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Generalized linear model is a class of functions


   

parameterized by an unknown weight vector  and link function  which is 
assumed to be a known -Lipschitz monotonic function.

σw : x → σ(w ⋅ x)

w ∈ ℝd σ
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GENERALIZED LINEAR MODELS (GLM)
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σ(a) = max(0,a) σ(a) =
1

1 + exp(−a)
ReLU Sigmoid



RECTIFIED LINEAR UNIT (RELU)
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Source:  Yoav 

Building 
Block

Lies in-between a halfspace and a linear function 

𝖱𝖾𝖫𝖴w : x → max(0, w ⋅ x)

Challenging 
to learn

Easy to 
learn

σ(a) = max(0,a)



𝗅𝗈𝗌𝗌(h) ≤ min
w

𝗅𝗈𝗌𝗌(𝖱𝖾𝖫𝖴w) + ϵ

Hypothesis h
which minimizes loss

LEARNING PROBLEM
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INPUT

Best possible loss

Access to samples  or 
queries from distribution  

over 

𝒮
𝒟

ℝd × ℝ

Algorithm

OUTPUT

Square loss:  𝗅𝗈𝗌𝗌(h) = 𝔼(x,y)∼𝒟 [ 1
2 (h(x) − y)2]

If  is of the form  for some  then we call the algorithm a proper 
learner else improper

h σŵ ŵ



INFORMATION THEORETICALLY

• Complexity of the model can be bounded as long as the weights are bounded 
(Rademacher, parameter counting, …)


• Sample complexity is polynomial in all parameters


• Brute-force over the parameter space
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Can we do this in a computationally efficient manner?
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NOISE MODELS

 for 
some 

y = ReLUw(x)
w ∈ ℝd

Realizable (no noise)

   
for some 

𝔼[y |x] = ReLUw(x)
w ∈ ℝd

P-Concept (mean-0 noise)

 has no restrictions y

Agnostic (arbitrary noise)

Solvable in poly time via 
linear programming and by 

GD under additional 
assumptions [Soltanolkotabi’17; 

Yehudai-Shamir’20]

Solvable in poly time using a 
convex surrogate [Kalai-Sastry’08; 

Kakade-Kalai-Kanade-Shamir’11]
Not solvable in poly-time



Part 1: Conditional Hardness even with Bounded Weights and Inputs

THIS TALK
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What is the precise computational complexity for this problem?

Part 2: Unconditional Hardness even under Gaussian Marginals

Joint work with Adam Klivans, Pasin Manurangsi and Daniel Reichman

Joint work with Aravind Gollakota and Adam Klivans



PART 1: 


CONDITIONAL HARDNESS OVER UNIT BALL



• Input: Set  of samples 

• Goal: Find  that minimizes 

S (x, y) ∈ ℝd × ℝ

w ∈ ℝd 𝔼(x,y)∼S [ 1
2 (ReLUw(x) − y)2]

RELU REGRESSION ERM
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Training problem is equivalent to learning problem if we choose  to be uniform on 𝒟 S

Proper learning

We remove the scale in the problem by restricting  to have normx, w ≤ 1

B(d,1) × [0,1]

B(d,1)



MAIN RESULT

Under a certain Exponential Time Hypothesis (ETH), there is no  
time algorithm for proper ReLU regression up to additive error .

2o(1/ϵ2)poly(d)
ϵ

Goel-Klivans-Manurangsi-Reichman’21

A simple algorithm that iterates over all possible sign-patterns for polynomially 
many samples matches the lower bound (approach by [Arora-Basu-Mianjy-Mukherjee’18])
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Our result gives a separation between proper and 
improper learning for ReLU regression!

Bounds poly in  due to norm bound on input and weightd

Best-known improper algorithm runs in time  [Goel-Kanade-Klivans-Thaler’17]2O(1/ϵ)poly(d)



Input: Graph  of size , 
Goal: Find -vertex subgraph with max number of edges

G n κ ∈ ℕ
κ

Densest -Subgraph (D S)κ κ

HYPOTHESIS
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Goel-Klivans-Manurangsi-Reichman’21

There is no -time algorithm that can approximate Densest -Subgraph within a 
constant factor.

2o(n) κ

Gap-ETH for Densest -Subgraphκ

-level of the Sum-of-Squares Hierarchies do not give constant factor 
approximation for DκS even for bounded degree graphs [Alon-Arora-Manokaran-

Moshkovitz-Weinstein’11; Manurangsi’17]

o(n)



MAIN CHALLENGE

(y − y′￼′￼)2 − (y − y′￼)2 ≤ δ2 + 2δ |y′￼− y |

• Can approximate the optimal ReLU up to  in  time using 
dimensionality reduction and a -net


• When the intended solution is “almost” correct then we can get a  algorithm


• Thus we need to construct an instance where the intended solution is also far from 
the label

δ 2O(1/δ2)poly(d)
δ

2O(1/ϵ)

 implies  additive sq-loss for no noiseδ = ϵ ϵ

True label

Best ReLU

-approx to 
best ReLU

δ |y′￼− y′￼′￼| ≤ δ

If this is  then 
error is  not 

So we need 

O(1)
δ δ2

δ = ϵ
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REDUCTION
Densest -Subgraph (D S)κ κ
Input: Graph  of size , 
Goal: Find -vertex subgraph with max number of edges

G n κ ∈ ℕ
κ

Cardinality Constraint 

For every vertex  
create 

j ∈ [n]
σ(wj − 0.5/ κ) = 1

Edge Constraint 

For every edge  create (i, j)
σ(wi + wj − 0.75/ κ) = 1

Among  of norm , loss is 
minimized when  

coordinates are set to 

w 1
κ
1/ κ

Error is small when both  
and  are selected

i
j

Note that error on these constraints is a constant as needed
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PART 2: 

UNCONDITIONAL HARDNESS OVER


GAUSSIAN MARGINALS



• Back to the learning problem (not ERM)


• We further assume input  is distributed according to Gaussian 

• Work in the Statistical Query (SQ) computational model


• Our results extend to Sigmoid and Sign activations

x 𝒩(0, I)

GAUSSIAN INPUT SETUP
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Agnostically learning half-spaces

Well-behaved distribution

Common assumption in 
many works


[Ge-Lee-Ma’18; Du-Zhai-Poczos-
Singh’18; Safran-Shamir’18;…Awasthi-

Tang-Vijayaraghavan’21]



THE STATISTICAL QUERY MODEL [KEARNS’98] 
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Don’t see individual samples , instead make “statistical queries” to an oracle(x, y)

φ : ℝd × ℝ → ℝ

𝔼[φ(x, y)] ± τ

τ ∈ [0,1]

LearnerOracle

Query

Tolerance

Tolerance  sample complexity


# queries  runtime complexity

→

→



• SQ model puts a restriction on the computational model


• SQ allows for unconditional (without assumption) computational lower bounds


• Many standard ML algorithms can be implemented as SQ algorithms including 
moment-based methods, gradient descent etc.


• Parities can’t be learned in the SQ model: Gaussian elimination is not SQ

POWER OF SQ MODELS
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Previous part allowed any algorithm but required hardness assumption in 
contrast here we restrict the computational model



MAIN RESULT

Any SQ algorithm for agnostically learning ReLU needs super-polynomial 
number of queries or super-polynomial tolerance.

Goel-Gollakota-Klivans’20

For ReLU and Halfspaces: lower bound scales as  for some constant dΩ((1/ϵ)c) 1 > c > 0

No result was known for Sigmoids

 Improves on previous  bound by [Goel-Karmalkar-Klivans’19] for ReLU 

and by [Klivans-Kothari’14] for Halfspaces

dΩ(log(1/ϵ))

For Sigmoids: lower bound scales as dΩ(log2(1/ϵ))
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See concurrent work by [Diakonikolas-Kane-Zarifis’20] and 

subsequent work by [Diakonikolas-Kane-Pittas-Zarifis’21] which generalizes and tightens this result

Bounds scale with dimension since input norms are  ≈ d



OUR APPROACH

• Standard SQ lower bounds work by constructing a large class of functions that 
are nearly orthogonal


• We prove via a reduction using known SQ lower bounds instead of explicitly 
constructing a family of functions
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ψ (
k

∑
i=1

ai σ(Wi ⋅ x))
Learner for GLM  in 

agnostic model
𝒜

Learner for two-layer NN 
in the realizable model 

σ(w ⋅ x)

 takes the input and 
maps to 

ψ
[−1,1]



OUR APPROACH
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Any SQ algorithm for learning the above NN in the realizable noise model needs 
super-polynomial number of queries or super-polynomial tolerance.

Goel-Gollakota-Klivans’20; Diakonikolas-Kane-Kontonis-Zarifis’20

ψ (
k

∑
i=1

ai σ(Wi ⋅ x))
Learner for GLM  in 

agnostic model
𝒜

Learner for two-layer NN 
in the realizable model 

σ(w ⋅ x)

 on the outside is 
important to get general 

SQ lower bounds

ψ



FRANK WOLFE

To minimize a function, at each step we find an element in our set that maximizes 
inner-product with the negative of the gradient and update our current estimate
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Source:  Wikipedia



FUNCTIONAL FRANK-WOLFE
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• We use Frank Wolfe on the function space using a 
convex surrogate loss functional


• This update step turns out to be equivalent to solving 
the agnostic GLM problem on a residual


• Each time we add a new neuron to our existing linear 
combination

Square loss would have let us learn sum of neurons which 
would get a CSQ lower bound not general SQ lower bound

𝗅𝗈𝗌𝗌𝗌𝗎𝗋𝗋( f ) = 𝔼
(x,y)∼𝒟 [∫

f(x)

0
(ψ(a) − y)da]



COMPLETING THE REDUCTION
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• We can simulate the queries using the SQ oracle of the original problem


• We can bound the number of times the inner optimization is run


• If the inner loop was efficient then we could learn the two-layer NN

Using standard FW proof (surrogate is convex)

However, this is a contradiction

Surrogate loss can handle the non-linearity in the second layer



Part 2: 

• ReLU regression with even Gaussian inputs is not tractable unconditionally for Statistical 

Query Algorithms Unconditional hardness even for benign distribution

Holds against only SQ algorithms

Part 1:

• Distribution agnostic proper ReLU regression over bounded inputs is not tractable under a 
conditional hardness assumption Separation b/w proper and improper

Holds against all algorithms

Discrete/specialized input distribution



WHAT NEXT?
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• We want to avoid this computational barriers under reasonable assumptions


• These hardness results indicate what assumptions do not suffice to get 
positive results

(Relaxed) Goal: Output hypothesis  such that:


                          

h

𝗅𝗈𝗌𝗌(h) ≤ C min
c∈𝒞

𝗅𝗈𝗌𝗌(c) + ϵ

There exists an algorithm that approximately learns the ReLU over any isotropic log-
concave distribution using  samples in time .Õ(d/ϵ) Õ(d2/ϵ)

Diakonikolas-Goel-Karmalkar-Klivans-Soltanolkotabi’20



WHAT NEXT?
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• We want to avoid this computational barriers under reasonable assumptions


• These hardness results indicate what assumptions do not suffice to get 
positive results

(Stronger) Assumptions: Underlying distribution has additional structure 

                        

There exists poly-time algorithms over bounded domain if the marginal distribution 
has strong Eigen-value decay.

Goel-Klivans’17



WHAT NEXT?
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• We want to avoid this computational barriers under reasonable assumptions


• These hardness results indicate what assumptions do not suffice to get 
positive results


