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Examples of inverse problems




Sparsity can be sometimes be optimized via a convex relaxation

min Ixllo Raraxation mi 1]}

e

S.t. D(x) = D(xp) S.t. D(x) = D(xp)




Recovery Guarantee for Sparse Signals

Fix k-sparse vector xp € R”.
Let A € R™" be a random gaussian matrix with m = Q(k log n).

min X1
S.t. AXx = AXp

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.)
The global minimizer of (L1) is xo with high probability.

(L)



Sparsity appears to fail in Compressive Phase Retrieval

m non-linear
measurements

Open problem: there is no known efficient algorithm to recover
s-sparse xg from O(s) generic measurements



With generic measurements, Sparse PhaselLift
gives suboptimal sample complexity

min Atr(X) + || X1
s.t.  a;Xa; =a; (roxry)a;, t=1...m
X =0

Theorem (Li and Voroninski, 2012)

If £9 € R™ Is s-sparse with constant-magnitude coefficients, and
a; ~ N (0, ), then with high probability: If 3\ € R such that zqz
minimizes Sparse PhaseLift, m = Q(s%/log*n).
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Deep Generative Models

4

Project and reshape

» Given samples in R™ from distribution g, learn mg.

» Model mg as G(Z), where Z ~ N(0, I;,x1) and G : R® — R".



Visualization of a generative model and its latent space
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How are generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

min ||®(G(Z)) — P(Xp) 2

ZcRkK




Compressed Sensing with Generative Models

Generative model Image
AN N
20 || — G |—Gko)=x0||— Axo
\ S N N
2

min ||AG(Z) — AXo

ZcRK

Bora, Jalal, Price, Dimakis
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Our formulation: Phase Retrieval with Generative Models

Generative model Image
AN N
20 || G |— G(o)=x0||— |[Axo]
«h \ N
2

min |||AG(2)| — |Axo]




Geometric picture of signal recovery
with a low-dimensional generative prior
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Random generative priors allow rigorous recovery
guarantees

Let: G:Rf — R’

G(z) =relu(Wy...relu(Werelu(W;z))...)
Given: W; e R"*"-1 A e R™" y .= AG(zy) € R"
Find: X

» Expansivity: Let n; > cn;_1log n;_;
» Gaussianicity: Let W; and A have iid Gaussian entries.

» Bilasless: No bias terms in G.
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Compressive phase retrieval from generic measurements
Is possible at optimal sample complexity

1. # measurements = 2(k), up to log factors
2. network layers are sufficiently expansive

3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

The objective function has a strict descent direction in latent space outside of two small
neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Landscape of Objective Function
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Proof requires concentration of discontinuous matrix-
valued random functions

Lemma: Fix €. Let W € R™** have i.i.d. N(0,1/n) entries. If n > cklogk, then
with probability at least 1 — 8ne~ 7% we have for all r,y #+ 0 & R*.

n

1 S

- E Lip;z>0Lw; >0 - wiw; —E[--- ||| < e
i—1

The constants depend polynomially on e.



Compressive Phrase Retrieval on MNIST
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Deep phase retrieval can outperform sparse phase
retrieval in the low measurement regime
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Is there a catch?

Truth

GANSs can have significant representation error



GANs can have very poor performance far off distribution




Signhal Recovery Under Generative Priors

* (Generative priors can be optimally exploited for some nonlinear problems
* (Generative priors could provide tighter representations of natural images
 Low dim. nonconvex optimization replaces high dim. convex optimization

 Generative priors may outperform sparsity priors for a variety of problems
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