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GENERALIZED LINEAR MODELS (GLM)

Generalized linear model I1s a class of functions

c,:X— o(w-x)

parameterized by an unknown weight vector w € R and link function & which is

assumed to be a known 1-Lipschitz monotonic function.

o(a) = max(0,a) oa) = 1+ exp(—a)




RECTIFIED LINEAR UNIT (RELU)
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L EARNING PROBLEM

INPUT OUTPUT

Hypothesis A
Access to samples & or * Algorithm * ypothesis

queries from distribution & which minimizes loss
over R4 X |

loss(#) < minloss(RelLU,,) + ¢

w

1
Square loss: loss(h) = E, )~g [5 (h(x) — y)z] Best possible loss

f his of the form o, for some w then we call the algorithm a proper
learner else Improper
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INFORMATION THEORE TICALLY

» Complexity of the model can be bounded as long as the welights are bounded

(Rademacher, parameter counting, ...)

+ Sample complexity is polynomial in all parameters

Brute-force over the parameter space

Can we do this In a computationally efficient manner?



Realizable (no noise)
y = RelLU,,(x) for
some w € R?

Solvable In
Inear programmnr
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NOISE MODELS

P-Concept (mean-0 noise)
Ely|x] = RelLU,,(x)
for some w € R?

Solvable in poly time using a

convex surrogate [Kalai-Sastry'08;

Kakade-Kalai-Kanaae-Shamir'l | ]
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Agnostic (arbitrary noise)

y has no restrictions

Not solvable in poly-time



THIS TALK

What Is the precise computational complexity for this problem?

Part |: Conditional Hardness even with Bounded Weights and Inputs

Joint work with Adam Klivans, Pasin Manurangsi and Daniel Reichman

|

Part 2: Unconditional Hardness even under Gaussian Marginals

Joint work with Aravind Gollakota and Adam Klivans
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PART |

CONDITIONAL HARDNESS OVER UNIT BALL



RELU REGRESSION ERM

Input: Set § of samples (x,y) € P ERIREAINE

1 2
Goal: Find w € Le{88] minimizes E, ) ¢ P (ReLUW(x) - Y) Proper learning

Training problem is equivalent to learning problem if we choose & to be uniform on §

We remove the scale in the problem by restricting x, w to have norm < 1



MAIN RESULT

Goel-Klivans-Manurangsi-Reichman’Z |

Under a certain Exponential Time Hypothesis (ETH), there is no

time algorithm for proper RelLU regression up to additive

20(1/62)P oly(d)
error €.

Bounds poly in d due to norm bound on input and weight

A simple algorithm that terates over all possible sign-patterns for

bolynomially

many samples matches the lower bound (approach by [Arora-Basu-V

Our result gives a separation between proper and

ianjy-Mukherjee’| 8])

improper learning for RelLU regression!

Best-known improper algorithm runs in time 2°Y€nolv(d) [Goel-Kanade-Kiivans-Thaler'| 7]
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HYPOTHESIS

Densest k-Subgraph (DxS)

Input: Graph G of size n,k € N

Goal: Find k-vertex subgraph with max number of edges

Gap-ETH for Densest k-Subgraph § -

Goel-Klivans-Manurangsi-Reichman’Z |

There is no 2°"-time algorithm that can approximate Densest k-Subgraph within a
constant factor.

o(n)-level of the Sum-of-Squares Hierarchies do not give constant factor

approximation for DKS even for bounded degree graphs [Alon-Arora-Manokaran-
Moshkovitz-Weinstein'| |, Manurangsi'| /|




MAIN CHALLENGE

20(1/52)

Can approximate the optimal ReLU up to 0 in poly(d) time using

dimensionality reduction and a o-net = 4/ € implies € additive sg-loss for no noise

+ When the intended solution is “almost” correct then we can get a 29€) algorithm

* [hus we need to construct an instance where the intended solution Is also far from

the label
Best RelLU

X~
Y=y —(—=y) <56 +28|y -yl

/ \ '\ [f this is O(1) then
[rue label 5-approx to V=] <8 error is & not &~
best RelLU ~ So we need 0 = €

Wi



REDUCTION .

Densest k-Subgraph (DkS)

Input: Graph G of size n,k € N %
Goal: Find k-vertex subgraph with max number of edges ; e
Cardinality Constraint Edge Constraint
For every vertex j € [n] For every edge (i, ) create
create o(w; — 0.5/\/;) =1 o(W; +w; — 0.75/\/1_<) =1

Among w of norm 1, loss is

S Error 1s small when both 1
Mminimized when K

coordinates are set to 1/\/;

and J are selected

Note that error on these constraints Is a constant as needed
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PART 2.
UNCONDITIONAL HARDNESS OVER
GAUSSIAN MARGINALS



GAUSSIAN INPU T SETUP

Back to the learning problem (not ERM)

Well-behaved distribution

We further assume input x is distributed according to Gaussian (0, I)

Common assumption In
Work In the Statistical Query (5Q) computational model many works
[Ge-Lee-Ma’l 8; Du-Zhai-Poczos-

. . . S Singh'l 8; Safran-Shamir’| ;... Awasthi-
Our results extend to Sigmoid and Sign activations ° Tang-Viiayaraghavan'2 ||

\ Agnostically learning half-spaces




THE STATISTICAL QUERY MODEL earnsos;

Don't see individual samples (x, y), instead make “statistical queries” to an oracle

Query
qﬁztdxt — |

_
7€ |0,1]

Tolerance

e, y)] £ 7

«

& ..

| earner

lolerance — sample complexity

Oracle # queries — runtime complexity
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POWER OF 5Q MODELS

SQ model puts a restriction on the computational model
SQ allows for unconditional (without assumption) computational lower bounds

Many standard ML algorithms can be implemented as SQ algorithms including

moment-based methods, gradient descent etc.

Parities can't be learned in the SQ model: Gaussian elimination is not SO

Previous part allowed any algorithm but required hardness assumption In

contrast here we restrict the computational model



MAIN RESULT

Goel-Gollakota-Klivans 20
Any SQ algorithm for agnostically learning ReLU needs super-polynomial

number of queries or super-polynomial tolerance.

Bounds scale with dimension since input norms are = \/c_z’
For ReLU and Halfspaces: lower bound scales as d**/€)) for some constant 1 > ¢ > 0

Improves on previous d**1°¢1€) bound by [Goel-Karmalkar-Kiivans'I 9] for ReLU
and by [Klivans-Kothari'| 4] for I—Ia\fspaces

For Sigmoids: lower bound scales as dog"(1/e)) N result was known for Sigmoids

See concurrent work by [Diakonikolas-Kane-Zarifis’20] and

subsequent work by [Diakonikolas-Kane-Pittas-Zarifis’2 | ] which generalizes and tightens this result



OUR APPROACH

Standard SQ lower bounds work by constructing a large class of functions that
are nearly orthogonal

VWe prove via a reduction using known 5Q lower bounds instead of explicitly
constructing a family of functions

A7

7

o(w - Xx) § —

L earner for GLM &f in

agnostic model | ,
Learner for two-layer NN s takes the input and
in the realizable model maps to [—1,1]




OUR APPROACH

g
.y ZaiU(Wi'x)

& i=1
Learner for GLM & in é,
agnostic model yw on the outside Is

Learner for two-layer NN | ‘
in the realizable model important to get genera
SQ lower bounds

ﬁ

Goel-Gollakota-Klivans'20; Diakonikolas-Kane-Kontonis-Zarifis’20

Any SQ algorithm for learning the above NN in the realizable noise model needs
super-polynomial number of queries or super-polynomial tolerance.
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FRANK WOLFE

To minimize a function, at each ste
inner-product with the negative o

b we find an element in our set that

" the gradient and upda

L€ OUr curren

Algorithm 1 Frank—Wolfe gradient descent over a generic inner product space

Start with an arbitrary zp € Z.
fort=0,...,7T do

Let Yt — t-|2-2'

Find s € Z such that (s, —Vp(z)) > maxycz(s', —=Vp(z)) — 561Cp.

Let z¢41 = (1 — ve)ze + s,
end for

2|

Mmaximizes

- estimate

Source: Wikipedia



FUNCTIONAL FRANK-WOLFE

*  We use Frank Wolfe on the function space using a [

£
convex surrogate loss functional l0sSsurr(f) “ ol J (l/f(a)—y)da]

» [his update step turns out to be equivalent to solving & (w-X)

the agnostic GLM problem on a residual

» Each time we add a new neuron to our existing linear |

combination | |

: K
Square loss would have let us learn sum of neurons which O -

would get a CS5Q lower bound not general SQ lower bound
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COMPLETING THE REDUCTION

*  We can simulate the queries using the SQ oracle of the original problem

*  We can bound the number of times the inner optimization Is run

Using standard FWV proof (surrogate Is convex)

» |f the inner loop was efficient then we could learn the two-layer NN
However, this Is a contradiction

Surrogate loss can handle the non-linearity in the second layer
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Part |:
» Distribution agnostic proper Rel .U regression over bounded inputs 1s not tractable under a

conditional hardness assumption & Separation b/w proper and improper
€& Holds against all algorithms

@ Discrete/specialized input distribution

Part 2:

» RellU regression with even Gaussian inputs is not tractable unconditionally for Statistical

Query Algorithms

€ Unconditional hardness even for benign distribution

@ Holds against only SQ algorithms



WHAT NEXT?

*  We want to avoid this computational barriers under reasonable assumptions

+ [hese hardness results indicate what assumptions do not suffice to get
pOsItive results

(Relaxed) Goal: Output hypothesis A such that:

loss(/) <(C )minloss(c) + €
CEE

Diakonikolas-Goel-Karmalkar-Klivans-Soltanolkotabi’ 20

There exists an algorithm that approximately learns the ReLU over any isotropic log-

concave distribution using O(d/¢) samples in time O(d?/¢).
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WHAT NEXT?

*  We want to avoid this computational barriers under reasonable assumptions

» [hese hardness results indicate what assumptions do not suffice to get
pOsItive results

(Stronger) Assumptions: Underlying distribution has additional structure

Goel-Klivans'| /

There exists poly-time algorithms over bounded domain if the marginal distribution
has strong Eigen-value decay.

26



WHAT NEXT?

*  We want to avoid this computational barriers under reasonable assumptions

+ [hese hardness results indicate what assumptions do not suffice to get
pOsItive results
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