Towards Putting Quantum Supremacy on a Rigorous Footing

Umesh V. Vazirani U. C. Berkeley Google Nov 2019: Announcement of "Quantum supremacy" based on 52 qubits circuit of depth ~20, with gate fidelity ~ .99

USTC Dec 2020: Boson sampling experiment led by Jian-Wei Pan and Chao-Yang Lu -- ~ 76 qubits

Theoretical Roots and Justification

• BV'93 Quantum computers violate the Extended Church-Turing Thesis

The Quantum Veil

The classical description of the state of n qubits requires 2ⁿ complex numbers.

•••••••••• n qubits

State = $\sum_{x} \alpha_{x} |x\rangle$

The Quantum Veil

Even though the classical description of the state of n qubits requires 2ⁿ complex numbers, can get at most n classical bits of information about the state through a measurement – Holevo's theorem.

State = $\sum_{x} \alpha_{x} |x\rangle$

Computational probes: peering behind the Quantum Veil

For example, one might naively argue that it is impossible to experimentally verify the exponentially large size of the Hilbert space associated with a discrete quantum system, since any observation leads to a collapse of its superposition. However, an experiment demonstrating the exponential speedup offered by quantum computation over classical computation would establish that something like the exponentially large Hilbert space must exist.

-BV 97

Theoretical Roots and Justification

- BV'93 Quantum computers violate the Extended Church-Turing Thesis
- Quantum supremacy = experimental violation of ECT
- Shor'94 Factoring algorithm easy to check
- Sampling tasks as basis for quantum supremacy: Boson Sampling [Aaronson, Arkhipov '11] and IQP [Brebner, Jozsa, Shepherd '11]

Sampling Tasks

Probability distributions generated by quantum circuits look very different from those generated by classical circuits

 $[\mathsf{BV'93}] \mathsf{BQP} \subseteq \mathsf{GapP}$

Quantum circuit C on input 0^n Output = sample from distribution

Feynman path integral: constructive and destructive interference across exponentially many paths: $P[x] = (a_{+} - a_{-})^{2}$ where a_{+} and a_{-} can each be very large

Probabilistic circuit: computing $P_C[x]$ in #P Quantum circuit: computing $P_C[x]$ Gap-P hard for worst case C

[AA'11, BJS'11] Suppose classical computer can sample from output distribution. Then Stockmeyer implies can approximate $P_C[x]$ in Polynomial Hierarchy (PH).

Fix a random circuit C --i.e. a random sequence of gates of depth ~ 20

Initialize each qubit to 0

Measure the qubits to get a random 52 bit string x sampled according to some distribution.

Use supercomputer to compute $P_C(x) = P[C \text{ outputs } x \text{ on} \text{ input } 0^n]$

Check whether sampled x's are consistent with $P_C(x)$

Two Challenges:

- Statistical test to check whether sampled x's consistent with $P_C(x)$
- How do we know that approximating P_C(x) for a random quantum circuit C is hard?

And therefore by Stockmeyer sampling from any distribution with constant TVD from $P_{\rm C}$ is hard

How do we know that approximating $P_C(x)$ for a **random** quantum circuit C is hard?

- Worst-case to average case reduction.
- Model random quantum circuit as a Haar random unitary on n qubits.
- Model reduction after Lipton's permanent reduction
 A(t) = X + tR
 Perm(A(t)) is a degree n polynomial in t.
 Perm(A(0)) = Perm(X)

[Bouland, Fefferman, Nirkhe, V Nature Physics 2019]

Worst case to Average case ingredients

 Output probability P_C(x) of a quantum circuit with m gates is a polynomial of degree 2m:

 $\langle 0^{n} | C | 0^{n} \rangle = \sum_{y_{2}, y_{3}, \dots, y_{m} \in \{0, 1\}^{n}} \langle 0^{n} | C_{m} | y_{m} \rangle \langle y_{m} | C_{m-1} | y_{m-1} \rangle \dots \langle y_{2} | C_{1} | 0^{n} \rangle$

- Cannot just take C + tR for random quantum circuit R because C+tR is not unitary
- Attempt 1: Choose and fix {H_i}_{i∈[m]} Haar random gates
 Consider C' = C'_m C'_{m-1} ... C'_1 so that for each gate C'_i = C_i H_i C' random quantum circuit: each gate in C' is completely random
 Problem: no univariate polynomial structure connects worst-case circuit C with the new circuit C' !

Worst case to Average case ingredients

 Output probability P_C(x) of a quantum circuit with m gates is a polynomial of degree 2m:

 $\langle 0^{n} | C | 0^{n} \rangle = \sum_{y_{2}, y_{3}, \dots, y_{m} \in \{0, 1\}^{n}} \langle 0^{n} | C_{m} | y_{m} \rangle \langle y_{m} | C_{m-1} | y_{m-1} \rangle \dots \langle y_{2} | C_{1} | 0^{n} \rangle$

 Cannot just take C + tR for random quantum circuit R because C+tR is not unitary

Attempt 2: *Main idea*: "Implement tiny fraction of H_i⁻¹" i.e., C'_i = C_iH_ie^{-ih_iθ} If θ = 1 the corresponding circuit C' = C, and if θ ≈ small, each gate is close to Haar random Now take several non-zero but small θ and apply polynomial extrapolation (as per Lipton's proof)

Worst case to Average case ingredients

- Attempt 2: *Main idea*: "Implement tiny fraction of H_i⁻¹" i.e., C'_i = C_iH_ie^{-ih_iθ} If θ = 1 the corresponding circuit C' = C, and if θ ≈ small, each gate is close to Haar random Now take several non-zero but small θ and apply polynomial extrapolation (as per Lipton's proof)
- *Problem*: $e^{-ih_i\theta}$ is not polynomial in θ *Solution*: take fixed truncation of Taylor series for $e^{-ih_i\theta}$ i.e., each gate of *C'* is $C_i H_i \sum_{k=0}^{K} \frac{(-ih_i\theta)^k}{k!}$ So each gate entry is a polynomial in θ and so is $p_0(C')$ Now extrapolate and compute $q(1) = p_0(C)$
- [Movassagh '19,'20] gives a "Cayley path" interpolation between the worst-case and random quantum circuit, which stays unitary throughout

[Bouland, Fefferman, Landau, Liu & Kondo, Mori, Movassagh FOCS21] m = #gates in quantum circuit

Given $O(m^2)$ noisy evaluation points $\{(\theta_i, y_i)\}$ to a polynomial $q(\theta)$ of degree *m* where:

1. θ_i are equally spaced in the interval $[0, \beta = 1/m]$

2. at least 2/3 of y_i are δ -close to $q(\theta_i)$

can use **NP** oracle to output *z*:

 $|z - q(1)| \le \delta 2^{O(m \log \beta^{-1})} = \delta 2^{O(m \log m)} \text{ whp}$

Improved from $\delta 2^{O(m\beta^{-1})}$ Want $\delta 2^{O(n)}$ so $\delta \sim 2^{-n}$

Idea: substitute $\theta = x^k$. Endpoints 0,1 unchanged $\beta \rightarrow \beta^{1/k}$ and m \rightarrow mk Choose k = log m

[Bouland, Fefferman, Landau, Liu & Kondo, Mori, Movassagh FOCS21] m = #gates in quantum circuit

Given $O(m^2)$ noisy evaluation points $\{(\theta_i, y_i)\}$ to a polynomial $q(\theta)$ of degree *m* where:

1. θ_i are equally spaced in the interval $[0, \beta = 1/m]$

2. *at least 2/3* of y_i are δ -close to $q(\theta_i)$

can use **NP** oracle to output *z*:

 $|z-q(1)| \leq \delta 2^{O(m\log\beta^{-1})} = \delta 2^{O(m\log m)} \text{ whp}$

For Boson Sampling, n Bosons, n^2 modes Degree of polynomial = n Dimension of Hilbert space = n^2 +n-1 choose n ~ 2^{nlogn}

So want $\delta \sim 2^{-nlogn}$

Statistical test to check whether sampled x's consistent with $P_{C}(x)$

Linear cross entropy $E[P_C(x)]$

Intuition: Higher probability x's ($P_C(x)$ large) should show up more often. Exponential distribution $P(x) = a/2^n \sim exp(-a)$

For a random quantum circuit C, $E[P_C(x)] = 2/2^n$

For reference, if C outputs uniformly random string $E[P_C(x)] = 1/2^n$

Estimate $E[P_C(x)]$ from samples $x_1, x_2, ...$ output by circuit

Google's experiment gave estimates of 1.002/2ⁿ

Heavy Output Generation

[Aaronson, Chen '17]

HOG: Given random quantum circuit C, generate $x_1, ... x_k$ such that at least 2/3 fraction have $P_C(x_i)$ larger than the median probability.

[Aaronson, Gunn '19] XHOG: Given random quantum circuit C, generate $x_1, ... x_k$ such that the average of $P_C(x_i)$ is at least $(1+b)2^{-n}$, where b is 1/poly(n)

Xquath: There is no polynomial time algorithm that on input a random quantum circuit C produces an estimate for $p_0 = P_C(0^n)$ such that $E_C[(p-p_0)^2] < E[(2^{-n} - p_0)^2] - 3^{-n}$

Xquath implies XHOG. Use hiding to switch 0ⁿ to r, then appeal to Markov.

Discussion

- n = # qubits versus m = # gates for random circuit sampling. Robustness of worst case to average case reduction: δ2^{0(m log m)} Estimate for linear cross entropy for Xquath
- Cryptographic schemes for proofs of quantumness