The Algorithmic Phase Transition of Random k-SAT for Low Degree Polynomials

Brice Huang (MIT)

Simons Workshop on Rigorous Evidence for Information-Computation Tradeoffs Joint work with Guy Bresler

Random k-SAT

Problem (Random k-SAT)
$\Phi \sim \Phi_{k}(n, m)$ is a k-CNF with m clauses, whose $k m$ literals are sampled i.i.d. from $\operatorname{unif}\left(\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}\right)$.

Random k-SAT

Problem (Random k-SAT)
$\Phi \sim \Phi_{k}(n, m)$ is a k-CNF with m clauses, whose $k m$ literals are sampled i.i.d. from $\operatorname{unif}\left(\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}\right)$.

Clause density: $\alpha=m / n$

Random k-SAT

Problem (Random k-SAT)
$\Phi \sim \Phi_{k}(n, m)$ is a k-CNF with m clauses, whose $k m$ literals are sampled i.i.d. from $\operatorname{unif}\left(\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}\right)$.

Clause density: $\alpha=m / n$
Q: What is the largest clause density where a satisfying assignment exists w.h.p.? (OPT)

Q: What is the largest clause density where a satisfying assignment can be found w.h.p. by an efficient algorithm? (ALG)

Random k-SAT

Problem (Random k-SAT)
$\Phi \sim \Phi_{k}(n, m)$ is a k-CNF with m clauses, whose $k m$ literals are sampled i.i.d. from $\operatorname{unif}\left(\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}\right)$.

Clause density: $\alpha=m / n$
Q: What is the largest clause density where a satisfying assignment exists w.h.p.? (OPT)

Q: What is the largest clause density where a satisfying assignment can be found w.h.p. by an efficient algorithm? (ALG)

Q: What prevents efficient algorithms from succeeding beyond ALG?

Thresholds for Random k-SAT

In double limit $n \rightarrow \infty$ with $\alpha=\alpha(k)$ fixed, then $k \rightarrow \infty$:
OPT $=2^{k} \log 2-\frac{1}{2}(1+\log 2)+o_{k}(1)$ [Ding, Sly, Sun '15]
ALG $\stackrel{?}{=}\left(1-o_{k}(1)\right) 2^{k} \log k / k(F I X)$ [Coja-Oghlan '10]

Thresholds for Random k-SAT

In double limit $n \rightarrow \infty$ with $\alpha=\alpha(k)$ fixed, then $k \rightarrow \infty$:
OPT $=2^{k} \log 2-\frac{1}{2}(1+\log 2)+o_{k}(1)$ [Ding, Sly, Sun '15]
ALG $\stackrel{?}{=}\left(1-o_{k}(1)\right) 2^{k} \log k / k(F I X)$ [Coja-Oghlan '10]
Structural evidence: no better algorithm! [Achlioptas, Coja-Oghlan '08] Solution space shatters beyond ALG.

[Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborová '07]

Main Result (informal)

Theorem (Bresler, H. '21)
Due to shattering, low degree polynomial algorithms cannot solve random $k-S A T$ above clause density $4.911 \cdot 2^{k} \log k / k$.

Low Degree Polynomials

Multivariate polynomials $\mathcal{A}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ of degree $D=O(\log n)$.

Low Degree Polynomials

Multivariate polynomials $\mathcal{A}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ of degree $D=O(\log n)$.

To input $\Phi \sim \Phi_{k}(n, m)$ into LDP: encode as indicators $\Phi \in\{0,1\}^{m k \cdot 2 n}$, $2 n$ indicators per literal.

Low Degree Polynomials

Multivariate polynomials $\mathcal{A}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ of degree $D=O(\log n)$.

To input $\Phi \sim \Phi_{k}(n, m)$ into LDP: encode as indicators $\Phi \in\{0,1\}^{m k \cdot 2 n}$, $2 n$ indicators per literal.
$\mathcal{A}:\{0,1\}^{m k \cdot 2 n} \rightarrow \mathbb{R}^{n}$ solves k-SAT instance Φ if:

- $\operatorname{sign}(\mathcal{A}(\Phi))$ is close (in Hamming distance) to an assignment satisfying most clauses of Φ,

Low Degree Polynomials

Multivariate polynomials $\mathcal{A}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ of degree $D=O(\log n)$.

To input $\Phi \sim \Phi_{k}(n, m)$ into LDP: encode as indicators $\Phi \in\{0,1\}^{m k \cdot 2 n}$, $2 n$ indicators per literal.
$\mathcal{A}:\{0,1\}^{m k \cdot 2 n} \rightarrow \mathbb{R}^{n}$ solves k-SAT instance Φ if:

- $\operatorname{sign}(\mathcal{A}(\Phi))$ is close (in Hamming distance) to an assignment satisfying most clauses of Φ,
- $\left|\mathcal{A}(\Phi)_{i}\right| \geq 1$ for most i,
- $\mathbb{E}\|\mathcal{A}(\Phi)\|_{2}^{2}=O(n)$.

Low Degree Polynomials

Can simulate:

- Spectral algorithms
- AMP
- Local algorithms on sparse graphs (including k-SAT factor graph)
- Belief / Survey Propagation guided decimation (bounded iterations)
- FIX

Main Result

Let

$$
\kappa^{*}=\min _{\beta>1} \frac{\beta}{1-\beta e^{-(\beta-1)}} \approx 4.911
$$

Theorem (Bresler, H. '21)
If $\kappa>\kappa^{*}$ and $m / n=\alpha=\kappa 2^{k} \log k / k$, then no polynomial $\mathcal{A}:\{0,1\}^{m k \cdot 2 n} \rightarrow \mathbb{R}^{n}$ of degree $D=o(n / \log n)$ solves random $k-S A T$ with probability $1-\exp (-\Omega(D \log n))$.

Algorithmic Lower Bounds on Random k-SAT

$$
\mathrm{OPT} \sim 2^{k} \log 2 \quad \mathrm{ALG} \stackrel{?}{\sim} 2^{k} \log k / k
$$

Clause Density Bound	Algorithm(s)	Reference
$O_{k}\left(2^{k} / k\right)$	DPLL algorithms	[Achlioptas, Beame, Molloy '04]
$\left(1+o_{k}(1)\right) 2^{k-1} \log ^{2} k / k$	Balanced sequential local algorithms on NAE- k-SAT	[Gamarnik, Sudan '17]
$\left(1+o_{k}(1)\right) 2^{k} \log k / k$	Survey Propagation guided decimation	[Hetterich '16]
$O_{k}\left(2^{k} \log ^{2} k / k\right)$	Walksat	[Coja-Oghlan, Haqshenas, Het- terich '17]
$\left(1+o_{k}(1)\right) \kappa^{*} 2^{k} \log k / k$	Low degree polynomials	[Bresler, H. '21]
$\kappa^{*} \approx 4.911$		

OGP: A Topological Explanation of Hardness

Definition (Overlap Gap Property; [Gamarnik, Sudan '17])
OGP holds if any two solutions are either close or far.

OGP: A Topological Explanation of Hardness

Definition (Overlap Gap Property; [Gamarnik, Sudan '17])
OGP holds if any two solutions are either close or far.

- Maximum Independent Set [Gamarnik, Sudan '17] [Rahman, Virág '17]
[Gamarnik, Jagannath, Wein '20] [Wein '20]
- NAE-k-SAT [Gamarnik, Sudan '17]
- Maxcut on hypergraphs [Chen, Gamarnik, Panchenko, Rahman '17]
- Spin Glasses [Gamarnik, Jagannath '19] [Gamarnik, Jagannath, Wein '20] [Gamarnik, Jagannath, Wein '21]
- Number Partitioning [Gamarnik, Kızıldağ '21]
- Planted Problems [Gamarnik, Zadik '19], [Gamarnik, Jagannath, Sen '19], [Ben Arous, Wein, Zadik '20]

Survey: [Gamarnik '21]

Ensemble OGP: interpolation

Used in other contexts by [Chen, Gamarnik, Panchenko, Rahman '17], [Gamarnik, Jagannath '19], [Gamarnik, Jagannath, Wein '20]

Ensemble OGP: interpolation

Used in other contexts by [Chen, Gamarnik, Panchenko, Rahman '17], [Gamarnik, Jagannath '19], [Gamarnik, Jagannath, Wein '20]

Let $\alpha \geq \frac{1+\varepsilon}{2} \mathrm{OPT} .\left(\approx \frac{k}{2 \log k} \mathrm{ALG}\right)$

Ensemble OGP: interpolation

Used in other contexts by [Chen, Gamarnik, Panchenko, Rahman '17], [Gamarnik, Jagannath '19], [Gamarnik, Jagannath, Wein '20]

Let $\alpha \geq \frac{1+\varepsilon}{2}$ OPT. $\left(\approx \frac{k}{2 \log k} \mathrm{ALG}\right)$

Suppose LDP \mathcal{A} solves $\Phi \sim \Phi_{k}(n, m)$ with sufficiently high probability, where $m / n=\alpha$.

Ensemble OGP: interpolation

Used in other contexts by [Chen, Gamarnik, Panchenko, Rahman '17],
[Gamarnik, Jagannath '19], [Gamarnik, Jagannath, Wein '20]

Let $\alpha \geq \frac{1+\varepsilon}{2} \mathrm{OPT} .\left(\approx \frac{k}{2 \log k} \mathrm{ALG}\right)$

Suppose LDP \mathcal{A} solves $\Phi \sim \Phi_{k}(n, m)$ with sufficiently high probability, where $m / n=\alpha$.

Interpolation path: $\Phi^{(0)} \quad \Phi^{(1)} \quad \Phi^{(2)} \ldots \quad \Phi^{(k m)}$ $\Phi^{(0)} \sim \Phi_{k}(n, m), \Phi^{(t)}$ resamples t th literal of $\Phi^{(t-1)}$.

Ensemble OGP: interpolation

Used in other contexts by [Chen, Gamarnik, Panchenko, Rahman '17],
[Gamarnik, Jagannath '19], [Gamarnik, Jagannath, Wein '20]

Let $\alpha \geq \frac{1+\varepsilon}{2} \mathrm{OPT} .\left(\approx \frac{k}{2 \log k} \mathrm{ALG}\right)$

Suppose LDP \mathcal{A} solves $\Phi \sim \Phi_{k}(n, m)$ with sufficiently high probability, where $m / n=\alpha$.

Interpolation path: $\quad \phi^{(0)} \quad \phi^{(1)} \quad \Phi^{(2)} \quad \ldots \quad \Phi^{(k m)}$ $\Phi^{(0)} \sim \Phi_{k}(n, m), \Phi^{(t)}$ resamples t th literal of $\Phi^{(t-1)}$.

Set $x^{(t)}=\mathcal{A}\left(\Phi^{(t)}\right)$.

The Forbidden Structure in Ensemble OGP

Two assignments $y^{(1)}, y^{(2)} \in\{\mathrm{T}, \mathrm{F}\}^{n}$ such that:

- $y^{(i)}$ satisfies some $\Phi^{\left(t_{i}\right)}$;
- $y^{(2)}$ is medium distance from $y^{(1)}$.
(w.h.p. does not exist if $\alpha \geq \frac{1+\varepsilon}{2}$ OPT by 1st moment argument)

2-overlap landscape for $\alpha=\frac{1+\varepsilon}{2}$ OPT

Graph negative \Rightarrow OGP holds.

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\Phi^{(t)}$ w.h.p.

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

Close by LDP stability

$$
x^{(0)} x^{(1)}
$$

$$
x^{(k m)}
$$

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)}
$$

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)}
$$

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)} x_{\bullet}^{(4)}
$$

Ensemble OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

Contradiction $\Rightarrow \mathcal{A}$ cannot exist.

How to improve past $\frac{1+\varepsilon}{2}$ OPT?

Ensemble OGP gets stuck at $\frac{1+\varepsilon}{2}$ OPT, far above ALG.

Ensemble Multi-OGP: forbidden structure using several solutions.

2-overlap landscape for $\alpha=\kappa \mathrm{ALG}$

$\frac{1}{n} \log \mathbb{E} \#$ (pairs of satisfying assignments with overlap x)

2-overlap landscape for $\alpha=\kappa \mathrm{ALG}$

$\frac{1}{n} \log \mathbb{E} \#$ (pairs of satisfying assignments with overlap x)

Amplify the dip using forbidden structure with many medium overlaps!

Ensemble Multi-OGP: interpolation

Used in other contexts by [Wein '20]
Related: [Rahman, Virág '17], [Gamarnik, Sudan '17], [Gamarnik, Kızıldağ '21]
Let $\alpha \geq \kappa 2^{k} \log k / k .(\approx \kappa \mathrm{ALG})$

Suppose LDP \mathcal{A} solves $\Phi \sim \Phi_{k}(n, m)$ with sufficiently high probability, where $m / n=\alpha$.

Interpolation path: $\Phi^{(0)} \quad \Phi^{(1)} \quad \Phi^{(2)} \quad \ldots \quad \Phi^{\left(k^{2} m\right)}$ $\Phi^{(0)} \sim \Phi_{k}(n, m), \Phi^{(t)}$ resamples $(t \bmod k m)$ th literal of $\Phi^{(t-1)}$.

Set $x^{(t)}=\mathcal{A}\left(\Phi^{(t)}\right)$.

The Forbidden Structure in Ensemble Multi-OGP

Define a multi-distance from one assignment to a set of assignments.

The Forbidden Structure in Ensemble Multi-OGP

Define a multi-distance from one assignment to a set of assignments.

Forbidden structure: k assignments $y^{(1)}, \ldots, y^{(k)} \in\{T, F\}^{n}$ such that:

- $y^{(i)}$ satisfies some $\Phi^{\left(t_{i}\right)}$;
- $y^{(i)}$ has medium multi-distance from $\left\{y^{(1)}, \ldots, y^{(i-1)}\right\}$ for $i \geq 2$. (w.h.p. does not exist if $\alpha \geq \kappa 2^{k} \log k / k$ by first moment argument)

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\Phi^{(t)}$ w.h.p.

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
y^{(1)}=x^{(0)}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

Close by LDP stability

$$
x^{(0)} x^{(1)}
$$

$$
\begin{aligned}
& x^{(k m)} \\
& \quad y^{(1)}=x^{(0)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\Phi^{(t)}$ w.h.p.

$$
x^{(0)} x^{(1)} \quad x^{(2)}
$$

$$
x^{(k m)}
$$

$$
y^{(1)}=x^{(0)}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)}
$$

$$
\begin{aligned}
& x_{\bullet}^{(k m)} \\
& \quad y^{(1)}=x^{(0)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\Phi^{(t)}$ w.h.p.

$x_{\bullet}^{(k m)}$

$$
y^{(1)}=x^{(0)}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
\begin{aligned}
& x^{(k m)} \\
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)} \quad x_{\bullet}^{(4)}
$$

Medium multi-distance to $\left\{x^{(0)}, x^{(4)}\right\}$

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)} \quad x_{\bullet}^{(4)}
$$

Medium multi-distance to $\left\{x^{(0)}, x^{(4)}\right\}$

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
x_{\bullet}^{(0)} x_{\bullet}^{(1)} \quad x_{\bullet}^{(2)} x_{\bullet}^{(3)} \quad x^{(4)} x^{(5)}
$$

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\Phi^{(t)}$ w.h.p.

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)} \\
& y^{(3)}=x^{(8)}
\end{aligned}
$$

Ensemble Multi-OGP: the contradiction

If \mathcal{A} exists, then each $x^{(t)}$ satisfies $\phi^{(t)}$ w.h.p.

$$
\begin{aligned}
& y^{(1)}=x^{(0)} \\
& y^{(2)}=x^{(4)} \\
& y^{(3)}=x^{(8)}
\end{aligned}
$$

Contradiction $\Rightarrow \mathcal{A}$ cannot exist.

The Challenge: Picking the Right Moats

The Challenge: Picking the Right Moats

Only previous ensemble multi-OGP: [Wein '20], max independent set. Forbidden structure: large ind. sets S_{1}, \ldots, S_{L}, where for all $i \geq 2$,

$$
\left|S_{i} \backslash\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right| \in\left[\frac{\varepsilon}{4} \frac{\log d}{d} n, \frac{\varepsilon}{2} \frac{\log d}{d} n\right]
$$

The Challenge: Picking the Right Moats

Only previous ensemble multi-OGP: [Wein '20], max independent set. Forbidden structure: large ind. sets S_{1}, \ldots, S_{L}, where for all $i \geq 2$,

$$
\left|S_{i} \backslash\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right| \in\left[\frac{\varepsilon}{4} \frac{\log d}{d} n, \frac{\varepsilon}{2} \frac{\log d}{d} n\right]
$$

Q: How to pick forbidden structure for random k-SAT (and in general)?

The Challenge: Picking the Right Moats

Only previous ensemble multi-OGP: [Wein '20], max independent set. Forbidden structure: large ind. sets S_{1}, \ldots, S_{L}, where for all $i \geq 2$,

$$
\left|S_{i} \backslash\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right| \in\left[\frac{\varepsilon}{4} \frac{\log d}{d} n, \frac{\varepsilon}{2} \frac{\log d}{d} n\right]
$$

Q: How to pick forbidden structure for random k-SAT (and in general)?

Our contributions:

- Identify correct forbidden structure for random k-SAT;
- Navigate more intricate first moment computation;
- We believe methods can generalize to more problems.

Overlap Profiles

Overlap profile: for $y^{(1)}, \ldots, y^{(L)} \in\{\mathrm{T}, \mathrm{F}\}^{n}, \pi\left(y^{(1)}, \ldots, y^{(L)}\right)=\pi \in \mathbb{R}^{2^{L-1}}$.

Overlap Profiles

Overlap profile: for $y^{(1)}, \ldots, y^{(L)} \in\{\mathrm{T}, \mathrm{F}\}^{n}, \pi\left(y^{(1)}, \ldots, y^{(L)}\right)=\pi \in \mathbb{R}^{2^{L-1}}$. For each (unordered) partition S, T of $\{1, \ldots, L\}$ (including $\emptyset,[L]$),

$$
\left.\pi_{S, T}=\frac{1}{n} \right\rvert\, i \in[n]: \begin{aligned}
& \text { all }\left\{y_{i}^{(\ell)}: \ell \in S\right\} \text { equal one value and } \\
& \text { all }\left\{y_{i}^{(\ell)}: \ell \in T\right\} \text { equal the other value }
\end{aligned}
$$

Overlap Profiles

Overlap profile: for $y^{(1)}, \ldots, y^{(L)} \in\{\mathrm{T}, \mathrm{F}\}^{n}, \pi\left(y^{(1)}, \ldots, y^{(L)}\right)=\pi \in \mathbb{R}^{2^{L-1}}$. For each (unordered) partition S, T of $\{1, \ldots, L\}$ (including $\emptyset,[L]$),

$$
\left.\pi_{S, T}=\frac{1}{n} \right\rvert\, i \in[n]: \begin{aligned}
& \text { all }\left\{y_{i}^{(\ell)}: \ell \in S\right\} \text { equal one value and } \\
& \text { all }\left\{y_{i}^{(\ell)}: \ell \in T\right\} \text { equal the other value }
\end{aligned}
$$

Overlap entropy:

$$
H(\pi)=-\sum_{S, T \text { partition }\{1, \ldots, \ell\}} \pi_{S, T} \log \pi_{S, T}
$$

Defining the Forbidden Structure

Let

$$
\beta^{*}=\underset{\beta>1}{\arg \min } \frac{\beta}{1-\beta e^{-(\beta-1)}} \approx 3.513
$$

Defining the Forbidden Structure

Let

$$
\beta^{*}=\underset{\beta>1}{\arg \min } \frac{\beta}{1-\beta e^{-(\beta-1)}} \approx 3.513
$$

Forbidden structure: $y^{(1)}, \ldots, y^{(k)} \in\{T, F\}^{n}$ such that:

- $y^{(i)}$ satisfies some $\Phi^{\left(t_{i}\right)}$;
- For all $i \geq 2$, (this is the medium multi-distance condition)

$$
H\left(\pi\left(y^{(1)}, \ldots, y^{(i)}\right)\right)-H\left(\pi\left(y^{(1)}, \ldots, y^{(i-1)}\right)\right) \approx \beta^{*} \frac{\log k}{k}
$$

Summary

We generalize ensemble multi-OGP, previously tailored to max independent set, to random $k-S A T$.

We believe this methodology generalizes.
LDPs don't solve random k-SAT at clause density $4.911 \cdot 2^{k} \log k / k$.

Summary

We generalize ensemble multi-OGP, previously tailored to max independent set, to random $k-S A T$.

We believe this methodology generalizes.
LDPs don't solve random k-SAT at clause density $4.911 \cdot 2^{k} \log k / k$.
Takeaway: many-way OGPs can show algorithmic hardness at or just beyond ALG.

