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● Increasing scale of learning problems 
● Many learning algorithms try to learn a 

concept/hypothesis by modeling it as a neural 
network. The algorithm keeps in the memory 
some neural network and updates the weights 
when new samples arrive. Memory used is the 
size of the network (low if network size is small).

Learning under Memory Constraints?



Brief Description for the Learning Model
A learner tries to learn 𝑓: 𝐴 → {0,1}, 𝑓 ∈ 𝐻 (hypothesis class)

from samples of the form (𝑎!, 𝑓(𝑎!)), 𝑎", 𝑓(𝑎") , …

that arrive one by one



[Shamir’14], [SVW’15]
Can one prove unconditional strong lower bounds on the 
number of samples needed for learning under memory 
constraints?

(when samples are viewed one by one)



Outline of the Talk
• The first example of such memory-sample tradeoff: 

Parity learning [Raz’16]

• Spark in the field: Subsequent results

• Extractor-based approach to lower bounds [G-Raz-Tal’18]

• Shallow dive into the proofs

• Implications for refutation of CSPs [G-Kothari-Raz’20]



Example: Parity Learning



Parity Learning
𝑓 ∈# 0,1 $ is unknown

A learner tries to learn 𝑓 = (𝑓!, 𝑓", … , 𝑓$) from 

(𝑎!, 𝑏!), 𝑎", 𝑏" , … , (𝑎%, 𝑏%), where ∀ 𝑡,

𝑎& ∈# 0,1 $ and 𝑏& =< 𝑎&, 𝑓 > = ∑' 𝑎&' ⋅ 𝑓' 𝑚𝑜𝑑 2 (inner 
product mod 2)



Parity Learning
A learner tries to learn 𝑓 = (𝑓!, 𝑓", … , 𝑓$) from 

(𝑎!, 𝑏!), 𝑎", 𝑏" , … , (𝑎%, 𝑏%), where ∀ 𝑡,

𝑎& ∈# 0,1 $ and 𝑏& = ∑' 𝑎&' ⋅ 𝑓' 𝑚𝑜𝑑 2

In other words, learner gets random binary linear 
equations in 𝑓!, 𝑓", . . , 𝑓$, one by one, and need to solve 
them



Let’s Try Learning (n=5)
𝑓! + 𝑓( + 𝑓) = 1
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Let’s Try Learning (n=5)
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Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓* = 0



Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓* = 0

𝑓" + 𝑓( + 𝑓) + 𝑓* = 1

𝑓! + 𝑓( = 1
𝑓! + 𝑓" + 𝑓) + 𝑓* = 0 𝑓" + 𝑓( = 0

𝑓! + 𝑓" + 𝑓) = 1𝑓" + 𝑓) + 𝑓* = 0

𝑓! + 𝑓( + 𝑓) = 1

𝑓 = (0,1,1,0,1)



Parity Learners
• Solve independent linear equations (Gaussian 

Elimination)

𝑶(𝒏) samples and 𝑶(𝒏𝟐) memory

• Try all possibilities of 𝑓

𝑶(𝒏) memory but exponential number of samples



Raz’s Breakthrough ’16
Any algorithm for parity learning of size 𝑛 requires either 
memory of 𝑛"/25 bits or exponential number of samples 
to learn  

Memory-Sample Tradeoff



Motivations from Other Fields 
Bounded Storage Cryptography: [Raz’16, GZ’19, VV’16, 
KRT’16, TT’18, GZ’19, JT’19, DTZ’20, GZ’21] 
Key’s length: 𝑛 Encryption/Decryption time: 𝑛

Unconditional security, if attacker’s memory size < 𝒏𝟐

𝟐𝟓

Complexity Theory:  Time-Space Lower Bounds have been 
studied in many models [BJS’98, Ajt’99, BSSV’00, For’97, 
FLvMV’05, Wil’06,…]



Subsequent Results



Subsequent Generalizations
• [KRT‘17]: Generalization to learning sparse parities
• [Raz’17, MM’17, MT’17, MM’18, DKS’19, GKLR’21]: 

Generalization to larger class of learning problems 



[Garg-Raz-Tal’18]
Extractor-based approach to prove memory-sample 
tradeoffs for a large class of learning problems
Implied all the previous results + new lower bounds
Closely follows the proof technique of [Raz’17]

[Beame-Oveis-Gharan-Yang’18] independently proved 
related lower bounds



Subsequent Generalizations
[Sharan-Sidford-Valiant’19]: Any algorithm performing 
linear regression over a stream of 𝑑-dimensional 
examples, uses a quadratic amount of memory or exhibits 
a slower rate of convergence than can be achieved 
without memory constraint
First-order methods for learning may have provably 
slower rate of convergence



More Related Work
• [GRT’19] Learning under multiple passes over the 

stream
• [DS’18, AMN’18, DGKR’19, GKR’20] Distinguishing, testing 

under memory or communication constraints
• [MT’19, GLM’20] Towards characterization of memory-

bounded learning
• [GRZ’20] Comments on quantum memory-bounded 

learning



Extractor-Based Approach to Lower Bounds 
[G-Raz-Tal’18]



Learning Problem as a Matrix
𝐴, 𝐹 : finite sets, 𝑀:𝐴×𝐹 → {−1,1} : a matrix

𝐹 : concept class  = 0,1 $

𝐴 : possible samples  = 0,1 $.



Learning Problem as a Matrix
𝑀:𝐴×𝐹 → {−1,1} : a matrix

𝑓 ∈# 𝐹 is unknown. A learner 
tries to learn 𝑓 from a stream
(𝑎!, 𝑏!), 𝑎", 𝑏" , … , 𝑎%, 𝑏% , 
where ∀𝑡 :  
𝑎& ∈# 𝐴 and 𝑏& = 𝑀(𝑎&, 𝑓)

𝑓

𝑀(𝑎!, 𝑓)
𝑎!

𝑀(𝑎", 𝑓)
𝑎"



Main Theorem
Assume that any submatrix 
of 𝑀 of at least 2/0|𝐴| rows 
and at least 2/ℓ|𝐹| columns, 
has a bias of at most 2/2. 
Then,
Any learning algorithm 
requires either 𝜴(𝒌𝒍)
memory bits or 𝟐𝜴(𝒓)
samples

2#$|𝐴|

2#%|𝐹|



Applications
Low-degree polynomials: A learner tries to learn an 𝑛-
variate multilinear polynomial 𝑝 of degree at most 𝑑 over 
F", from random evaluations of 𝑝 over F"$

𝛀(𝒏𝒅8𝟏) memory or 𝟐𝛀(𝒏) samples



Applications
Learning from sparse equations: A learner tries to learn 𝑓
= 𝑓!, … , 𝑓$ ∈ {0,1}$ , from random sparse linear 
equations, of sparsity 𝑙, over F" (each equation depends 
on 𝑙 variables)

𝛀(𝒏 ⋅ 𝒍) memory or 𝟐𝛀(𝒍) samples
We will use this result for 

proving sample lower bounds 

for refuting CSPs under 

memory constraints



Proof Overview



Branching Program (length 𝑚, width 𝑑)

Each layer represents a time step. Each vertex represents a memory state of 
the learner (𝑑 = 2!"!#$%). Each non-leaf vertex has 2&'() outgoing edges, one 
for each 𝑎, 𝑏 ∈ 0,1 &!× −1,1

(𝑎!,
𝑏!)

(𝑎, 𝑏)

𝑚

𝑑
(𝑎
% , 𝑏

% )
(𝑎", 𝑏")



Branching Program (length 𝑚, width 𝑑)

The samples 𝑎), 𝑏) , . . , 𝑎!, 𝑏! define a computation-path. Each vertex 𝑣 in 
the last layer is labeled by I𝑓* ∈ 0,1 &. The output is the label I𝑓* of the vertex 
reached by the path

(𝑎!,
𝑏!)

(𝑎, 𝑏)

𝑚

𝑑
(𝑎
% , 𝑏

% )
(𝑎", 𝑏")



Proof Overview
PK|M = distribution of 𝑓 conditioned on the event that the 
computation-path reaches 𝑣

Significant vertices: 𝑣 s.t. ||PK|M||" ≥ 2N ⋅ 2/$

𝑃𝑟 𝑣 = probability that the path reaches 𝑣

We prove that if 𝑣 is significant, 𝑃𝑟 𝑣 ≤ 2/O(0⋅N)

Hence, if there are less than 2Q(0⋅N) vertices, with high 
probability, we reach a non-significant vertex



Proof Overview
Progress Function [Raz’17]: For layer 𝐿', 

𝑍' = X
M∈R"

𝑃𝑟 𝑣 ⋅ PK|M , PK|S 0

● 𝑍! = 2"#$⋅&

● 𝑍' is very slowly growing: 𝑍! ≈ 𝑍(
● If 𝑠 ∈ 𝐿(,  then  𝑍( ≥ 𝑃𝑟 𝑠 ⋅ 2#)⋅& ⋅ 2"#$⋅&

Hence: If 𝑠 is significant, 𝑃𝑟 𝑠 ≤ 2/O(0⋅N)



Hardness of Refuting CSPs 
[G-Kothari-Raz’20]



Refuting CSPs under Streaming Model
• Fix a predicate 𝑃: 0,1 0 → {0,1}

• With bounded memory, distinguish between CSPs (with 
predicate 𝑃) where the constraints are randomly 
generated vs ones where the constraints are generated 
using a satisfying assignment

• Constraints arrive one by one in a stream 



Refuting CSPs under Streaming Model
• Fix a predicate 𝑃: 0,1 0 → {0,1}

• With bounded memory, distinguish between CSPs (with 
predicate 𝑃) where the constraints are randomly 
generated vs ones where the constraints are generated 
using a satisfying assignment

• Constraints arrive one by one in a stream 
Refutation is at least as hard as 
distinguishing between Random CSPs 
and satisfiable ones



Refuting CSPs under Streaming Model
• 𝑥 is chosen uniformly from 0,1 $

• At each step 𝑖, 𝑆' ⊆ [𝑛] is a randomly chosen (ordered) 
subset of size 𝑘. 

• Distinguisher sees a stream of either 𝑆', 𝑃 𝑥T" or 
𝑆', 𝑏' where 𝑏' is chosen uniformly from 0,1

𝑥&!: projection of 𝑥 to coordinates of 𝑆'



Reduction from Learning from Sparse Equations
Any algorithm that distinguishes random 𝑘 −XOR (random 
CSPs with XOR predicate) on 𝑛 variables from 

𝑘 −XOR CSPs with a satisfying assignment (under the 
streaming model), 

requires either 𝛀(𝒏 ⋅ 𝒌) memory or 𝟐𝛀(𝒌) constraints



Reduction from Learning from Sparse Equations
Any algorithm that distinguishes random 𝑘 −XOR (random 
CSPs with XOR predicate) on 𝑛 variables from 

𝑘 −XOR CSPs with a satisfying assignment (under the 
streaming model), 

requires either 𝛀(𝒏 ⋅ 𝒌) memory or 𝟐𝛀(𝒌) constraints

For 𝒌 ≫ 𝐥𝐨𝐠 𝒏, refutation is hard for algorithms 
using even super-linear memory, 
when the number of constraints is < 𝟐𝛀(𝒌)



Better Sample Bounds for Sub-Linear Memory
• Stronger lower bounds on the number of constraints 

needed to refute 

• Even for CSPs with 𝑡-resilient predicates 𝑃 [OW’14, 
AL’16, KMOW’17] 

• 𝑃: 0,1 0 → {0,1} is 𝑡-resilient if 𝑃 has zero correlation 
with every parity function on at most 𝑡 − 1 bits



Better Sample Bounds for Sub-Linear Memory
For every 0 < 𝜖 < 1, any algorithm that distinguishes 

random CSPs (with a 𝑡-resilient predicate 𝑃) on 𝑛 variables 

from satisfiable ones (when the constraints arrive in a 
streaming fashion), 

requires either 𝒏𝝐 memory or 𝒏
𝒕

𝛀(𝒕(𝟏/𝝐))
constraints



Thank You!


