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Towards Putting Quantum 
Supremacy on a Rigorous 

Footing



Google Nov 2019: Announcement of ”Quantum 
supremacy” based on 52 qubits circuit of 
depth ~20, with gate fidelity ~ .99

USTC Dec 2020: Boson sampling experiment led by 
Jian-Wei Pan and Chao-Yang Lu -- ~ 76 qubits



• BV’93 Quantum computers violate the 
Extended Church-Turing Thesis

Theoretical Roots and Justification



The Quantum Veil

The classical description of the state of n 
qubits requires 2n complex numbers. 

n qubits
State =	∑ 𝛼%�
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The Quantum Veil

n qubits

Even though the classical description of 
the state of n qubits requires 2n complex 
numbers, can get at most n classical bits 
of information about the state through a 
measurement – Holevo’s theorem. 

State =	∑ 𝛼%�
% |𝑥⟩



Computational probes: peering behind the
Quantum Veil 

For example, one might naively argue that it is impossible to 
experimentally verify the exponentially large size of the Hilbert 
space associated with a discrete quantum system, since any 
observation leads to a collapse of its superposition. However, 
an experiment demonstrating the exponential speedup offered 
by quantum computation over classical computation would 
establish that something like the exponentially large Hilbert 
space must exist. 
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• BV’93 Quantum computers violate the 
Extended Church-Turing Thesis

• Quantum supremacy = experimental violation of ECT

• Shor’94  Factoring algorithm – easy to check

• Sampling tasks as basis for quantum supremacy:
Boson Sampling [Aaronson, Arkhipov ’11] and 
IQP [Brebner, Jozsa, Shepherd ’11]

Theoretical Roots and Justification



Statistical Test for Sampling Task



Sampling Tasks

Probability distributions generated by quantum circuits look very
different from those generated by classical circuits

[BV’93] BQP ⊆	GapP

Quantum circuit C on input 0n  Output = sample from distribution

Feynman path integral: constructive and destructive interference 
across exponentially many paths:
P[x] = (a+ - a-)2 where a+ and a- can each be very large 

Probabilistic circuit: computing PC[x] in #P
Quantum circuit: computing PC[x] Gap-P hard for worst case C

[AA’11, BJS’11] Suppose classical computer can sample from 
output distribution. Then Stockmeyer implies can approximate 
PC[x] in Polynomial Hierarchy (PH). 



Fix a random circuit C ---
i.e. a random sequence of 
gates of depth ~ 20

Initialize each qubit to 0

Measure the qubits to get 
a random 52 bit string x 
sampled according to some 
distribution.

Use supercomputer to compute     
PC(x) = P[C outputs x on 

input 0n]

Check whether sampled x’s 
are consistent with PC(x)



Two Challenges:

• Statistical test to check whether sampled x’s 
consistent with PC(x)

• How do we know that approximating PC(x) for 
a random quantum circuit C is hard? 

And therefore by Stockmeyer sampling from 
any distribution with constant TVD from PC is hard



How do we know that approximating PC(x) for 
a random quantum circuit C is hard? 

• Worst-case to average case reduction. 

• Model random quantum circuit as a Haar random 
unitary on n qubits. 

• Model reduction after Lipton’s permanent reduction
A(t) = X + tR
Perm(A(t)) is a degree n polynomial in t. 
Perm(A(0)) = Perm(X)

[Bouland, Fefferman, Nirkhe, V Nature Physics 2019]



• Output probability PC(x) of a quantum circuit with m 
gates is a polynomial of degree 2m:

⟨0- 𝐶 0-⟩ = / 0- 𝐶0 𝑦0 𝑦0 𝐶023 𝑦023 … 𝑦5 𝐶3 0-
�

67,69,…,6:∈ <,3 =

• Cannot just take C + tR for random quantum circuit R
because C+tR is not unitary

• Attempt 1:
Choose and fix 𝐻? ?∈[0] Haar random gates 

Consider 𝐶B = 𝐶0B 𝐶023B …𝐶3B so that for each gate 𝐶?B = 𝐶?𝐻?
𝐶′	random quantum circuit: each gate in 𝐶′ is completely random 

Problem: no univariate polynomial structure connects worst-case circuit 
𝐶 with the new circuit 𝐶B !

Worst case to Average case ingredients



• Output probability PC(x) of a quantum circuit with m 
gates is a polynomial of degree 2m:

⟨0- 𝐶 0-⟩ = / 0- 𝐶0 𝑦0 𝑦0 𝐶023 𝑦023 … 𝑦5 𝐶3 0-
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67,69,…,6:∈ <,3 =

• Cannot just take C + tR for random quantum circuit R
because C+tR is not unitary

• Attempt 2:
Main idea: “Implement tiny fraction of 𝐻?23” 
i.e.,	𝐶?B = 𝐶?𝐻?𝑒2?EFG
If 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶, and if 𝜃	 ≈ 	𝑠𝑚𝑎𝑙𝑙, each 
gate is close to Haar random
Now take several non-zero but small	𝜃	and apply polynomial 
extrapolation (as per Lipton’s proof)

Worst case to Average case ingredients



• Attempt 2:
Main idea: “Implement tiny fraction of 𝐻?23” 
i.e.,	𝐶?B = 𝐶?𝐻?𝑒2?EFG
If 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶, and if 𝜃	 ≈ 	𝑠𝑚𝑎𝑙𝑙, each 
gate is close to Haar random
Now take several non-zero but small	𝜃	and apply polynomial 
extrapolation (as per Lipton’s proof)

• Problem: 𝑒2?EFG is not polynomial in 𝜃
Solution: take fixed truncation of Taylor series for 𝑒2?EFG

i.e., each gate of 𝐶B is 𝐶?𝐻? ∑
2?EFG O

P!
R
PS<

So each gate entry is a polynomial in 𝜃 and so is 𝑝<(𝐶′)
Now extrapolate and compute 𝑞 1 = 𝑝< 𝐶

• [Movassagh ’19,’20] gives a “Cayley path” interpolation between the 
worst-case and random quantum circuit, which stays unitary throughout

Worst case to Average case ingredients



Given O(𝑚5) noisy evaluation points {(𝜃?, 𝑦?)} to a polynomial 
q(𝜃) of degree 𝑚 where:
1. 𝜃? are equally spaced in the interval [0, 𝛽 = 1/m]
2. at least 2/3 of 𝑦? are 𝛿-close to q(𝜃?)

can use NP oracle to output 𝑧:
𝑧 − 𝑞 1 ≤ 𝛿2d(0 efg hij) = 𝛿2d(0 efg0) whp

Improved from 𝛿2d(0hij)
Want 𝛿2d(-) so 𝛿 ~ 2-n

Idea: substitute 𝜃=xk. 
Endpoints 0,1 unchanged
𝛽à 𝛽1/k and m à mk
Choose k = log m 0 1𝛽 𝜃

𝑞(𝜃)

“average-case” 
points

“worst-case” 
point

m = #gates in quantum circuit
[Bouland, Fefferman, Landau, Liu & Kondo, Mori, Movassagh FOCS21]



Given O(𝑚5) noisy evaluation points {(𝜃?, 𝑦?)} to a polynomial 
q(𝜃) of degree 𝑚 where:
1. 𝜃? are equally spaced in the interval [0, 𝛽 = 1/m]
2. at least 2/3 of 𝑦? are 𝛿-close to q(𝜃?)

can use NP oracle to output 𝑧:
𝑧 − 𝑞 1 ≤ 𝛿2d(0 efg hij) = 𝛿2d(0 efg0) whp

For Boson Sampling, 
n Bosons, n2 modes

Degree of polynomial = n
Dimension of Hilbert space 
= n2+n-1 choose n ~ 2nlogn

So want 𝛿 ~ 2-nlogn 0 1𝛽 𝜃

𝑞(𝜃)

“average-case” 
points

“worst-case” 
point

m = #gates in quantum circuit
[Bouland, Fefferman, Landau, Liu & Kondo, Mori, Movassagh FOCS21]



Statistical test to check whether sampled x’s consistent with PC(x)

Linear cross entropy E[PC(x)]

Intuition: Higher probability x’s (PC(x) large) should 
show up more often. 

Exponential distribution P(x) = a/2n ~ exp(-a)

For a random quantum circuit C, E[PC(x)] = 2/2n

For reference, if C outputs uniformly random string 
E[PC(x)] = 1/2n

Estimate E[PC(x)] from samples x1, x2, … output by circuit

Google’s experiment gave estimates of 1.002/2n



Heavy Output Generation

[Aaronson, Chen ’17] 
HOG: Given random quantum circuit C, generate 
x1, … xk such that at least 2/3 fraction have PC(xi)
larger than the median probability. 

[Aaronson, Gunn ’19]
XHOG: Given random quantum circuit C, generate 
x1, … xk such that the average of PC(xi) is at least
(1+b)2-n, where b is 1/poly(n)

Xquath: There is no polynomial time algorithm that 
on input a random quantum circuit C produces an 
estimate for p0 = PC(0n) such that 
EC[(p-p0)2] < E[(2-n – p0)2] – 3-n

Xquath implies XHOG. Use hiding to switch 0n to r, 
then appeal to Markov. 



Discussion

• n = # qubits versus m = # gates for random 
circuit sampling. 
Robustness of worst case to average case 
reduction: 𝛿2d(0 efg0)

Estimate for linear cross entropy for Xquath

• Cryptographic schemes for proofs of quantumness


