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Refuting CSPs

Refutation Algorithm:

Input: An instance ¢ of k-SAT with m clauses on n variables.
Output: A value v € [0, 1].

Correctness: val(¢p) < v. “val(¢) = max frac of constraints satisfiable™

The algorithm weakly refutes a formula ¢ if v < 1.
strongly refutes ... fv<1-96 § > 0, abs. const.

Goal: refute largest possible family of instances ¢: val(¢) < 0.99.

refutation = certificate that val(¢p) < v
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A Tale of Two Worlds
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A Tale of Two Worlds
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How does the complexity of k-sat interpolate between the two worlds?

imistic? . N
Is worst-case world pess Are random instances idealistic?

' om?
certificates generalize beyond rand

Do algoritth/

Does the randomness of the clause structure matter?



Smoothed CSPs

Smoothed CSPs [Feige’07]

1: Generate worst-case instance ¢ of k-SAT.

2: Negate each literal with prob 0.01 independently to produce ¢s.

Fact: val(¢,) < 1— 27 whp.

* clause structure (i.e., instance hypergraph) 1s worst-case.
* only randomness 1n literals: via small random perturbation.



This Work: Algorithms

A Exp O.f [Guruswami,K,Manohar’zl]:The story of smoothed k-sat.
fun- tme Prior Work:

~n , AOW’15] Same trade-off for random k-SAT

"""""" 'i [Fei’07] Weak ref for smoothed 3-SAT with O(n'®) clauses.
. » Extends to 3-CSPs but not to strong ref or >3-CSPs.
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This Work: Algorithms

A Exp O.f [Guruswami,K,Manohar’zl]:The story of smoothed k-sat.
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This Work: Certificates

A Exp of [Guruswami,K,Manohar’21]: 1 he story of smoothed k-sat.
run- time

~ N Generalizes FKO to arbitrary clause-structures.
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Feige’s Conjecture

An extremal conjecture about girth of hypergraphs.

. : : : nd
Question: What’s the maximum girth of a graph on n vertices and ry edges?

for d=2: clearly, n (e.g., n-cycle).
for d>2: < 2log,_4 n+2 [Alon,Hoory,Linial’02] “Moore Bound”
sharp up to the factor 2 (e.g., some Ramanujan graphs)



Feige’s Conjecture

An extremal conjecture about girth of hypergraphs.

: : d :
Moore bound: max girth of a graph on n vertices and n? edges is ~ 2log,;_1 n

What about 3 (and more generally, k)-uniform hypergraphs?
A cycle is a subgraph that touches every vertex an even # of times.

Hypergraph Cycles (Even Covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

= size ot a smallest Jnearly-dependent subset ot f-sparse linear equations »od 2.



Feige’s Conjecture

An extremal conjecture about girth of hypergraphs.

nd

Moore bound: max girth of a graph on n vertices and —-edgesis ~ 2logg_1 n

Hypergraph Cycles

(a.k.a. even covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

Feige’s Conjecture (2008):
Every hypergraph with m ~ n - (;

= rafedistari;etadehy

k
-1
n) ®*  hyperedges has a cycle of length < #log, n.

e fafphen todes-with bakunoy despérkenpatitg-chegl matrices

Random hypergraphs known to achieve it (up to log factor slack in m).



Feige’s Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige’s Conjecture (2008): .
G-
Every hypergraph with m = n - (%) ®*  hyperedges has a cycle of length < ¢log, n.

- there are O( - 1012 n) hyperedge-disjoint cycles of length < £log, n.
2

[Feige,Kim,0fek’06]:

True for random k-uniform hypergraphs via a “2° moment method” argument.

‘ Non-trivial weak refutation for random k-XOR.

“non-trivial weak refutation of k-XOR” = weak refutation of k-SAT.



Feige’s Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige’s Conjecture (2008):

n)é ~1)

Every hypergraph with m = n - (? hyperedges has a cycle of length < £log, n.

[Feige,Kim,0fek’06]:

True for random k-uniform hypergraphs via a “2° moment method” argument.

[Naor-Verstraete’08], [Feige’08]:

True for all hypergraphs for £ = O(1) up to a loglogn factor slack in m.

[Alon,Feige’09]: A suboptimal trade-off for k=3: m ~ n; for £log, n length cycles.

[Feige,Wagner’16]: A combinatorial approach via sub-hypergraphs of bounded min-degree.



Feige’s Conjecture: Our Result

An extremal conjecture about girth of hypergraphs.

Feige’s Conjecture (2008):

n)é -1)

Every hypergraph with m = n - (? hyperedges has a cycle of length < £log, n.

Theorem [Guruswami, K, Manohar’21]

Feige’s conjecture is true for all k and £ up to a log?¥ n factor slack in m

“‘Spectral donble counting” : a conceptually simple connection between hypergraph
cycles and sub-exp size spectral refutations below spectral threshold.



Time for some actual math!



[Abascal,Guruswami,K’207]

Smoothed k-SAT Regular even-XOR
H h Regulari W
Semi-random k-XOR P ypergraph Regularity Row Bucketing

Decomposition
refutation
Row Pruning

Regular odd-XOR Structure of
Kzkuch: Matrices
[Wein, Alaoui,Moore’19]

Introduced Kikuch: matrices to simplify tensor PCA and even-arity - .
random k-XOR refutation. Feige’s Conjecture




“You’ve got to look at the Kzkuch: matrices if
you want to prove something about
CSPs...or hypergraphs...or tensors...”




Tightly refuting random 4-XOR

Let’s start with the case of £ = 0(1) .

Over x € {11}, 4-XOR constraints are of the form: { x;x,x3x, = +1, ...}

Instance: A 4-uniform hypergraph H and a set of “RHS” b, for each C € #.

1 1
¢ (x) = m z bexc,Xc,Xc, Xc, ~ z bexc

CeEH CeEH

...1s a deg 4 polynomial that computes “advantage over /2" of assignment X.

Goal: Certify that ¢(x) < € forall x € {£1}"



Tightly refuting random 4-XOR

Goal: Certify that (x) = — Yces bexe < € forall x € {1}

Idea: write ¢(x) as the quadratic form of some matrix! [Goerdt,Krivilevich’01...]
{k, £}

Then, ¢(x) == (x® Z)TA(xQ 2).
A = i} bei j k.0) °

2
<z |l 2| Iall,.

Analysis: Succeeds in refuting if m >~ n?.

Matrix Chernoftf, trace method,...all work easily to bound ‘ |A] ‘2



Tightly refuting random 4-XOR

Goal: Certify that ¢(x) = %Zce}( bexe < € forall x € {£1}"

2
Full trade-off for 4-XOR? 19 time vs m ~ n? constraints.

use a “symmetrized tensor power matrix”” who quad. form is ¢ (x)*

Issue: Fairly technical application of the trace method
Crucially uses randomness of H.

Two recent papers succeed in simplifying for even £.

Introduce Kzkuchi matrix and significantly simplify even-
arity random k-XOR refutation.

This 1s our starting point!



Tightly refuting random 4-XOR

Goal: Certify that (x) = — Yces bexe < € forall x € {1}

Idea: write ¢(x) as the quadratic form of a (?)X(?) mattix.

T
([n]) = | be if SAT =C
1 0 otherwise
AC = S A - 2 AC
CeH

Then, ¢(x) = Di{) (x©® {))TA(xCD ) = D%ZS»TA(f’ T)xgxr



Tightly refuting random 4-XOR

Goal: Certify that (x) = — Yces bexe < € forall x € {1}

Idea: write ¢(x) as the quadratic form of a (?)X(?) mattix.

T
([n]) = | bc if SAT = C
4 0 otherwise
A C — S

AZEAC

CeEH
Then, ¢p(x) = Di{) (x©® {))TA(xQ )

'
Analysis: How can we bound “A| |2?



Tightly refuting random 4-XOR

How can we bound “Al ‘2? r

A=) A, A= »

CEH \

independent, random matrices.

Analysis: Apply matrix Chernoff inequality.

n2

Succeeds in refuting if m =~ E



Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform H with ~ n; hyperedges has a ~ £log, n length cycle.

Proof Idea:

If not, our refutation algo (with same £) from previous slide works for arbitrary
RHS bs. Since there are satisfiable k-XOR instances (b= 1 V(), contradiction.

Key Step:
If there are no cycles of length ~ £log, n, then regardless of b¢s, can prove an upper

bound on “A| ‘ Zthat matches the one when bs are indep. random.

\

fixed, deterministic matrix.



Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform H with ~ n; hyperedges has a ~ £log, n length cycle.
Key Step:

If there are no cycles of length ~ £log, n, then regardless of b¢s, can prove an upper

bound on “A| ‘ Zthat matches the one when b.s are indep. random.

1
Trace Method: ||A| |2 ~ Tr(A*")? forr ~ log(’;) ~ £logyn.

..... s,)A(S1,52)A(S2,S3) - A(S2, S1)

N\

“2r-length walk™ on “vertices” ot the “Kikuchi Graph”



Small Cycles via Spectral Double Counting

2
Prop: Whp, random 4-uniform H fvith ~ n7 hyperedges has a ~ £ log, nlength cycle.
Trace Method: [|A| |2 ~ Tr(A*")? forr ~ log(’;) ~ £logyn.

s,.) A(S1,52)A(S2,S3) - A(S2, S1)

-----

Recall: A(S5;,S,) = b if S;AS,=C& S, B S, =C forsome C € H.
Each term contributes a +1 or 0. So RHS 1s the number of contributing walks.

When b.s are independent 11, only “even returning walks” contribute.
Returning Walk: walk that uses the same “edge” (i.e., (T, U)) an even # of times.

Observation: If H has no cycle of length ~ log(?), exact same set of walks
contribute regardless of bcs.



Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform H with ~ n—z hyperedges has a ~ £log, n length cycle.
SZ)A(51»52)A(52»53) -A(S2r,S1)

-----

Recall: A(S5,,S,) = b if S;AS,=C& S, B S, =C forsome C € H.

Observation: If  has no cycle of length ~ log(’;), only even returning walks contribute.

Proof: Any contributing term (Sy, Sy, ..., Sop-) corresponds to Sy, Cq, Cy, ..., Copr.

5D S, = Add both sides modulo 2,
S, @ S5 = C; C,HC,-dC, =0

Sr D S = Cy,




Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform H with ~ n—z hyperedges has a ~ £log, n length cycle.
SZ)A(51»52)A(52»53) - A(S2,81)

-----

Recall: A(S5,,S,) = b if S;AS,=C& S, B S, =C forsome C € H.

Observation: If  has no cycle of length ~ log(’;), only even returning walks contribute.

Proof: Any contributing term (Sy, Sy, ..., Sop-) corresponds to Sy, Cq, Cy, ..., Copr.

CEDC,-DCy =0

If all C;s are distinct, must be a cycle of length 21 in H.
So, can happen only if each C; occurs an even number of times.
& the corresponding walk is even returning.



What about semiz-random instances?

Goal: Certify that ¢(x) = %Zce}( bexe < € forall x € {£1}"
H arbitrary (worst-case), bes indep. random.
Spectral norm of A 1s too large and cannot work.

Obs: “Offending” quadratic forms are on sparse vectors.
While we only care about “tlat” vectors.

“Row bucketing” allows bounding flat quadratic forms of semirandom mattrices.

[Abascal,Guruswami,K’20]



What about odd-ar:ity instances?

Goal: Certify that ¢(x) = %Zce}( bexe < € forall x € {£1}"

H arbitrary (worst-case), bes indep. random.

Define an appropriate Kikuchi matrix.
Spectral norm of A 1s too large and cannot work even for random 3-XOR!.
Idea: “Row Pruning” — removing some appropriate rows enough for random case.

More generally, works for hypergraphs with smwall spread.

Hypergraph Regularity Decomposition:

Decompose a k-uniform hypergraph into k’>-uniform hypergraphs for k' < k +
“error” such that each non-error piece has smwall spread.



This work:

If you randomly perturb each literal independently with small prob,
the k-SAT instance becomes as easy as random with same # of
constraints.

For both algorithms, and FKO style certificates.

Main take-away: Kikuchi matrices are beautiful and can solve all life’s problems.



Thank you.



