Signal Recovery with Generative Priors

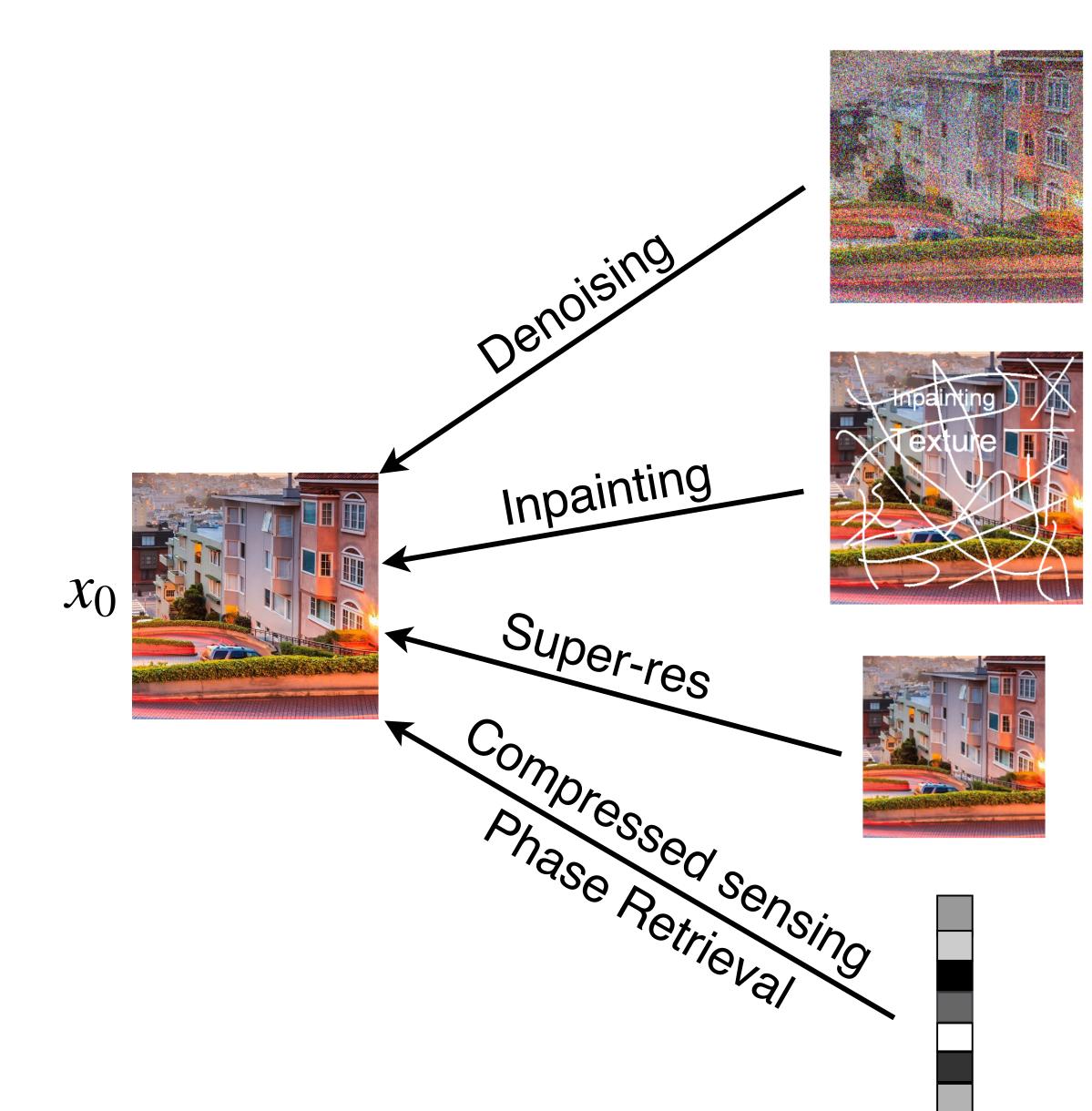
Pa

Collaborators: V. Voroninski, O. Leong, W. Huang, R. Heckel, A. Ahmed, M. Asim, J. Cocola, M. Daniels Funding: National Science Foundation

Paul Hand

Northeastern University

Examples of inverse problems



$\Phi(x_0)$

Sparsity can be sometimes be optimized via a convex relaxation

$\min_{x \in \mathbb{R}^n} \|x\|_0$ s.t. $\Phi(x) = \Phi(x_0)$

 $\min_{x \in \mathbb{R}^n} \|x\|_1$ Relaxation s.t. $\Phi(x) = \Phi(x_0)$

Recovery Guarantee for Sparse Signals

Fix k-sparse vector $x_0 \in \mathbb{R}^n$. Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix with $m = \Omega(k \log n)$.

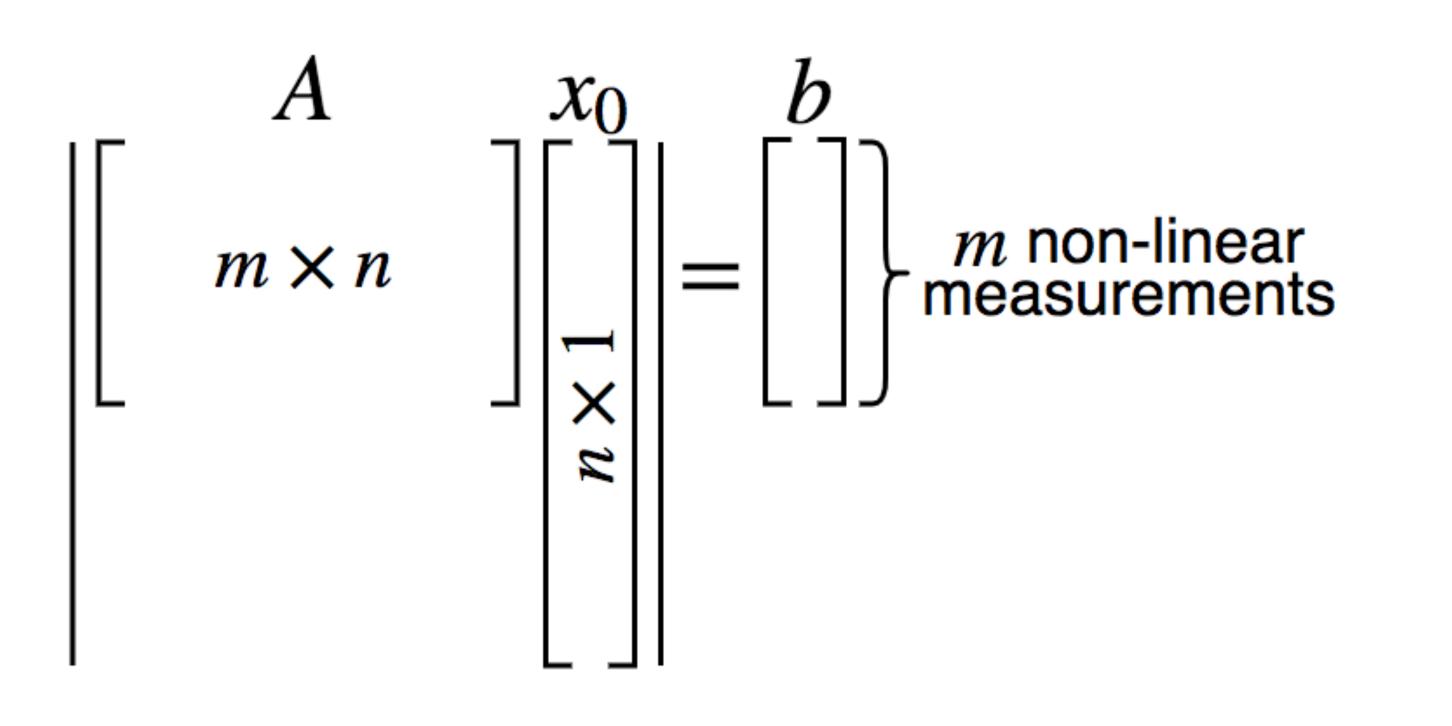
> min s.t.

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.) The global minimizer of (L1) is x_0 with high probability.

$$\|x\|_1$$
$$Ax = Ax_0$$

(L1)

Sparsity appears to fail in Compressive Phase Retrieval



Open problem: there is no known efficient algorithm to recover s-sparse x_0 from O(s) generic measurements

With generic measurements, Sparse PhaseLift gives suboptimal sample complexity

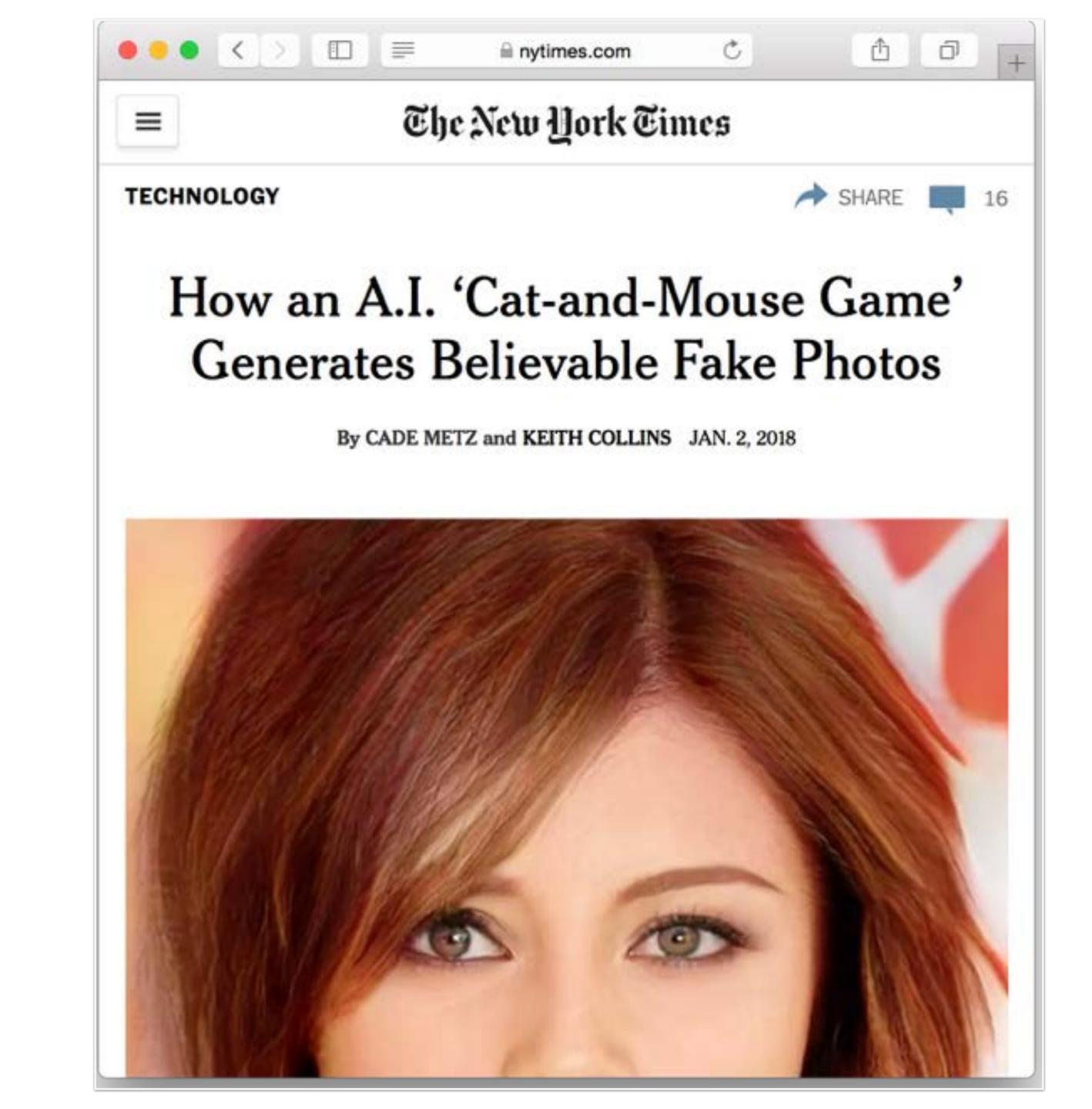
min $\lambda \operatorname{tr}(X) + \|$ s.t. $a_i^* X a_i = a_i^*$ $X \succ 0$

Theorem (Li and Voroninski, 2012) minimizes Sparse PhaseLift, $m = \Omega(s^2 / \log^2 n)$.

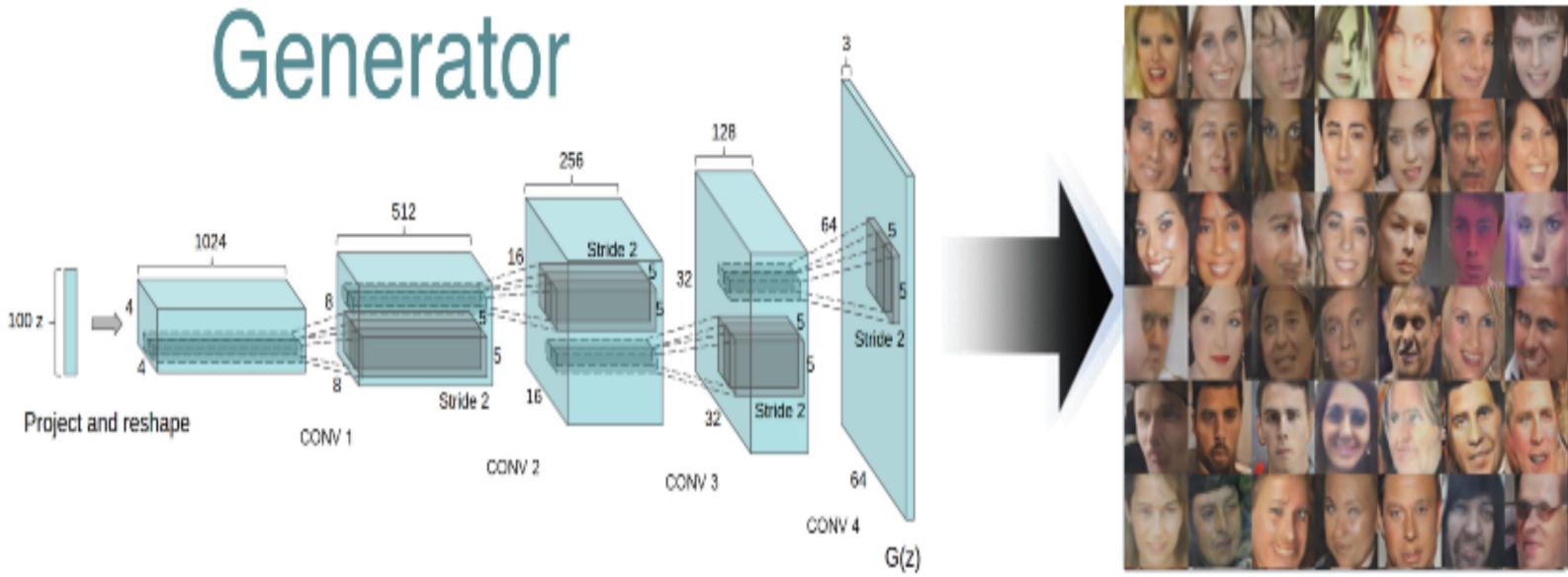
$$\|X\|_{1}$$

$$= 1 \dots m$$

If $x_0 \in \mathbb{R}^n$ is s-sparse with constant-magnitude coefficients, and $a_i \sim \mathcal{N}(0, I)$, then with high probability: If $\exists \lambda \in \mathbb{R}$ such that $x_0 x_0^*$



Deep Generative Models

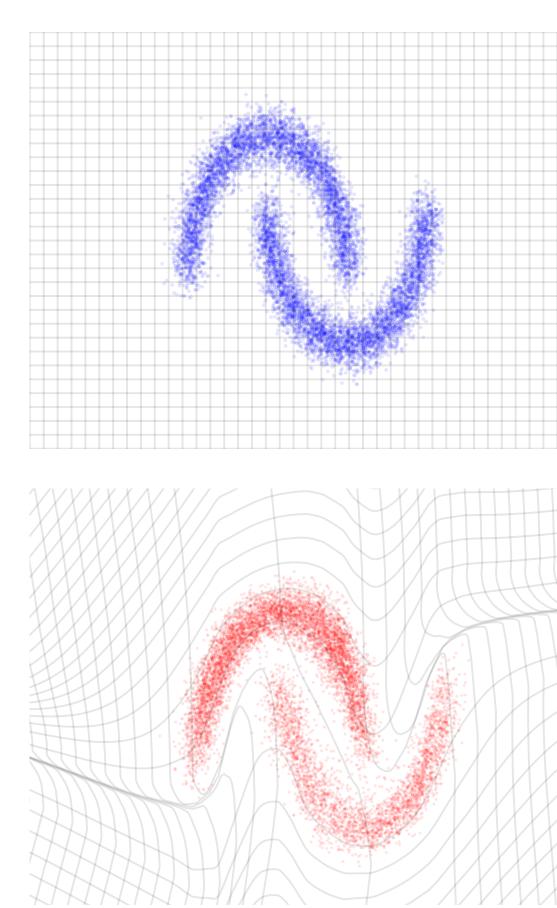


• Given samples in \mathbb{R}^n from distribution π_0 , learn π_0 .

• Model π_0 as G(Z), where $Z \sim \mathcal{N}(0, I_{k \times k})$ and $G : \mathbb{R}^k \to \mathbb{R}^n$.

Visualization of a generative model and its latent space

Data space \mathcal{X}

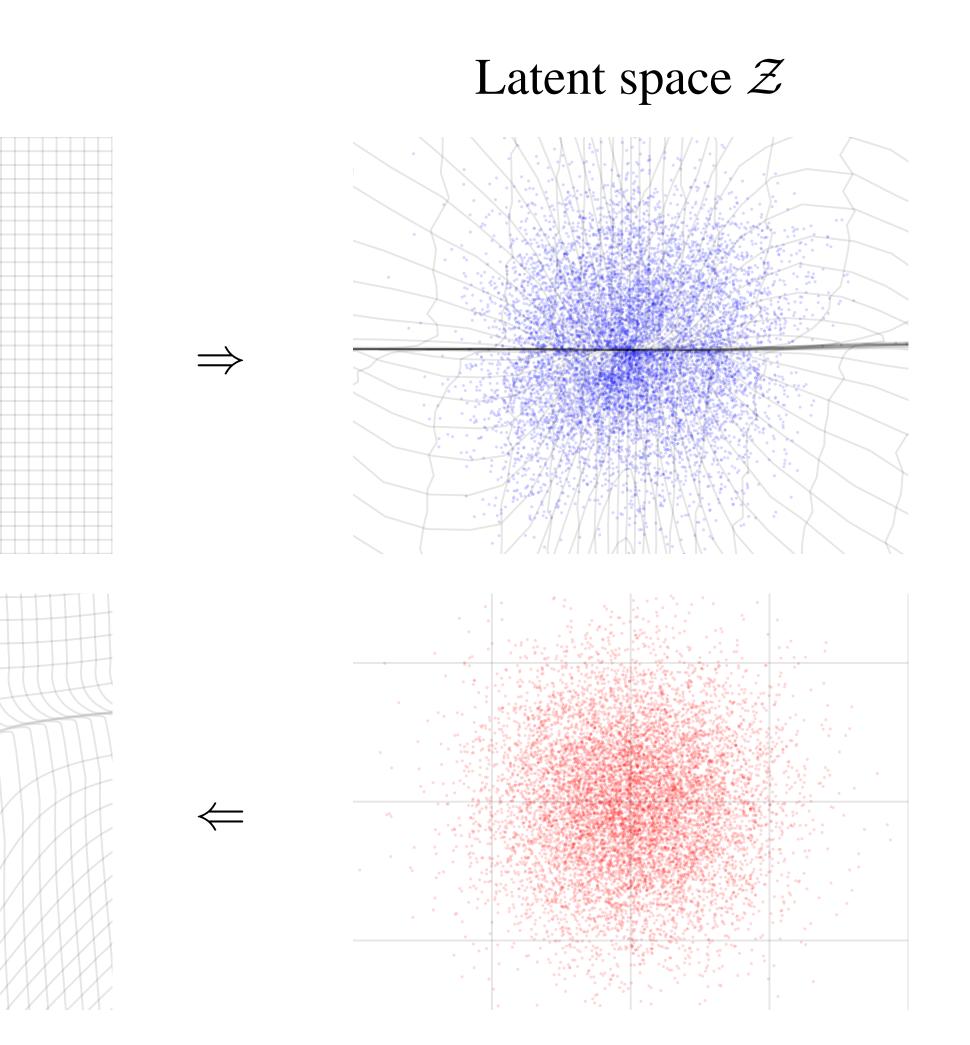


Inference $x \sim \hat{p}_X$ z = f(x)

Generation $z \sim p_Z$

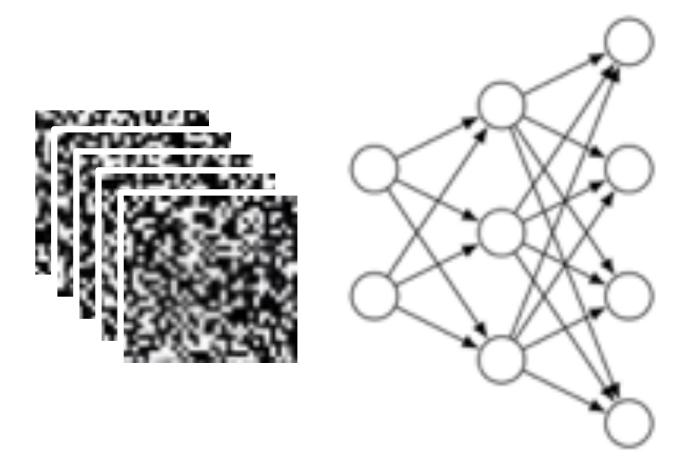
$$x = f^{-1}\left(z\right)$$

Dinh et al., 2017



How are generative models used in inverse problems?

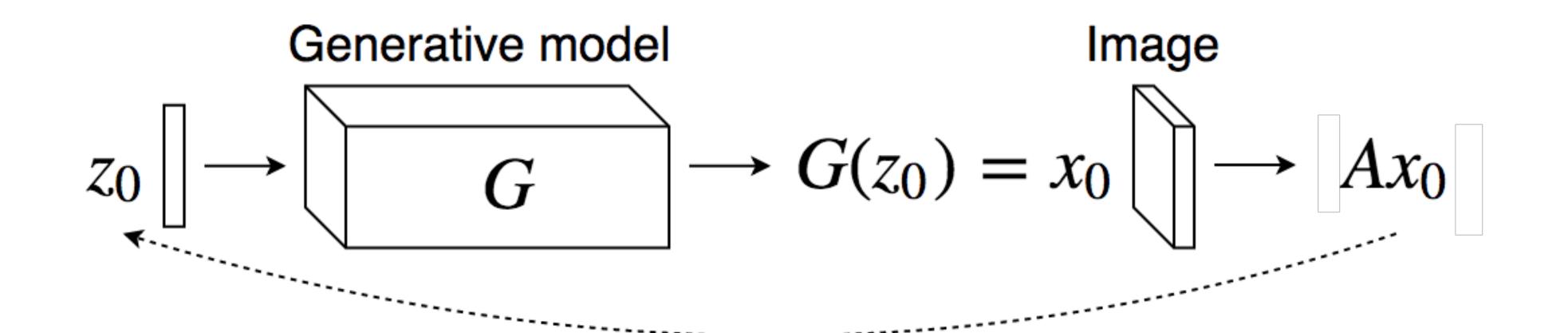
1. Train generative model to output signal class:



2. Directly optimize over range of generative model via empirical risk:

$$G(z)) - \Phi(x_0) \Big\|^2$$

Compressed Sensing with Generative Models

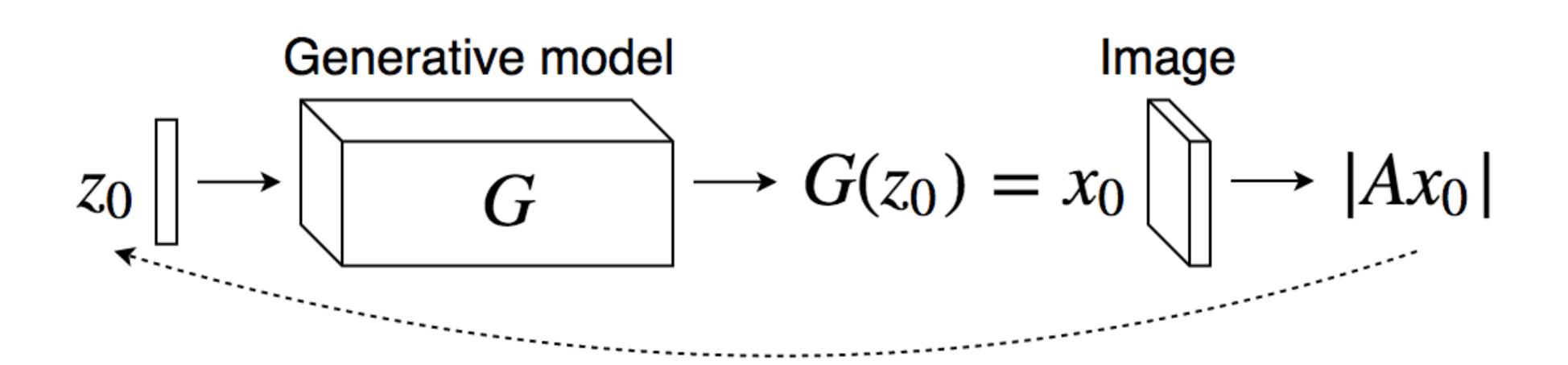


Bora, Jalal, Price, Dimakis

$$G(z) - Ax_0 \Big\|^2$$

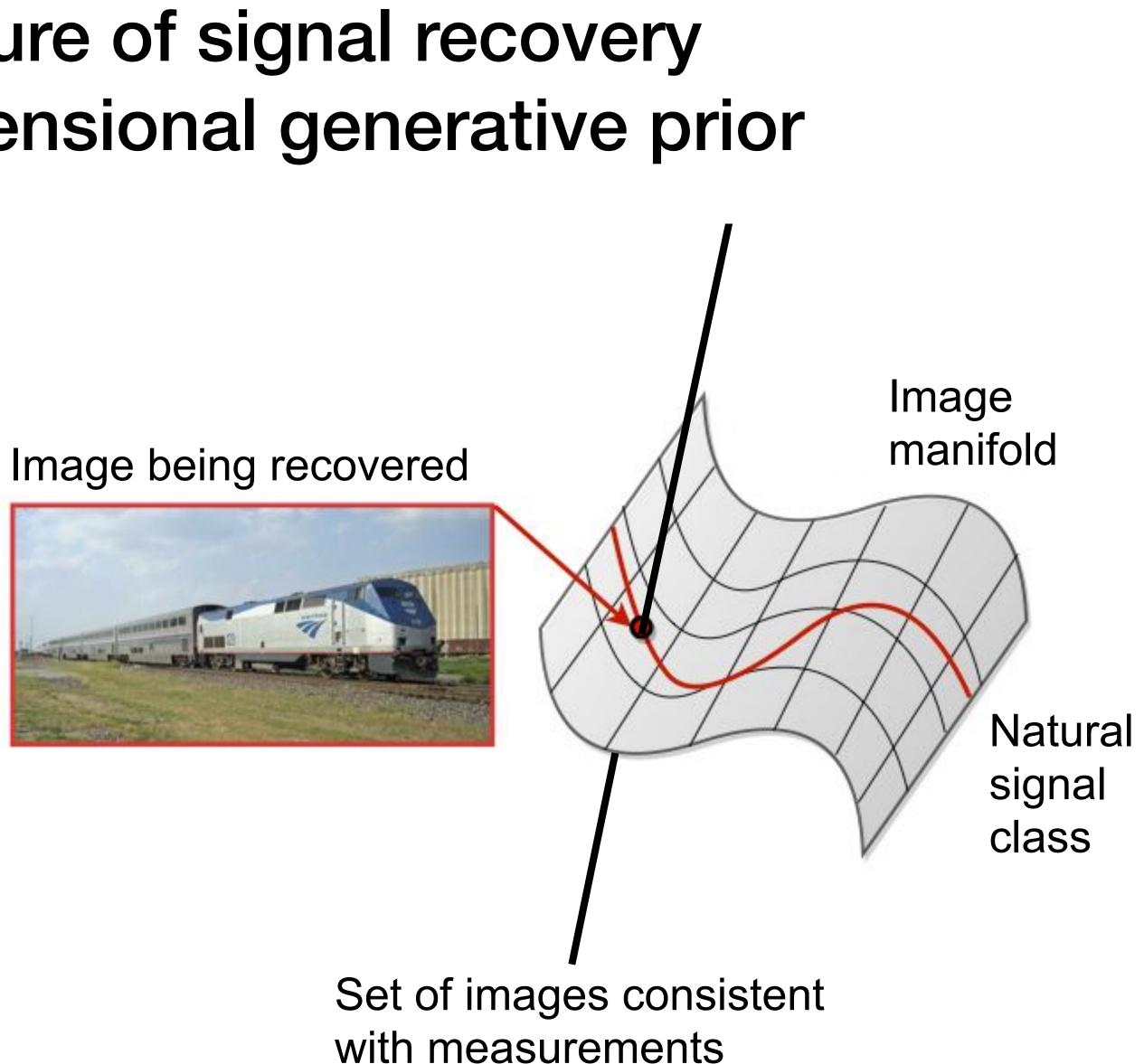
12

Our formulation: Phase Retrieval with Generative Models



$$\left| \mathcal{F}(z) \right| - \left| A x_0 \right| \right|^2$$

Geometric picture of signal recovery with a low-dimensional generative prior



Random generative priors allow rigorous recovery guarantees

- Let: $\mathcal{G} : \mathbb{R}^k \to \mathbb{R}^n$ $\mathcal{G}(z) = \operatorname{relu}(W_d \dots \operatorname{relu}(W_2 \operatorname{relu}(W_1 z)) \dots)$ Given: $W_i \in \mathbb{R}^{n_i \times n_{i-1}}, A \in \mathbb{R}^{m \times n}, y := A\mathcal{G}(z_0) \in \mathbb{R}^m$ Find: x_0
- **Expansivity**: Let $n_i > cn_{i-1} \log n_{i-1}$
- ► Gaussianicity: Let W_i and A have iid Gaussian entries.
- **Biasless**: No bias terms in \mathcal{G} .

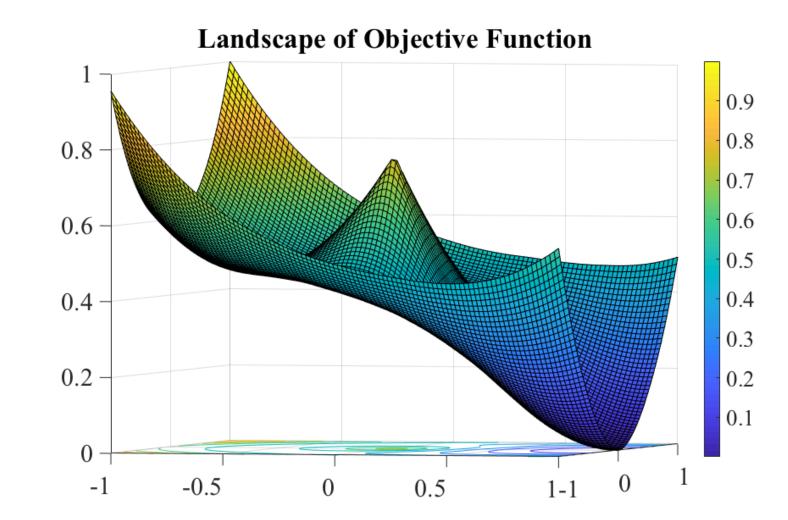
14

Compressive phase retrieval from generic measurements is possible at optimal sample complexity

1. # measurements = $\Omega(k)$, up to log factors

- 2. network layers are sufficiently expansive
- 3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)



The objective function has a strict descent direction in latent space outside of two small neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Proof requires concentration of discontinuous matrixvalued random functions

Lemma: Fix ϵ . Let $W \in \mathbb{R}^{n \times k}$ have i.i.d. $\mathcal{N}(0, 1/n)$ entries. If $n > ck \log k$, then with probability at least $1 - 8ne^{-\gamma k}$, we have for all $x, y \neq 0 \in \mathbb{R}^k$,

$$\left\|\frac{1}{n}\sum_{i=1}^{n}1_{w_i\cdot x>0}1_{w_i\cdot y>0}\cdot w_iw_i^T - \mathbb{E}[\cdots]\right\| \le \epsilon$$

The constants depend polynomially on ϵ .

Compressive Phrase Retrieval on MNIST

Fienup (200 m)

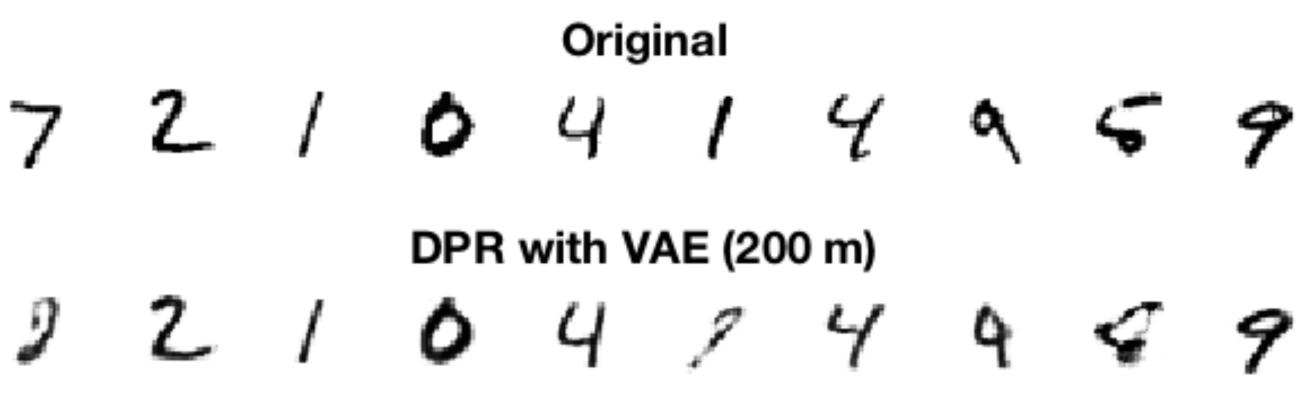
	감장감	

Gerchberg Saxton (200 m)

\$150-24		

Wirtinger Flow (200 m)

1996439	12.252.62
224433	



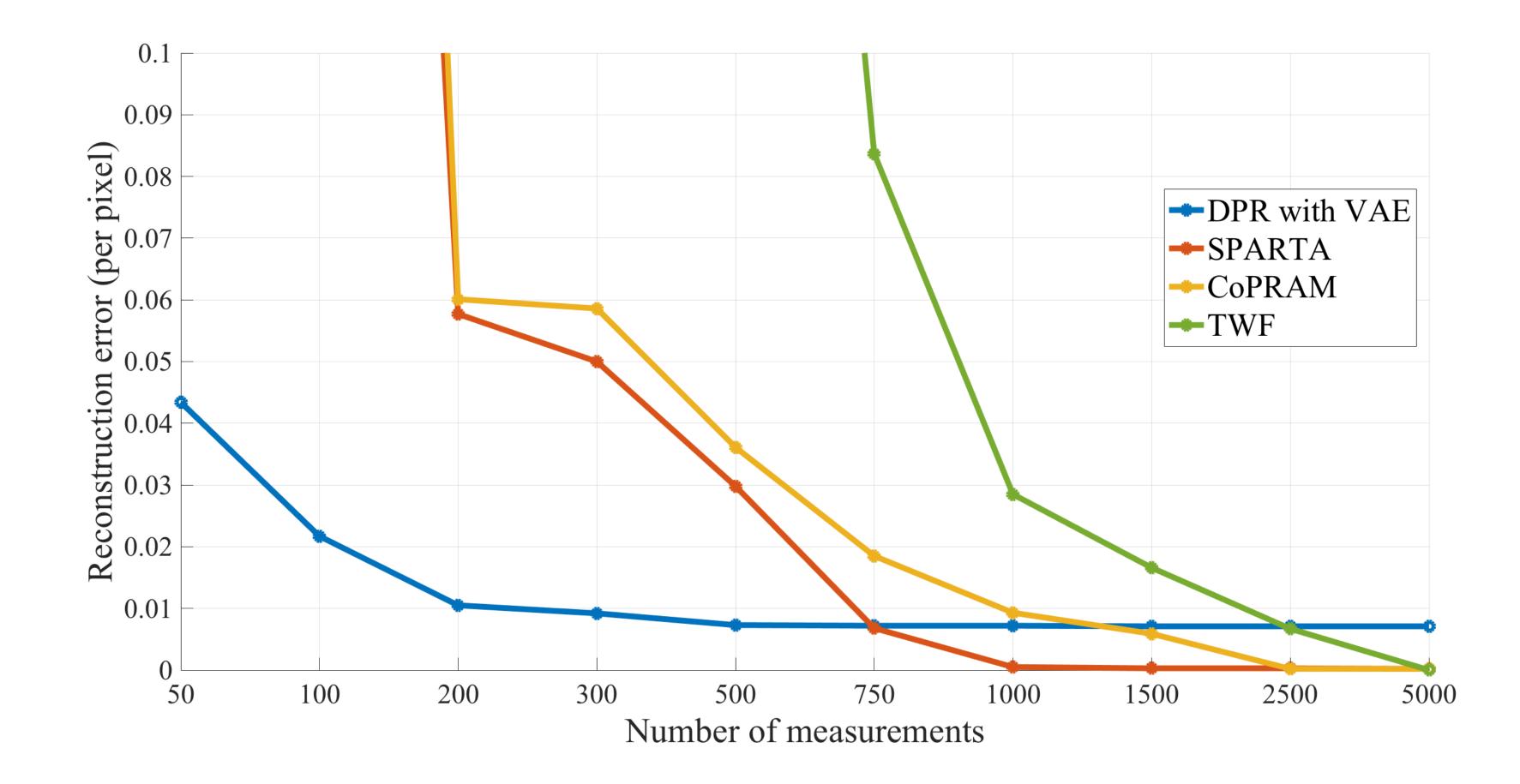
SPARTA (200 m)

				18.88 M	
가지 않는다. 1997년 1월 20일			622.2		
90000 C	5.673.575	「「「「「「「「」」」」	新聞工作時代	ST 3573 P.	20002609

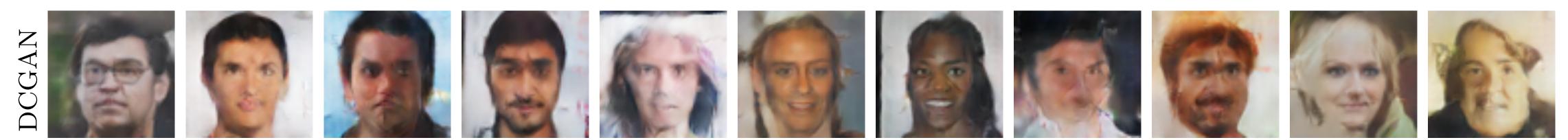
20663363	2.312,1333	94998(JCC)	134.8799°	10000	57566.99

COLOR DA SA	11.125503.0	122942-122	100 GROUP (10)	COMPLEX N	101-0370-00

Deep phase retrieval can outperform sparse phase retrieval in the low measurement regime

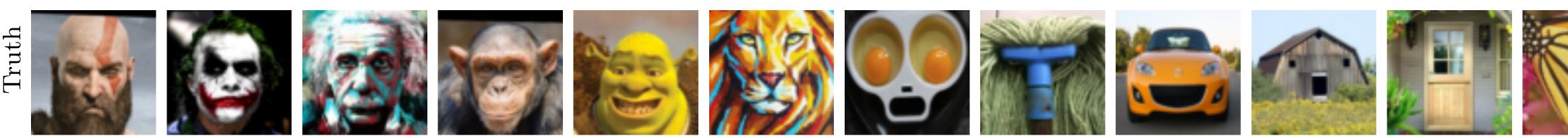


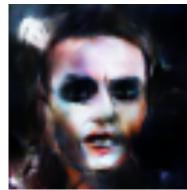
Is there a catch?

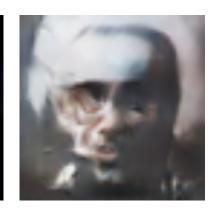


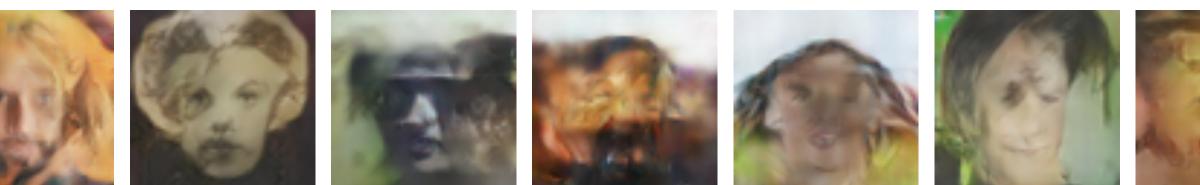
GANs can have significant representation error

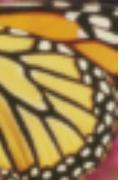
GANs can have very poor performance far off distribution











Signal Recovery Under Generative Priors

- Generative priors can be optimally exploited for some nonlinear problems
- Generative priors could provide tighter representations of natural images
- Low dim. nonconvex optimization replaces high dim. convex optimization
- Generative priors may outperform sparsity priors for a variety of problems

References

Deep Compressive Sensing

- Bora et al. 2017 *ICML*
- Hand and Voroninski 2019 IEEE Trans IT
- Huang et al. 2021 J. Fourier Anal. App.

Other Inverse Problems

- Denoising: Heckel et al. 2020 - Information and Inference
- Phase Retrieval: Hand, Leong, and Voroninski 2018 - NeurIPS
- Spiked Matrix Recovery: Aubin et al. 2020 - *IEEE Trans IT* Cocola et al. 2020 - *NeurIPS, Entropy*
- Blind Demodulation: Hand and Joshi 2018 - NeurIPS

Generalization of Assumptions

- Convolutional Generators
 Ma, Ayaz, and Karaman 2018 NeurIPS
- Better Expansivity Condition
 Daskalakis et al. 2020 NeurIPS

Normalizing Flow Priors

• Asim et al. 2020 - ICML

Review Articles

- Lucas et al. 2018 IEEE Sig. Proc. Mag.
- Ongie et al. 2020 IEEE JSAIT

Workshops

• 2019, 2020, 2021 NeurIPS Workshops