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Google Nov 2019: Announcement of "Quantum
supremacy” based on 52 qubits circuit of
depth ~20, with gate fidelity ~ .99

USTC Dec 2020: Boson sampling experiment led by
Jian-Wei Pan and Chao-Yang Lu -- ~ 76 qubits



Theoretical Roots and Justification

 BV'93 Quantum computers violate the
Extended Church-Turing Thesis



The Quantum Veil

The classical description of the state of n
qubits requires 2" complex numbers.

State = ), a, |x)

n qubits




The Quantum Veil

Even though the classical description of
the state of n qubits requires 2" complex
numbers, can get at most n classical bits
of information about the state through a
measurement — Holevo’s theorem.




Computational probes: peering behind the
Quantum Veil

For example, one might naively argue that 1t 1s impossible to
experimentally verify the exponentially large size of the Hilbert
space associated with a discrete quantum system, since any
observation leads to a collapse of its superposition. However,
an experiment demonstrating the exponential speedup offered
by quantum computation over classical computation would
establish that something like the exponentially large Hilbert
space must exist.
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Theoretical Roots and Justification

BV'93 Quantum computers violate the
Extended Church-Turing Thesis

Quantum supremacy = experimental violation of ECT
Shor'94 Factoring algorithm - easy to check
Sampling tasks as basis for quantum supremacy:

Boson Sampling [Aaronson, Arkhipov '11] and
IQP [Brebner, Jozsa, Shepherd ‘11]



Statistical Test for Sampling Task




Sampling Tasks

Probability distributions generated by quantum circuits look very
different from those generated by classical circuits

[BV'93] BQP € GapP
Quantum circuit C on input 0" Output = sample from distribution

Feynman path integral: constructive and destructive interference
across exponentially many paths:
P[x] = (a, - a.)2 where a, and a. can each be very large

Probabilistic circuit: computing P-[x] in #P
Quantum circuit: computing P-[x] Gap-P hard for worst case C

[AA11, B]JS'11] Suppose classical computer can sample from
output distribution. Then Stockmeyer implies can approximate
P-[X] in Polynomial Hierarchy (PH).
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Two Challenges:

« Statistical test to check whether sampled x's
consistent with P-(x)

« How do we know that approximating P-(x) for
a random quantum circuit C is hard?

And therefore by Stockmeyer sampling from
any distribution with constant TVD from P is hard



How do we know that approximating P-(x) for
a random quantum circuit C is hard?

« Worst-case to average case reduction.

Model random quantum circuit as a Haar random
unitary on n qubits.

Model reduction after Lipton’s permanent reduction
A(t) = X + tR

Perm(A(t)) is a degree n polynomial in t.
Perm(A(0)) = Perm(X)

[Bouland, Fefferman, Nirkhe, V Nature Physics 2019]



Worst case to Average case ingredients

« Output probability P-(x) of a quantum circuit with m
gates is a polynomial of degree 2m:

(0™|Clo™) = z (0™ Cr [V Xym | Cn— 1 lym—1) - (y21C1|0™)
yz,yg,...,ymE{O,l}n

« Cannot just take C + tR for random quantum circuit R
because C+tR is not unitary

« Attempt 1:
Choose and fix {H,};efn) Haar random gates
Consider C' = C;,Cy,,—q ... C{ so that for each gate C; = C;H;
C' random quantum circuit: each gate in C' is completely random
Problem: no univariate polynomial structure connects worst-case circuit
C with the new circuit C" !



Worst case to Average case ingredients

Output probability P-(x) of a quantum circuit with m
gates is a polynomial of degree 2m:

(0™|Clo™) = z (0™ Cr [V Xym | Cn— 1 lym—1) - (y21C1|0™)
yz,yg,...,ymE{O,l}n

Cannot just take C + tR for random quantum circuit R
because C+tR is not unitary

Attempt 2:

Main idea: “Implement tiny fraction of H;
i.€., Ci’ — CiHie_ihie
If & = 1 the corresponding circuit C' = C, and if 8 =~ small, each
gate 1s close to Haar random
Now take several non-zero but small 8 and apply polynomial
extrapolation (as per Lipton’s proof)
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Worst case to Average case ingredients
« Attempt 2:

Main idea: “Implement tiny fraction of H;
ie., C; = C;H;e ¥
If & = 1 the corresponding circuit C' = C, and if 8 =~ small, each
gate 1s close to Haar random
Now take several non-zero but small 8 and apply polynomial
extrapolation (as per Lipton’s proof)
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* Problem: e is not polynomial in 6

Solution. take fixed truncation of Taylor series for e~

—ih:0)k
i.e., each gate of C' is C;H; 2’,§=0( ”:,9)

So each gate entry is a polynomial in 8 and so is py(C")
Now extrapolate and compute q(1) = py(C)

ih;0

* [Movassagh ’19,’20] gives a “Cayley path” interpolation between the
worst-case and random quantum circuit, which stays unitary throughout



[Bouland, Fefferman, Landau, Liu & Kondo, Mor1, Movassagh FOCS21]
m = #gates 1n quantum circuit
Given O(m#) noisy evaluation points {(8;,y;)} to a polynomial
q(8) of degree m where:
1. 6; are equally spaced in the interval [0, = 1/m]
2. atleast 2/3 of y; are 6-close to q(6;)
can use NP oracle to output z:
1z — q(1)] < §20(mlog ™) = sp0(mlogm) ypy

B q(0)1
Improved from §20(mF )

Want §200) 5o § ~ 20 ' /-\
Idea: substitute =xk. / . \/

Endpoints 0,1 unchanged

B 2 BV and m 2> mk >

Choose k =log m 0 b 16
“average-case” “worst-case’

points point
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[Bouland, Fefferman, Landau, Liu & Kondo, Mori, Movassagh FOCS21 ]
m = #gates 1n quantum circuit
Given O(m#) noisy evaluation points {(8;,y;)} to a polynomial
q(8) of degree m where:
1. 6; are equally spaced in the interval [0, = 1/m]
2. atleast 2/3 of y; are 6-close to q(6;)
can use NP oracle to output z:

1z — q(1)] < §20(mlog ™) = sp0(mlogm) ypy

| q(6)?
For Boson Sampling,

n Bosons, n?* modes

Degree of polynomial = n //\
Dimension of Hilbert space . . \/

= n’+n-1 choose n ~ 2nlogn
>
So want § ~ 2-nlogn 0 B 10
“average-case” “worst-case”
points point




Statistical test to check whether sampled x’s consistent with P-(x)

Linear cross entropy E[P-(x)]

Intuition: Higher probability x’s (P-(x) large) should
show up more often.

Exponential distribution P(x) = a/2" ~ exp(-a)

For a random quantum circuit C, E[P(Xx)] = 2/2"

For reference, if C outputs uniformly random string
E[Pc(x)] = 1/2"

Estimate E[P-(Xx)] from samples x;, X5, ... output by circuit

Google’s experiment gave estimates of 1.002/2"



Heavy Output Generation

[Aaronson, Chen "17]

HOG: Given random quantum circuit C, generate
X1, ... X, such that at least 2/3 fraction have P-(x;)
larger than the median probability.

[Aaronson, Gunn '19]

XHOG: Given random quantum circuit C, generate
Xy, - X such that the average of P-(X;) is at least
(1+b)2", where b is 1/poly(n)

Xquath: There is no polynomial time algorithm that
on input a random quantum circuit C produces an
estimate for py = P-(0") such that

Ec[(p-po)?] < E[(2" - pg)?] - 3™

Xquath implies XHOG. Use hiding to switch O™ to r,
then appeal to Markov.



Discussion

« n = # qubits versus m = # gates for random
circuit sampling.
Robustness of worst case to average case
reduction: §20(mlogm)

Estimate for linear cross entropy for Xquath

« Cryptographic schemes for proofs of quantumness



