering. Prove it is
true for spectral norm based measure in some generality. A. Sinop



Open Questions

In practice: High running time SDP based solution. Faster
Algorithms for k?
Other applications of Spectrally tight subsets.
Analog of k−means: Find the partition into k subsets which
minimizes weighted sum of spectral norms of the sets. Algorithm ?
Hueristic ? For k−means, it is not true in general that for data from
a mixture of k Mean-Separated spherical Gaussians, approximate
optimal k− means partition finds the correct clustering. Prove it is
true for spectral norm based measure in some generality. A. Sinop


