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Examples of inverse problem
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Examples of inverse problems



Sparsity can be optimized via a convex relaxation
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Sparsity can be sometimes be optimized via a convex relaxation



Recovery guarantee for sparse signals

Fix k -sparse vector x0 2 Rn.
Let A 2 Rm⇥n be a random gaussian matrix with m = ⌦(k log n).

min kxk1
s.t. Ax = Ax0

(L1)

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.)
The global minimizer of (L1) is x0 with high probability.
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Recovery Guarantee for Sparse Signals



Sparsity appears to fail in Compressive Phase Retrieval

Open problem: there is no known e�cient algorithm to recover

s-sparse x0 from O(s) generic measurements

Sparsity appears to fail in Compressive Phase Retrieval



With generic measurements, Sparse PhaseLift
gives suboptimal sample complexity

min � tr(X) + kXk1
s.t. a

⇤
iXai = a

⇤
i (x0x

⇤
0)ai, i = 1 . . .m

X ⌫ 0

Theorem (Li and Voroninski, 2012)

If x0 2 Rn
is s-sparse with constant-magnitude coe�cients, and

ai ⇠ N (0, I), then with high probability: If 9� 2 R such that x0x
⇤
0

minimizes Sparse PhaseLift, m = ⌦(s2/ log2 n).

With generic measurements, Sparse PhaseLift 
gives suboptimal sample complexity





Deep generative models

I Given samples in Rn
from distribution ⇡0, learn ⇡0.

I Model ⇡0 as G(Z), where Z ⇠ N (0, Ik⇥k) and G : Rk ! Rn
.

Deep Generative Models



Visualization of a generative model and its latent space

Dinh et al., 2017

Published as a conference paper at ICLR 2017
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Figure 1: Real NVP learns an invertible, stable, mapping between a data distribution p̂X and a latent
distribution pZ (typically a Gaussian). Here we show a mapping that has been learned on a toy
2-d dataset. The function f (x) maps samples x from the data distribution in the upper left into
approximate samples z from the latent distribution, in the upper right. This corresponds to exact
inference of the latent state given the data. The inverse function, f�1 (z), maps samples z from the
latent distribution in the lower right into approximate samples x from the data distribution in the
lower left. This corresponds to exact generation of samples from the model. The transformation of
grid lines in X and Z space is additionally illustrated for both f (x) and f�1 (z).

remains undetermined, often resulting in generation of highly correlated samples. Furthermore, these
approximations can often hinder their performance [7].

Directed graphical models are instead defined in terms of an ancestral sampling procedure, which is
appealing both for its conceptual and computational simplicity. They lack, however, the conditional
independence structure of undirected models, making exact and approximate posterior inference
on latent variables cumbersome [56]. Recent advances in stochastic variational inference [27]
and amortized inference [13, 43, 35, 49], allowed efficient approximate inference and learning of
deep directed graphical models by maximizing a variational lower bound on the log-likelihood [45].
In particular, the variational autoencoder algorithm [35, 49] simultaneously learns a generative
network, that maps gaussian latent variables z to samples x, and a matched approximate inference
network that maps samples x to a semantically meaningful latent representation z, by exploiting the
reparametrization trick [68]. Its success in leveraging recent advances in backpropagation [51, 39] in
deep neural networks resulted in its adoption for several applications ranging from speech synthesis
[12] to language modeling [8]. Still, the approximation in the inference process limits its ability
to learn high dimensional deep representations, motivating recent work in improving approximate
inference [42, 48, 55, 63, 10, 59, 34].

Such approximations can be avoided altogether by abstaining from using latent variables. Auto-
regressive models [18, 6, 37, 20] can implement this strategy while typically retaining a great deal of
flexibility. This class of algorithms tractably models the joint distribution by decomposing it into a
product of conditionals using the probability chain rule according to a fixed ordering over dimensions,
simplifying log-likelihood evaluation and sampling. Recent work in this line of research has taken
advantage of recent advances in recurrent networks [51], in particular long-short term memory [26],
and residual networks [25, 24] in order to learn state-of-the-art generative image models [61, 46] and
language models [32]. The ordering of the dimensions, although often arbitrary, can be critical to the
training of the model [66]. The sequential nature of this model limits its computational efficiency. For
example, its sampling procedure is sequential and non-parallelizable, which can become cumbersome
in applications like speech and music synthesis, or real-time rendering.. Additionally, there is no
natural latent representation associated with autoregressive models, and they have not yet been shown
to be useful for semi-supervised learning.
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How are generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

min
z2Rk

����(G(z))� �(x0)
���

2
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How are generative models used in inverse problems?



Deep Compressive Sensing

min
z2Rk

���AG(z)� Ax0

���
2

Bora, Jalal, Price, Dimakis
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Compressed Sensing with Generative Models



Our formulation: Deep Phase Retrieval

min
z2Rk

���|AG(z)|� |Ax0|
���
2

Our formulation: Phase Retrieval with Generative Models
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Geometric picture of signal recovery  
with a low-dimensional generative prior



Random generative priors allow rigorous recovery
guarantees

Let: G : Rk ! Rn

G(z) = relu(Wd . . . relu(W2relu(W1z)) . . .)

Given: Wi 2 Rni⇥ni�1 ,A 2 Rm⇥n, y := AG(z0) 2 Rm

Find: x0

I Expansivity: Let ni > cni�1 log ni�1

I Gaussianicity: Let Wi and A have iid Gaussian entries.

I Biasless: No bias terms in G.
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Compressive phase retrieval from generic measurements is possible at
optimal sample complexity

1. # measurements = ⌦(k), up to log factors

2. network layers are su�ciently expansive

3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

The objective function has a strict descent direction in latent space outside of two small
neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Compressive phase retrieval from generic measurements 
is possible at optimal sample complexity



Proof requires concentration of discontinuous matrix-
valued random functions

Proof Requires Concentration of Discontinuous Matrix-Valued Random
Functions

Lemma: Fix ✏. Let W 2 Rn⇥k
have i.i.d. N (0, 1/n) entries. If n > ck log k, then

with probability at least 1� 8ne��k
, we have for all x, y 6= 0 2 Rk

,

�����
1

n

nX

i=1

1wi·x>01wi·y>0 · wiw
T
i � E[· · · ]

�����  ✏

The constants depend polynomially on ✏.



Comparison on MNISTCompressive Phrase Retrieval on MNIST



Deep Phase Retrieval outperforms Sparse Phase Retrieval in
low-measurement regime for test images

Deep phase retrieval can outperform sparse phase 
retrieval in the low measurement regime



Is there a catch?

m = 2, 500
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Figure 37: Compressed sensing (m = 2500 ¥ 20% of n) visual comparisons on out-of-distribution images. We
compare the recoveries under Glow (trained on CelebA) prior, DCGAN (trained on CelebA) prior, LASSO-WVT, and
LASSO-DCT at a noise level


EÎ÷Î2 = 0.1. In each case, we choose values of the penalization parameter “ to yield

the best performance. We use “ = 0 for both DCGAN, and Glow prior and and optimize “ for each recovery using
LASSO-WVT, and LASSO-DCT.
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GANs can have significant representation error



m = 2, 500
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GANs can have very poor performance far off distribution



Signal Recovery Under Generative Priors

• Generative priors can be optimally exploited for some nonlinear problems 


• Generative priors could provide tighter representations of natural images


• Low dim. nonconvex optimization replaces high dim. convex optimization


• Generative priors may outperform sparsity priors for a variety of problems
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