
Extractor-Based Approach
to Memory-Sample
Tradeoffs

Joint Works with
Pravesh Kothari (CMU),
Ran Raz (Princeton) and
Avishay Tal (UC Berkeley)

Sumegha Garg

(Harvard)

● Increasing scale of learning problems
● Many learning algorithms try to learn a

concept/hypothesis by modeling it as a neural
network. The algorithm keeps in the memory
some neural network and updates the weights
when new samples arrive. Memory used is the
size of the network (low if network size is small).

Learning under Memory Constraints?

Brief Description for the Learning Model
A learner tries to learn 𝑓: 𝐴 → {0,1}, 𝑓 ∈ 𝐻 (hypothesis class)

from samples of the form (𝑎!, 𝑓(𝑎!)), 𝑎", 𝑓(𝑎") , …

that arrive one by one

[Shamir’14], [SVW’15]
Can one prove unconditional strong lower bounds on the
number of samples needed for learning under memory
constraints?

(when samples are viewed one by one)

Outline of the Talk
• The first example of such memory-sample tradeoff:

Parity learning [Raz’16]

• Spark in the field: Subsequent results

• Extractor-based approach to lower bounds [G-Raz-Tal’18]

• Shallow dive into the proofs

• Implications for refutation of CSPs [G-Kothari-Raz’20]

Example: Parity Learning

Parity Learning
𝑓 ∈# 0,1 $ is unknown

A learner tries to learn 𝑓 = (𝑓!, 𝑓", … , 𝑓$) from

(𝑎!, 𝑏!), 𝑎", 𝑏" , … , (𝑎%, 𝑏%), where ∀ 𝑡,

𝑎& ∈# 0,1 $ and 𝑏& =< 𝑎&, 𝑓 > = ∑' 𝑎&' ⋅ 𝑓' 𝑚𝑜𝑑 2 (inner
product mod 2)

Parity Learning
A learner tries to learn 𝑓 = (𝑓!, 𝑓", … , 𝑓$) from

(𝑎!, 𝑏!), 𝑎", 𝑏" , … , (𝑎%, 𝑏%), where ∀ 𝑡,

𝑎& ∈# 0,1 $ and 𝑏& = ∑' 𝑎&' ⋅ 𝑓' 𝑚𝑜𝑑 2

In other words, learner gets random binary linear
equations in 𝑓!, 𝑓", . . , 𝑓$, one by one, and need to solve
them

Let’s Try Learning (n=5)
𝑓! + 𝑓(+ 𝑓) = 1

Let’s Try Learning (n=5)
𝑓" + 𝑓) + 𝑓* = 0

Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓) = 1

Let’s Try Learning (n=5)
𝑓" + 𝑓(= 0

Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓) + 𝑓* = 0

Let’s Try Learning (n=5)
𝑓! + 𝑓(= 1

Let’s Try Learning (n=5)
𝑓" + 𝑓(+ 𝑓) + 𝑓* = 1

Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓* = 0

Let’s Try Learning (n=5)
𝑓! + 𝑓" + 𝑓* = 0

𝑓" + 𝑓(+ 𝑓) + 𝑓* = 1

𝑓! + 𝑓(= 1
𝑓! + 𝑓" + 𝑓) + 𝑓* = 0 𝑓" + 𝑓(= 0

𝑓! + 𝑓" + 𝑓) = 1𝑓" + 𝑓) + 𝑓* = 0

𝑓! + 𝑓(+ 𝑓) = 1

𝑓 = (0,1,1,0,1)

Parity Learners
• Solve independent linear equations (Gaussian

Elimination)

𝑶(𝒏) samples and 𝑶(𝒏𝟐) memory

• Try all possibilities of 𝑓

𝑶(𝒏) memory but exponential number of samples

Raz’s Breakthrough ’16
Any algorithm for parity learning of size 𝑛 requires either
memory of 𝑛"/25 bits or exponential number of samples
to learn

Memory-Sample Tradeoff

Motivations from Other Fields
Bounded Storage Cryptography: [Raz’16, GZ’19, VV’16,
KRT’16, TT’18, GZ’19, JT’19, DTZ’20, GZ’21]
Key’s length: 𝑛 Encryption/Decryption time: 𝑛

Unconditional security, if attacker’s memory size < 𝒏𝟐

𝟐𝟓

Complexity Theory: Time-Space Lower Bounds have been
studied in many models [BJS’98, Ajt’99, BSSV’00, For’97,
FLvMV’05, Wil’06,…]

Subsequent Results

Subsequent Generalizations
• [KRT‘17]: Generalization to learning sparse parities
• [Raz’17, MM’17, MT’17, MM’18, DKS’19, GKLR’21]:

Generalization to larger class of learning problems

[Garg-Raz-Tal’18]
Extractor-based approach to prove memory-sample
tradeoffs for a large class of learning problems
Implied all the previous results + new lower bounds
Closely follows the proof technique of [Raz’17]

[Beame-Oveis-Gharan-Yang’18] independently proved
related lower bounds

Subsequent Generalizations
[Sharan-Sidford-Valiant’19]: Any algorithm performing
linear regression over a stream of 𝑑-dimensional
examples, uses a quadratic amount of memory or exhibits
a slower rate of convergence than can be achieved
without memory constraint
First-order methods for learning may have provably
slower rate of convergence

More Related Work
• [GRT’19] Learning under multiple passes over the

stream
• [DS’18, AMN’18, DGKR’19, GKR’20] Distinguishing, testing

under memory or communication constraints
• [MT’19, GLM’20] Towards characterization of memory-

bounded learning
• [GRZ’20] Comments on quantum memory-bounded

learning

Extractor-Based Approach to Lower Bounds
[G-Raz-Tal’18]

Learning Problem as a Matrix
𝐴, 𝐹 : finite sets, 𝑀:𝐴×𝐹 → {−1,1} : a matrix

𝐹 : concept class = 0,1 $

𝐴 : possible samples = 0,1 $.

Learning Problem as a Matrix
𝑀:𝐴×𝐹 → {−1,1} : a matrix

𝑓 ∈# 𝐹 is unknown. A learner
tries to learn 𝑓 from a stream
(𝑎!, 𝑏!), 𝑎", 𝑏" , … , 𝑎%, 𝑏% ,
where ∀𝑡 :
𝑎& ∈# 𝐴 and 𝑏& = 𝑀(𝑎&, 𝑓)

𝑓

𝑀(𝑎!, 𝑓)
𝑎!

𝑀(𝑎", 𝑓)
𝑎"

Main Theorem
Assume that any submatrix
of 𝑀 of at least 2/0|𝐴| rows
and at least 2/ℓ|𝐹| columns,
has a bias of at most 2/2.
Then,
Any learning algorithm
requires either 𝜴(𝒌𝒍)
memory bits or 𝟐𝜴(𝒓)
samples

2#$|𝐴|

2#%|𝐹|

Applications
Low-degree polynomials: A learner tries to learn an 𝑛-
variate multilinear polynomial 𝑝 of degree at most 𝑑 over
F", from random evaluations of 𝑝 over F"$

𝛀(𝒏𝒅8𝟏) memory or 𝟐𝛀(𝒏) samples

Applications
Learning from sparse equations: A learner tries to learn 𝑓
= 𝑓!, … , 𝑓$ ∈ {0,1}$, from random sparse linear
equations, of sparsity 𝑙, over F" (each equation depends
on 𝑙 variables)

𝛀(𝒏 ⋅ 𝒍) memory or 𝟐𝛀(𝒍) samples
We will use this result for

proving sample lower bounds

for refuting CSPs under

memory constraints

Proof Overview

Branching Program (length 𝑚, width 𝑑)

Each layer represents a time step. Each vertex represents a memory state of
the learner (𝑑 = 2!"!#$%). Each non-leaf vertex has 2&'() outgoing edges, one
for each 𝑎, 𝑏 ∈ 0,1 &!× −1,1

(𝑎!,
𝑏!)

(𝑎, 𝑏)

𝑚

𝑑
(𝑎
% , 𝑏

%)
(𝑎", 𝑏")

Branching Program (length 𝑚, width 𝑑)

The samples 𝑎), 𝑏) , . . , 𝑎!, 𝑏! define a computation-path. Each vertex 𝑣 in
the last layer is labeled by I𝑓* ∈ 0,1 &. The output is the label I𝑓* of the vertex
reached by the path

(𝑎!,
𝑏!)

(𝑎, 𝑏)

𝑚

𝑑
(𝑎
% , 𝑏

%)
(𝑎", 𝑏")

Proof Overview
PK|M = distribution of 𝑓 conditioned on the event that the
computation-path reaches 𝑣

Significant vertices: 𝑣 s.t. ||PK|M||" ≥ 2N ⋅ 2/$

𝑃𝑟 𝑣 = probability that the path reaches 𝑣

We prove that if 𝑣 is significant, 𝑃𝑟 𝑣 ≤ 2/O(0⋅N)

Hence, if there are less than 2Q(0⋅N) vertices, with high
probability, we reach a non-significant vertex

Proof Overview
Progress Function [Raz’17]: For layer 𝐿',

𝑍' = X
M∈R"

𝑃𝑟 𝑣 ⋅ PK|M , PK|S 0

● 𝑍! = 2"#$⋅&

● 𝑍' is very slowly growing: 𝑍! ≈ 𝑍(
● If 𝑠 ∈ 𝐿(, then 𝑍(≥ 𝑃𝑟 𝑠 ⋅ 2#)⋅& ⋅ 2"#$⋅&

Hence: If 𝑠 is significant, 𝑃𝑟 𝑠 ≤ 2/O(0⋅N)

Hardness of Refuting CSPs
[G-Kothari-Raz’20]

Refuting CSPs under Streaming Model
• Fix a predicate 𝑃: 0,1 0 → {0,1}

• With bounded memory, distinguish between CSPs (with
predicate 𝑃) where the constraints are randomly
generated vs ones where the constraints are generated
using a satisfying assignment

• Constraints arrive one by one in a stream

Refuting CSPs under Streaming Model
• Fix a predicate 𝑃: 0,1 0 → {0,1}

• With bounded memory, distinguish between CSPs (with
predicate 𝑃) where the constraints are randomly
generated vs ones where the constraints are generated
using a satisfying assignment

• Constraints arrive one by one in a stream
Refutation is at least as hard as
distinguishing between Random CSPs
and satisfiable ones

Refuting CSPs under Streaming Model
• 𝑥 is chosen uniformly from 0,1 $

• At each step 𝑖, 𝑆' ⊆ [𝑛] is a randomly chosen (ordered)
subset of size 𝑘.

• Distinguisher sees a stream of either 𝑆', 𝑃 𝑥T" or
𝑆', 𝑏' where 𝑏' is chosen uniformly from 0,1

𝑥&!: projection of 𝑥 to coordinates of 𝑆'

Reduction from Learning from Sparse Equations
Any algorithm that distinguishes random 𝑘 −XOR (random
CSPs with XOR predicate) on 𝑛 variables from

𝑘 −XOR CSPs with a satisfying assignment (under the
streaming model),

requires either 𝛀(𝒏 ⋅ 𝒌) memory or 𝟐𝛀(𝒌) constraints

Reduction from Learning from Sparse Equations
Any algorithm that distinguishes random 𝑘 −XOR (random
CSPs with XOR predicate) on 𝑛 variables from

𝑘 −XOR CSPs with a satisfying assignment (under the
streaming model),

requires either 𝛀(𝒏 ⋅ 𝒌) memory or 𝟐𝛀(𝒌) constraints

For 𝒌 ≫ 𝐥𝐨𝐠 𝒏, refutation is hard for algorithms
using even super-linear memory,
when the number of constraints is < 𝟐𝛀(𝒌)

Better Sample Bounds for Sub-Linear Memory
• Stronger lower bounds on the number of constraints

needed to refute

• Even for CSPs with 𝑡-resilient predicates 𝑃 [OW’14,
AL’16, KMOW’17]

• 𝑃: 0,1 0 → {0,1} is 𝑡-resilient if 𝑃 has zero correlation
with every parity function on at most 𝑡 − 1 bits

Better Sample Bounds for Sub-Linear Memory
For every 0 < 𝜖 < 1, any algorithm that distinguishes

random CSPs (with a 𝑡-resilient predicate 𝑃) on 𝑛 variables

from satisfiable ones (when the constraints arrive in a
streaming fashion),

requires either 𝒏𝝐 memory or 𝒏
𝒕

𝛀(𝒕(𝟏/𝝐))
constraints

Thank You!

