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The Random Clique Problem

Max-Clique Problem
Given G ∈ G(N,1/2), find the largest random clique

Clique C: fully-connected subgraph of G

Y K = Average number of cliques C of size K =
(n

K

)1
2

(K
2)

Y K → 0 if K > KS(N) = 2 log2(N)−O(log log(N))

Probability that a K -clique is contained in a K + 1-clique:
Pgrow (K → K + 1) =

(K +1)Y K +1

Y K
→ 0 if K = (1 + ε) log2(N)

Any polinomial algorithm stops at K = log2(N)
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The Jerrum Metropolis MC

Start from xi = 0 ∀i
At each time n choose i u.a.r. and flip xi with probabilities:

PJerrum(xn
i = 0→ xn+1

i = 1) =

{
0 if ∃j : xn

j = 1 and Aij = 0
1 otherwise

PJerrum(xn
i = 1→ xn+1

i = 0) = λ−1, λ ≥ 1

State space: collection Ω of cliques C of any size in G.
Stationary distribution on Ω: π(C) = w(C)∑

C∈Ω w(C)

w(C) = λ|C|: weight asssigned to each clique C ∈ Ω

Theorem (Jerrum ’92)

Suppose ε > 0. For a.e. G ∈ G(N, 1
2) and every λ ≥ 1, the expected

time for MC to reach a clique of size at least (1 + ε) log N exceeds
NΩ(log N)
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The Planted Clique Problem

Max-Clique Problem
Given G ∈ G(N,1/2), select u.a.r. a subset C of size |C| ≡ K .
Add to G all the edges between two nodes in C.
(These operations define the new ensemble G(N,1/2,K ))
Try to find C.

Possible for K > 2 log2 N
BUT many known algorithms are proved to fail in the regime

K/
√

N → 0:
Spectral algorithms Alon et al., Random Structures & Algorithms (1998)

Message Passing Deshpande, Montanari, Found. of Comp. Math. (2015)

Sum of Squares Barak, SIAM Journal on Computing (2019)

HARD EASY

K K

IMPOSSIBLE

K
algIT
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The Jerrum MC for the planted clique problem

Same algorithm as in the random case

Theorem (Jerrum ’92)

Suppose ε > 0 and 0 < β < 1
2 . For a.e. G ∈ G(N, 1

2 , dN
βe) and every

λ ≥ 1 the expected time for the MC process to reach a clique of size at
least (1 + ε) log N exceeds NΩ(log N)

But is the MC linear (polynomial) for β ≥ 1
2?
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A different Metropolis MC for the planted clique

Gamarnik, Zadik, arXiv:1904.07174 (2019)

xi = {0,1}, Fixed global magnetization m =
∑N

i=1 xi ≡ K .

Choose K nodes xki , i ∈ [1,K ] u.a.r. and set x0
ki

= 1, x0
j 6=ki

= 0
Assign unitary cost for couples of unconnected nodes in the
putative clique: E =

∑
ij(1− Aij)xixj

Update nodes with Metropolis probabilities:

P
(

(xn
a , x

n
b ) = (1,0)→ (xn+1

a , xn+1
b ) = (0,1)

)
= min(1,e−β∆E )

Exponential-in-K time for K ≤ N2/3

It becomes polynomial down to
K =

√
N, working with a

mismatched fixed magnetization
K > K .
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Two questions:

MCA, deFeo, Fachin, arXiv:2106.05720

Is the Jerrum algorithm suboptimal? (super-polynomial for
K ≤ Nβ with β > 1/2)

If yes, can we introduce a mismatched parameter to enhance its
performances?
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Numerical simulation of Jerrum algorithm

 1000

 10000

 200  400  600  800  1000  1200

t 5
0

K

N=1200

N=1500

N=2000

N=2500

N=3000

N=3500

t50(K ) =
aN

(K − Kmin)ν

 100

 1000

K
m

in

N

x
0.5

Kmin(N) = bNα

α = 0.91
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Two questions:

Is the Jerrum algorithm suboptimal? (super-polynomial for
K ≤ Nα with α > 1/2)

Yes, it seems to be suboptimal, α ' 0.91

If yes, can we introduce a mismatched parameter to enhance its
performances?

To answer this question we introduce a slightly different MC
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BayesMC

Posterior: P(x |A) =
P(A|x)P(x)

P(A)

Likelihood: p(Aij = 1|{x}) =

{
1 if xixj = 1
1
2 otherwise

.

Prior: P(x) =

(
K
N

)x (
1− K

N

)1−x

(local instead of global constraint)

As statistical physicists, we love Gibbs-Boltzmann weights:

Pβ({x}|{A}) ≡ Pβ({x}|{A}) ≡ 1
N

e−βH({x}), βBayes = 1

introducing the Hamiltonian:

H({x}) = −
∑

i

log(P(xi)) +−
∑

ij

[
(1− Aij) log

(1− xixj)

2
+ Aij log

(1 + xixj)

2

]
.
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BayesMC

Metropolis algorithm:

P(xn
i = 0→ xn+1

i = 1) =

{
0 if ∃j : xn

j = 1 and Aij = 0

min
(
e−β∆E , 1

)
= min

(
e−β[log(1− K

N )−log( K
N )+m log( 1

2 )], 1
)

o.w.
,

P(xn
i = 1→ xn+1

i = 0) = min
(
eβ∆E , 1

)

Same class as Jerrum algorithm
Working only on perfect-clique configurations of different sizes m.

2 4 6 8
m

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35
m

10
-6

10
-4

0.01

1

β=1 K=30

β=1 K=50

β=0.5 K=30

Jerrum

P(xn
i = 0→ xn+1

i = 1) P(xn
i = 1→ xn+1

i = 0) N = 2000
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Finding the optimal β

 100

 1000

 10000

 100000

 0  0.1  0.2  0.3  0.4  0.5  0.6

t

β

K=100

K=90

K=80

K=70

K=60

K=50

K=40

N = 2000
(β = 1: the planted clique is not recovered in t ≤ 107)
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Finding the optimal β

 10

 1  10  100  1000  10000  100000

m

t

β=0.05

β=0.1

β=0.3

β=0.5

β=0.7

β=1

N = 2000, K = 50
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Finding the MC threshold
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Answers to the two questions:

MCA, deFeo, Fachin, arXiv:2106.05720

Is the Jerrum algorithm suboptimal? (super-polynomial for
K ≤ Nα with α > 1/2)

Yes, it seems to be suboptimal, α ' 0.91

If yes, can we introduce a mismatched parameter to enhance its
performances?

Yes, we introduce a “temperature”. MC seems to reach the

threshold for linear algorithms K =
√

N
e at “mismatched”

temperature T > 1.
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Conclusions, comments, perspectives

We look forward for mathematical proofs of our numerical findings

What is the reason for the failure of standard MC? Glassy
states/RSB?
Parallel Tempering (n exchangeable replicas at different
temperatures) works extremingly well for Planted Clique, why?

 0.01

 0.1

 1

 10

 100

 1000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

t/
(b

N
ν
)

K
~

-K
~

s(N)

N=2000
N=3000
N=4000
N=5000

MCA J. Stat. Mech. (2018) 073404

K̃ = K
log2(N)

Overparametrization is essential in Deep NN. Simple cases can
be useful in understanding complex ones.
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