Towards Putting Quantum Supremacy on a Rigorous Footing

Umesh V. Vazirani
U. C. Berkeley

Google Nov 2019: Announcement of "Quantum supremacy" based on 52 qubits circuit of depth ~ 20, with gate fidelity $\sim .99$

USTC Dec 2020: Boson sampling experiment led by Jian-Wei Pan and Chao-Yang Lu -- ~ 76 qubits

Theoretical Roots and Justification

- BV'93 Quantum computers violate the Extended Church-Turing Thesis

The Quantum Veil

The classical description of the state of n qubits requires 2^{n} complex numbers.

State $=\sum_{x} \alpha_{x}|x\rangle$

The Quantum Veil

Even though the classical description of the state of n qubits requires 2^{n} complex numbers, can get at most n classical bits of information about the state through a measurement - Holevo's theorem.

$$
\text { State }=\sum_{x} \alpha_{x}|x\rangle
$$

Computational probes: peering behind the Quantum Veil

For example, one might naively argue that it is impossible to experimentally verify the exponentially large size of the Hilbert space associated with a discrete quantum system, since any observation leads to a collapse of its superposition. However, an experiment demonstrating the exponential speedup offered by quantum computation over classical computation would establish that something like the exponentially large Hilbert space must exist.
-BV 97

Theoretical Roots and Justification

- BV'93 Quantum computers violate the Extended Church-Turing Thesis
- Quantum supremacy = experimental violation of ECT
- Shor’94 Factoring algorithm - easy to check
- Sampling tasks as basis for quantum supremacy: Boson Sampling [Aaronson, Arkhipov '11] and IQP [Brebner, Jozsa, Shepherd '11]

Statistical Test for Sampling Task

Sampling Tasks

Probability distributions generated by quantum circuits look very different from those generated by classical circuits
[BV'93] BQP \subseteq GapP
Quantum circuit C on input $0^{n} \quad$ Output $=$ sample from distribution
Feynman path integral: constructive and destructive interference across exponentially many paths:
$P[x]=\left(a_{+}-a_{-}\right)^{2}$ where a_{+}and a_{-}can each be very large
Probabilistic circuit: computing $P_{C}[x]$ in \# P
Quantum circuit: computing $\mathrm{P}_{\mathrm{C}}[\mathrm{x}]$ Gap- P hard for worst case C
[AA'11, BJS'11] Suppose classical computer can sample from output distribution. Then Stockmeyer implies can approximate $P_{C}[x]$ in Polynomial Hierarchy (PH).

Fix a random circuit C --i.e. a random sequence of gates of depth ~ 20

Initialize each qubit to 0

Measure the qubits to get a random 52 bit string x sampled according to some distribution.

Use supercomputer to compute $P_{C}(x)=P[C$ outputs x on input 0^{n}]

Check whether sampled x's are consistent with $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$

Two Challenges:

- Statistical test to check whether sampled x's consistent with $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$
- How do we know that approximating $P_{C}(x)$ for a random quantum circuit C is hard?

And therefore by Stockmeyer sampling from any distribution with constant TVD from P_{C} is hard

How do we know that approximating $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$ for a random quantum circuit C is hard?

- Worst-case to average case reduction.
- Model random quantum circuit as a Haar random unitary on n qubits.
- Model reduction after Lipton's permanent reduction $A(t)=X+t R$
$\operatorname{Perm}(A(t))$ is a degree n polynomial in t. $\operatorname{Perm}(A(0))=\operatorname{Perm}(X)$
[Bouland, Fefferman, Nirkhe, V Nature Physics 2019]

Worst case to Average case ingredients

- Output probability $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$ of a quantum circuit with m gates is a polynomial of degree 2 m :

$$
\left\langle 0^{n}\right| C\left|0^{n}\right\rangle=\sum_{y_{2}, y_{3}, \ldots, y_{m} \in\{0,1\}^{n}}\left\langle 0^{n}\right| C_{m}\left|y_{m}\right\rangle\left\langle y_{m}\right| C_{m-1}\left|y_{m-1}\right\rangle \ldots\left\langle y_{2}\right| C_{1}\left|0^{n}\right\rangle
$$

- Cannot just take $C+$ tR for random quantum circuit R because $C+t R$ is not unitary
- Attempt 1:

Choose and fix $\left\{H_{i}\right\}_{i \in[m]}$ Haar random gates
Consider $C^{\prime}=C_{m}^{\prime} C_{m-1}^{\prime} \ldots C_{1}^{\prime}$ so that for each gate $C_{i}^{\prime}=C_{i} H_{i}$
C^{\prime} random quantum circuit: each gate in C^{\prime} is completely random
Problem: no univariate polynomial structure connects worst-case circuit C with the new circuit C^{\prime} !

Worst case to Average case ingredients

- Output probability $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$ of a quantum circuit with m gates is a polynomial of degree 2 m :

$$
\left\langle 0^{n}\right| C\left|0^{n}\right\rangle=\sum_{y_{2}, y_{3}, \ldots, y_{m} \in\{0,1\}^{n}}\left\langle 0^{n}\right| C_{m}\left|y_{m}\right\rangle\left\langle y_{m}\right| C_{m-1}\left|y_{m-1}\right\rangle \ldots\left\langle y_{2}\right| C_{1}\left|0^{n}\right\rangle
$$

- Cannot just take $C+$ tR for random quantum circuit R because $\mathrm{C}+\mathrm{tR}$ is not unitary
- Attempt 2:

Main idea: "Implement tiny fraction of H_{i}^{-1} "
i.e., $C_{i}^{\prime}=C_{i} H_{i} e^{-i h_{i} \theta}$

If $\theta=1$ the corresponding circuit $C^{\prime}=C$, and if $\theta \approx$ small, each gate is close to Haar random
Now take several non-zero but small θ and apply polynomial extrapolation (as per Lipton's proof)

Worst case to Average case ingredients

- Attempt 2:

Main idea: "Implement tiny fraction of H_{i}^{-1} "
i.e., $C_{i}^{\prime}=C_{i} H_{i} e^{-i h_{i} \theta}$

If $\theta=1$ the corresponding circuit $C^{\prime}=C$, and if $\theta \approx$ small, each gate is close to Haar random
Now take several non-zero but small θ and apply polynomial extrapolation (as per Lipton's proof)

- Problem: $e^{-i h_{i} \theta}$ is not polynomial in θ

Solution: take fixed truncation of Taylor series for $e^{-i h_{i} \theta}$
i.e., each gate of C^{\prime} is $C_{i} H_{i} \sum_{k=0}^{K} \frac{\left(-i h_{i} \theta\right)^{k}}{k!}$

So each gate entry is a polynomial in θ and so is $p_{0}\left(C^{\prime}\right)$ Now extrapolate and compute $q(1)=p_{0}(C)$

- [Movassagh '19,'20] gives a "Cayley path" interpolation between the worst-case and random quantum circuit, which stays unitary throughout
[Bouland, Fefferman, Landau, Liu \& Kondo, Mori, Movassagh FOCS21] $\mathrm{m}=\#$ gates in quantum circuit
Given $\mathrm{O}\left(m^{2}\right)$ noisy evaluation points $\left\{\left(\theta_{i}, y_{i}\right)\right\}$ to a polynomial $\mathrm{q}(\theta)$ of degree m where:

1. θ_{i} are equally spaced in the interval $[0, \beta=1 / \mathrm{m}]$
2. at least $2 / 3$ of y_{i} are δ-close to $\mathrm{q}\left(\theta_{i}\right)$ can use NP oracle to output z : $|z-q(1)| \leq \delta 2^{O\left(m \log \beta^{-1}\right)}=\delta 2^{O(m \log m)}$ whp

Improved from $\delta 2^{O\left(m \beta^{-1}\right)}$ Want $\delta 2^{o(n)}$ so $\delta \sim 2^{-n}$

Idea: substitute $\theta=\mathrm{x}^{\mathrm{k}}$. Endpoints 0,1 unchanged $\beta \rightarrow \beta^{1 / \mathrm{k}}$ and $\mathrm{m} \rightarrow \mathrm{mk}$ Choose $\mathrm{k}=\log \mathrm{m}$

"average-case" points
"worst-case" point
[Bouland, Fefferman, Landau, Liu \& Kondo, Mori, Movassagh FOCS21] $\mathrm{m}=\#$ gates in quantum circuit
Given $\mathrm{O}\left(m^{2}\right)$ noisy evaluation points $\left\{\left(\theta_{i}, y_{i}\right)\right\}$ to a polynomial $\mathrm{q}(\theta)$ of degree m where:

1. θ_{i} are equally spaced in the interval $[0, \beta=1 / \mathrm{m}]$
2. at least $2 / 3$ of y_{i} are δ-close to $\mathrm{q}\left(\theta_{i}\right)$ can use NP oracle to output z : $|z-q(1)| \leq \delta 2^{O\left(m \log \beta^{-1}\right)}=\delta 2^{O(m \log m)}$ whp

For Boson Sampling, n Bosons, n^{2} modes Degree of polynomial $=n$ Dimension of Hilbert space $=n^{2}+n-1$ choose $n \sim 2^{\text {nlogn }}$ So want $\delta \sim 2^{- \text {-nlogn }}$

Statistical test to check whether sampled x 's consistent with $\mathrm{P}_{\mathrm{C}}(\mathrm{x})$
Linear cross entropy $E\left[P_{C}(x)\right]$
Intuition: Higher probability x 's $\left(\mathrm{P}_{\mathrm{C}}(\mathrm{x})\right.$ large) should show up more often.
Exponential distribution $P(x)=a / 2^{n} \sim \exp (-a)$
For a random quantum circuit $\mathrm{C}, \mathrm{E}\left[\mathrm{P}_{\mathrm{C}}(\mathrm{x})\right]=2 / 2^{\mathrm{n}}$
For reference, if C outputs uniformly random string

$$
\mathrm{E}\left[\mathrm{P}_{\mathrm{C}}(\mathrm{x})\right]=1 / 2^{\mathrm{n}}
$$

Estimate $\mathrm{E}\left[\mathrm{P}_{\mathrm{C}}(\mathrm{x})\right]$ from samples $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$ output by circuit

Google's experiment gave estimates of $1.002 / 2^{n}$

Heavy Output Generation

[Aaronson, Chen '17]
HOG: Given random quantum circuit C , generate $x_{1}, \ldots x_{k}$ such that at least $2 / 3$ fraction have $P_{C}\left(x_{i}\right)$ larger than the median probability.
[Aaronson, Gunn '19]
XHOG: Given random quantum circuit C , generate $x_{1}, \ldots x_{k}$ such that the average of $P_{C}\left(x_{i}\right)$ is at least $(1+b) 2^{-n}$, where b is $1 / \operatorname{poly}(n)$

Xquath: There is no polynomial time algorithm that on input a random quantum circuit C produces an estimate for $p_{0}=P_{C}\left(0^{n}\right)$ such that $\mathrm{E}_{\mathrm{C}}\left[\left(\mathrm{p}-\mathrm{p}_{0}\right)^{2}\right]<\mathrm{E}\left[\left(2^{-\mathrm{n}}-\mathrm{p}_{0}\right)^{2}\right]-3^{-n}$

Xquath implies XHOG. Use hiding to switch 0^{n} to r, then appeal to Markov.

Discussion

- $\mathrm{n}=$ \# qubits versus $\mathrm{m}=$ \# gates for random circuit sampling. Robustness of worst case to average case reduction: $\delta 2^{0(m \log m)}$
Estimate for linear cross entropy for Xquath
- Cryptographic schemes for proofs of quantumness

