Privacy and the Complexity of Simple Queries

Jonathan Ullman Northeastern University

· Goal is to learn about the population while respecting the privacy of the sample

- · Membership-inference (Homer+08, DSSUVIS, SSSSIG)
- · Extracting memorized data (CLEKS19)

Private Statistical Queries dataset X=(X,...Xn) drawn isd from P Goal: Given queries q1, ..., qk design an (E,S)-dp estimator M such that for all distributions Power U $\mathbb{E}\left(\left|\left|\mathcal{Q}(P)-\mathcal{M}(X)\right|\right|_{\infty}\right) \leq \frac{1}{100}$

Private Statistical Queries: Algorithms

Wave 1:

Thm: (DNO3, DNO4, BDMN 05, DANSOG, DKMMN06) For any set of queres q1....qk: {±13d > \$±13, there is a differentially private algorithm with sample complexity $n = \widetilde{O}(k^{1/2})$ running time pdy(k)

Wave 2:

Thm: (BLR 08, DNRRV09, DRV10, RR10, HR10, GRU12, HLM12NTZB) For any set of queres q1....qk: {±13d > \$±13, there is a differentially private algorithm with sample complexity n= $\mathcal{O}(d^{12})$ running time pdy (k, 2^d)

Naic Station					
Worst-Case SQS		k > d	r		
Time (*)	SC Upper Bound	Lover Bound			
poly(k)	$\widetilde{O}(k^{\prime\prime})$	S(k')7)(+) KMUZIG			
$poly(k, 2^{4})$	Ö(d"2)	52 (d "2) BUV 14			
(*) Assuming program obfuscation					
Research Thrust 1: When can we improve the					
sample complexity for simple families of queries?					
Research Thrust 2: When can we improve the					
computational complexity for simple families of queries?					

Private Statistical Queries

Private Statistical Queries

m-way marginal	constant m ? C	
Time (*)	SC Upper Bound	Lover Bound
poly(k)	$\widetilde{O}(d^{n/2})$	
$poly(k, 2^{d})$	õ(d'")	52 (d "2) BUV 14

Research Thrust 3: Find computationally efficient algorithms for privately estimating marginals or give evidence of computational hardness [[] will take you out for AYCE sushi!

Learning - Based Mechanisms (GHRUII, HRS12, TUVI2,...) For m-way marginals, the learning problem is noisy tensor completion $f_{p}(i_{1},...,i_{m}) = \underset{x \sim P}{\text{E}(\prod_{l=1}^{m} \chi_{i_{l}})}$ (onvex combination of rank-1 m-tensors Thm: Õld) entries are enough for tensor completion Thm (BM15): Assuming hardness of refuting 3-XOR, ony efficient algorithm for 3-tensor completion reguires $S2(d^{3/2})$ entries.

=> Efficient private algs in this framework need S2 (d3/4) samples

Prn	ate Margi m-way marginal	inals s	constant m > 2
	Time (*)	SC Upper Bound	Lover Bound
	poly(k)	$\tilde{O}(d^{C_{m}^{(12)}})/\tilde{O}(d^{\tilde{L}_{m}^{(2)}})$	
	poly(2,24)	õ(d")	52 (d "2) BUNIY

Research Thrust 3: Find computationally efficient algorithms for privately estimating marginals or give evidence of computational hardness

Connections to Robust Statistics:

$$(\varepsilon, \delta) - D. fleiential Pinacy: For every X~X'$$

and every Ts Range (M)
$$P(M(X) \in T) \leq e^{\varepsilon} P(M(X') \in T) + \delta$$

Differential Privacy => "Strong Robustness" But we're often in a regime where "standard robustness" is tractable

Thanks!!!