Robust Estimation for Random Graphs

Jayadev Acharya, Cornell University
work with
Ayush Jain, UC San Diego
Gautam Kamath, U Waterloo
Ananda Theertha Suresh, Google Research
Huanyu Zhang, Facebook

Outline

- Problem formulation
- Related work
- Results
- Proof sketch
- Conclusion

Setup

Problem formulation

$G(n, p)$: Erdős Rényi graphs over n nodes

$$
\operatorname{Pr}((i, j) \text { exists })=p \text { independently }
$$

Given $G \sim G(n, p)$, estimate p

Simple estimators

d_{j} : degree of node j
Mean estimator:

$$
\hat{p}=\frac{d_{1}+\cdots+d_{n}}{n(n-1)}
$$

Median estimator:

$$
\hat{p}=\frac{\operatorname{Median}\left\{d_{1}, \ldots, d_{n}\right\}}{n-1}
$$

Lemma. For the mean estimator

$$
|\hat{p}-p|=\Theta\left(\frac{\sqrt{p(1-p)}}{n}\right)
$$

Robust estimation under corruptions

An adversary \mathcal{A} :

- Looks at G
- Picks a set B nodes with $|B|=\gamma n$
- Changes neighborhood of B as it likes
- We observe resulting graph $\mathcal{A}(G)$

Robust estimation under corruptions

An adversary \mathcal{A} :

- Looks at G
- Picks a set B nodes with $|B|=\gamma n$
- Changes neighborhood of B as it likes
- We observe resulting graph $\mathcal{A}(G)$

Given $\mathcal{A}(G)$, estimate p.

Robust estimation

Robust statistics:
Donoho, Hampel, Huber, Rousseeuw, Tukey, ...
More recently, computationally efficient multivariate estimation
LRV'16, DKKLMS'16, ...
Robust estimation of discrete distributions
QV'17, CLM'19, JO'20
Robust community detection
CL'14
Graph estimation under-differential privacy
BCSZ'18, SU'19

Our Results

Simple estimators with corruptions

For both mean and median estimators:

$$
|\hat{p}-p|=\Theta\left(\gamma+\frac{\sqrt{p(1-p)}}{n}\right)
$$

Prune-then simple estimators

Prune-then-estimation:

- Remove $c \cdot \gamma$ fraction of nodes with largest and smallest degrees
- Output the mean/median of the remaining subgraph

Lemma. For prune-then-median:

$$
|\hat{p}-p|=\Omega\left(\gamma+\frac{\sqrt{p(1-p)}}{n}\right)
$$

Lemma. For prune-then-mean:

$$
|\hat{p}-p|=\Omega\left(\gamma^{2}+\frac{\sqrt{p(1-p)}}{n}\right)
$$

Main result: upper bound

Theorem. There exists an algorithm such that

$$
|\hat{p}-p|=\tilde{O}\left(\frac{\sqrt{p(1-p)}}{n}+\frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}+\frac{\gamma}{n}\right)
$$

It runs in time $\widetilde{O}\left(\gamma n^{3}+n^{2.5}\right)$.

If $p \in\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ and $\gamma>1 / \sqrt{n}$,

$$
\begin{aligned}
|\hat{p}-p| & =\tilde{O}\left(\frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}\right) \\
& =\tilde{O}\left(\gamma \sqrt{n} \cdot \frac{\sqrt{p(1-p)}}{n}\right)
\end{aligned}
$$

Main result: lower bound

Let $p \in\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ and $\gamma>1 / \sqrt{n}$

$$
\delta(p, \gamma, n):=0.05 \cdot \frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}
$$

There exists \mathcal{A} such that if $G \sim G(n, p)$, and $G^{\prime} \sim G(n, p+\delta(p, \gamma, n))$

$$
d_{\mathrm{TV}}\left(\mathcal{A}(G), \mathcal{A}\left(G^{\prime}\right)\right)<0.1
$$

Furthermore, \mathcal{A} corrupts a randomly chosen B.

Upper and lower bounds of up to log factors (tight in all terms).

Upper Bounds

Upper bound outline

A two-step algorithm:

- A spectral algorithm to output a coarse estimate \hat{p} such that

$$
|\hat{p}-p|=\tilde{o}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)
$$

- A post-processing step to improve the estimate

Large subsets of uncorrupted nodes are good

A: adjacency matrix of $\mathcal{A}(G)$
For $S \subseteq[n]$,
$A_{S \times S}$: submatrix of A restricted to $S \times S$
p_{S} : average $A_{S \times S}$ (density of subgraph of $\mathcal{A}(G)$ induced by S)
$\left(A-p_{S}\right)_{S \times S}$: subtracting p_{S} from each entry in $A_{S \times S}$
$F=[n] \backslash B$: set of uncorrupted nodes
Lemma. W.h.p. simultaneously for all $F^{\prime} \subset F:\left|F^{\prime}\right|>n(1-18 \gamma)$:

1. $\left\|\left(A-p_{F^{\prime}}\right)_{F^{\prime} \times F^{\prime}}\right\|$ is small
2. $\quad p_{F^{\prime}}$ is a good estimate of p

Small norm implies good estimate

Let $S \subseteq[n]$ be such that $|S|>n(1-9 \gamma)$

Lemma. If \| $\left(A-p_{S}\right)_{S \times S}$ || is small, then p_{S} is a coarse estimate of p.

Proof sketch:

- $S \cap F$ is a large uncorrupted set $=>p_{S \cap F}$ is close to p
- If p_{S} is far from p, then $p_{S \backslash S \cap F}$ is far from p
- Implies a lower bound on spectral norm

An inefficient coarse estimation:

- Iterate over all large subsets to minimize the spectral norm above

Making it efficient

Suppose $|S|>n(1-9 \gamma)$ and v a normalized top eigenvector of $\left(A-p_{S}\right)_{S \times S}$

Main lemma. If || $\left(A-p_{S}\right)_{S \times S} \|$ is large, then $\left\|v_{S \cap B}\right\|^{2}$ is at least a constant.

Algorithm:

- $S=[n]$
- While $|S|>n(1-9 \gamma)$:
- Compute top eigenvector v of $\left(A-p_{S}\right)_{S \times S}$
- Sample i with probability v_{i}^{2}
- $S \leftarrow S \backslash\{i\}$

Step 2: pruning

S^{*} : set returned by coarse algorithm such that

$$
\left|p_{S^{*}}-p\right|=\tilde{O}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)
$$

Pruning:

- Remove $3 \gamma n$ nodes with highest and lowest degrees
- Output the mean \hat{p} of the remaining nodes

Theorem.

$$
|\hat{p}-p|=\tilde{O}\left(\gamma \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)
$$

Lower Bounds

Lower bound

Let $p \in\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ and $\gamma>1 / \sqrt{n}$

$$
\delta(p, \gamma, n):=0.05 \cdot \frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}
$$

There exists an adversary such that if $G \sim G(n, p)$, and $G^{\prime} \sim G(n, p+\delta(p, \gamma, n))$

$$
d_{\mathrm{TV}}\left(\mathcal{A}(G), \mathcal{A}\left(G^{\prime}\right)\right)<0.1
$$

A coupling for lower bound

Done if we can convert $G \sim G(n, p)$ to $G^{\prime} \sim G(n, p+\delta(p, \gamma, n))$ by changing γn nodes.

- Node degrees of G are $\operatorname{Bin}(n-1, p)$
- Node degrees of G^{\prime} are $\operatorname{Bin}(n-1, p+\delta(p, \gamma, n))$

$$
d_{\mathrm{TV}}(\operatorname{Bin}(n-1, p), \operatorname{Bin}(n-1, p+\delta(p, \gamma, n)))<\gamma / 10
$$

If node degrees of $G(n, p)$ are independent:

- There is a coupling between G and G^{\prime} with $n \cdot \gamma / 10$ node changes in expectation

Unfortunately, node degrees are not independent

Directed graphs to the rescue

$D G(n, p)$: directed ER graphs

- Outgoing node degrees are $\operatorname{Bin}(n-1, p)$
- Degrees are independent
- $\delta(p, \gamma, n)$ lower bound holds for estimating p for $D G(n, p)$ under γ corruptions

Lemma. For any γ, parameter estimation for $G(n, p)$ is harder than $D G(n, p)$

Thank You

Conclusion:

- Robust estimation task for graph problems
- Almost optimal results for ER parameter estimation

Ongoing work:

- Stochastic block models

Other directions:

- Other random graph models

