Robust Estimation for Random Graphs

Jayadev Acharya, Cornell University

work with

Ayush Jain, UC San Diego

Gautam Kamath, U Waterloo

Ananda Theertha Suresh, Google Research

Huanyu Zhang, Facebook

Outline

- Problem formulation
- Related work
- Results
- Proof sketch
- Conclusion

Setup

Problem formulation

G(n, p): Erdős Rényi graphs over n nodes

Pr((i, j) exists) = p independently

Given $G \sim G(n, p)$, estimate p

Simple estimators

 d_j : degree of node j

Mean estimator:

$$\hat{p} = \frac{d_1 + \dots + d_n}{n(n-1)}$$

Median estimator:

$$\hat{p} = \frac{\text{Median}\{d_1, \dots, d_n\}}{n-1}$$

Lemma. For the mean estimator

$$|\hat{p} - p| = \Theta\left(\frac{\sqrt{p(1-p)}}{n}\right)$$

Robust estimation under corruptions

An adversary \mathcal{A} :

- Looks at G
- Picks a set *B* nodes with $|B| = \gamma n$
- Changes neighborhood of B as it likes
- We observe resulting graph $\mathcal{A}(G)$

Robust estimation under corruptions

An adversary \mathcal{A} :

- Looks at G
- Picks a set *B* nodes with $|B| = \gamma n$
- Changes neighborhood of B as it likes
- We observe resulting graph $\mathcal{A}(G)$

Given $\mathcal{A}(G)$, estimate p.

Robust estimation

Robust statistics:

Donoho, Hampel, Huber, Rousseeuw, Tukey, ...

More recently, computationally efficient multivariate estimation

LRV'16, DKKLMS'16, ...

Robust estimation of discrete distributions

QV'17, CLM'19, JO'20

Robust community detection

CL'14

Graph estimation under-differential privacy

BCSZ'18, SU'19

Our Results

Simple estimators with corruptions

For both mean and median estimators:

$$|\hat{p} - p| = \Theta\left(\gamma + \frac{\sqrt{p(1-p)}}{n}\right)$$

Prune-then simple estimators

Prune-then-estimation:

- Remove $c \cdot \gamma$ fraction of nodes with largest and smallest degrees
- Output the mean/median of the remaining subgraph

Lemma. For prune-then-median:

$$|\hat{p} - p| = \Omega\left(\frac{\gamma + \frac{\sqrt{p(1-p)}}{n}}{n}\right)$$

Lemma. For prune-then-mean:

$$|\hat{p} - p| = \Omega\left(\frac{\gamma^2}{n} + \frac{\sqrt{p(1-p)}}{n}\right)$$

Main result: upper bound

Theorem. There exists an algorithm such that

$$|\hat{p} - p| = \tilde{O}\left(\frac{\sqrt{p(1-p)}}{n} + \frac{\gamma\sqrt{p(1-p)}}{\sqrt{n}} + \frac{\gamma}{n}\right).$$

It runs in time $\tilde{O}(\gamma n^3 + n^{2.5})$.

If
$$p \in \left(\frac{1}{n}, 1 - \frac{1}{n}\right)$$
 and $\gamma > 1/\sqrt{n}$,
 $|\hat{p} - p| = \tilde{O}\left(\frac{\gamma\sqrt{p(1-p)}}{\sqrt{n}}\right)$
 $= \tilde{O}\left(\gamma\sqrt{n} \cdot \frac{\sqrt{p(1-p)}}{n}\right)$

Main result: lower bound

Let
$$p \in \left(\frac{1}{n}, 1 - \frac{1}{n}\right)$$
 and $\gamma > 1/\sqrt{n}$
 $\delta(p, \gamma, n) \coloneqq 0.05 \cdot \frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}$

There exists \mathcal{A} such that if $G \sim G(n, p)$, and $G' \sim G(n, p + \delta(p, \gamma, n))$

 $d_{\mathrm{TV}}(\mathcal{A}(G), \mathcal{A}(G')) < 0.1.$

Furthermore, \mathcal{A} corrupts a randomly chosen B.

Upper and lower bounds of up to log factors (tight in all terms).

Upper Bounds

Upper bound outline

A two-step algorithm:

• A spectral algorithm to output a coarse estimate \hat{p} such that

$$|\hat{p} - p| = \tilde{O}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

• A post-processing step to improve the estimate

Large subsets of uncorrupted nodes are good

A: adjacency matrix of $\mathcal{A}(G)$

For $S \subseteq [n]$,

 $\begin{array}{l} A_{S\times S}: \text{ submatrix of } A \text{ restricted to } S \times S \\ p_S: \text{ average } A_{S\times S} \text{ (density of subgraph of } \mathcal{A}(G) \text{ induced by } S) \\ (A - p_S)_{S\times S}: \text{ subtracting } p_S \text{ from each entry in } A_{S\times S} \\ F = [n] \setminus B: \text{ set of uncorrupted nodes} \end{array}$

Lemma. W.h.p. simultaneously for all $F' \subset F$: $|F'| > n(1 - 18\gamma)$:

1.
$$|| (A - p_{F'})_{F' \times F'} ||$$
 is small

2. $p_{F'}$ is a good estimate of p

Small norm implies good estimate

Let $S \subseteq [n]$ be such that $|S| > n(1 - 9\gamma)$

Lemma. If $|| (A - p_S)_{S \times S} ||$ is small, then p_S is a coarse estimate of p.

Proof sketch:

- $S \cap F$ is a large uncorrupted set => $p_{S \cap F}$ is close to p
- If p_S is far from p, then $p_{S \setminus S \cap F}$ is far from p
- Implies a lower bound on spectral norm

An inefficient coarse estimation:

• Iterate over all large subsets to minimize the spectral norm above

Making it efficient

Suppose $|S| > n(1 - 9\gamma)$ and v a normalized top eigenvector of $(A - p_S)_{S \times S}$

Main lemma. If $|| (A - p_S)_{S \times S} ||$ is large, then $|| v_{S \cap B} ||^2$ is at least a constant.

Algorithm:

• S = [n]

- While $|S| > n(1 9\gamma)$:
 - Compute top eigenvector v of $(A p_S)_{S \times S}$
 - Sample *i* with probability v_i^2
 - $S \leftarrow S \setminus \{i\}$

Step 2: pruning

 S^* : set returned by coarse algorithm such that

$$|p_{S^*} - p| = \tilde{O}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

Pruning:

- Remove $3\gamma n$ nodes with highest and lowest degrees
- Output the mean \hat{p} of the remaining nodes

Theorem.

$$|\hat{p} - p| = \tilde{O}\left(\gamma \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

Lower Bounds

Lower bound

Let
$$p \in \left(\frac{1}{n}, 1 - \frac{1}{n}\right)$$
 and $\gamma > 1/\sqrt{n}$
 $\delta(p, \gamma, n) \coloneqq 0.05 \cdot \frac{\gamma \sqrt{p(1-p)}}{\sqrt{n}}$

There exists an adversary such that if $G \sim G(n, p)$, and $G' \sim G(n, p + \delta(p, \gamma, n))$

 $d_{\mathrm{TV}}(\mathcal{A}(G), \mathcal{A}(G')) < 0.1.$

A coupling for lower bound

Done if we can convert $G \sim G(n, p)$ to $G' \sim G(n, p + \delta(p, \gamma, n))$ by changing γn nodes.

- Node degrees of G are Bin(n-1, p)
- Node degrees of G' are $Bin(n-1, p + \delta(p, \gamma, n))$

$$d_{\text{TV}}\left(Bin(n-1,p), Bin(n-1,p+\delta(p,\gamma,n))\right) < \gamma/10$$

If node degrees of G(n, p) are independent:

• There is a coupling between G and G' with $n \cdot \gamma / 10$ node changes in expectation

Unfortunately, node degrees are not independent

Directed graphs to the rescue

DG(n, p): directed ER graphs

- Outgoing node degrees are Bin(n-1, p)
- Degrees are independent
- $\delta(p, \gamma, n)$ lower bound holds for estimating p for DG(n, p) under γ corruptions

Lemma. For any γ , parameter estimation for G(n, p) is harder than DG(n, p)

Thank You

Conclusion:

- Robust estimation task for graph problems
- Almost optimal results for ER parameter estimation

Ongoing work:

• Stochastic block models

Other directions:

• Other random graph models