Non-Gaussian Component Analysis: SQ Hardness and Applications

Ilias Diakonikolas (UW Madison) Simons Institute, Berkeley September 2021

NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on \mathbb{R}^d , find a hidden "non-Gaussian" direction.

• Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller'06].

 Studied extensively from algorithmic standpoint.
[Kawanabe-Theis'06; Kawanabe-Sugiyama-Blanchard-Muller'07; Diederichs-Juditsky-Spokoiny-Schutte'10; Diederichs-Juditsky-Nemirovski-Spokoiny'13; Bean'14; Sasaki-Niu-Sugiyama'16; Virta-Nordhausen-Oja'16; Vempala-Xiao'11; Tan-Vershynin'18; Goyal-Shetty'19]

NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let v be a unit vector in \mathbb{R}^d and $A : \mathbb{R} \to \mathbb{R}_+$ be a pdf. We define \mathbf{P}_v^A to be the distribution with v-projection equal to A and v^{\perp} -projection an independent standard Gaussian.

NGCA Problem: Given *A* that matches the first *m* moments with $\mathcal{N}(0,1)$: Using i.i.d. samples from \mathbf{P}_v^A where *v* is unknown, find the hidden direction *v*. NGCA captures interesting instances of several well-studied learning tasks

EXAMPLE: NGCA ENCODES GMMS

Note that $\mathbf{P}_v^A(x) = A(v \cdot x) \exp(-\|x - (v \cdot x)v\|_2^2)/(2\pi)^{(d-1)/2}$

Suppose that

(INFORMAL) MAIN RESULT OF THIS TALK

Fact: Non-Gaussian Component Analysis

- Can be solved with poly(d, m) samples.
- All known efficient algorithms require at least $d^{\Omega(m)}$ samples (and time).

Informal Theorem: For *any* "nice" univariate distribution A matching its first *m* moments with the standard Gaussian, any^{*} algorithm that solves NGCA

- either draws at least $d^{\Omega(m)}$ samples
- or has runtime $2^{d^{\Omega(1)}}$

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS'17]

NGCA captures SQ hard instances of several well-studied learning tasks

- Learning GMMs [D-Kane-Stewart'17]
- Robust mean and covariance estimation [D-Kane-Stewart'17]
- Robust sparse mean estimation, sparse PCA [D-Kane-Stewart'17, D-Stewart'18]
- Robust linear regression [D-Kong-Stewart'19]
- List-decodable learning [D-Kane-Stewart'18, D-Kane-Pensia-Pittas-Stewart'21]
- Adversarially robust PAC learning [Bubeck-Price-Razenshteyn'18]
- Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis'20, D-Kane-Pittas-Zarifis'21]
- Learning Neural Networks [Goel-Gollakota-Jin-Karmalkar-Klivans'20, D-Kane-Kontonis-Zarifis'20]
- Learning with Massart Noise [D-Kane'20]

STATISTICAL QUERY (SQ) MODEL [KEARNS'93]

INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P

- either requires queries of tolerance at most au
- or makes at least *q* queries.

Then we can interpret:

Any SQ algorithm* for problem P	
- either requires at least $1/ au^2$ samples	i
• or has runtime at least <i>q</i> .	1
	2

POWER OF SQ ALGORITHMS

- **Restricted Model**: Can prove unconditional lower bounds.
- **Powerful Model**: Wide range of algorithmic techniques in ML are implementable using SQs:
 - PAC Learning: AC⁰, decision trees, linear separators, boosting
 - Unsupervised Learning: stochastic convex optimization, moment-based methods, *k*-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM'17]
- Known Exception: Gaussian elimination over finite fields (aka, learning parities).
- For all problems in this talk, strongest known algorithms are SQ.

GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Hypothesis Testing Problem: Given access to a distribution D on \mathbb{R}^d with promise that

- either $D = D_0$
- or D is selected randomly from $\mathcal{D}=\{D_u\}_{u\in S}$ according to prior μ

the goal is to distinguish between the two cases.

Pairwise correlation: $\chi_{D_0}(p,q) = \mathbf{E}_{x \sim D_0}[(p/D_0)(x)(q/D_0)(x)] - 1$

Theorem [FGRVX'17]: Suppose there exists a "large" set of distributions in \mathcal{D} with "small" pairwise correlation with respect to D_0 . Then any SQ algorithm for hypothesis testing task:

- either requires at least one "high-accuracy" query
- or requires a "large" number of queries.

STATISTICAL QUERY HARDNESS OF NGCA

Testing Version of NGCA: Given access to a distribution D on \mathbb{R}^d with the promise that

- either $D = \mathcal{N}(0, I)$
- or $D = \mathbf{P}_v^A$, where v is a uniformly random unit vector

the goal is to distinguish between the two cases.

Main Theorem [D-Kane-Stewart'17]

Suppose that *A* matches its first *m* moments with $\mathcal{N}(0,1)$ and $\chi^2(A, \mathcal{N}(0,1)) < \infty$. Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most $d^{-\Omega(m)} \; \chi^2(A,\mathcal{N}(0,1))^{1/2}$
- or requires at least $2^{d^{\Omega(1)}}$ many queries.

INTUITION: WHY IS NGCA "HARD"?

Claim 1: Low-degree moments do not help.

• Degree at most *m* moment tensor of \mathbf{P}_v^A identical to that of $\mathcal{N}(\mathbf{0}, I_d)$

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.

KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of $v' \cdot X$, where $X \sim \mathbf{P}_v^A$. Then, we have that: $\chi^2(Q, \mathcal{N}(0, 1)) \leq (v \cdot v')^{2(m+1)} \chi^2(A, \mathcal{N}(0, 1))$

SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many \mathbf{P}_v^A is that are nearly uncorrelated.

- Pick set ${\mathcal V}$ of near-orthogonal unit vectors. Can get $|{\mathcal V}|=2^{d^{\Omega(1)}}$
- Have

$$\chi_{\mathcal{N}(\mathbf{0},I_d)}(\mathbf{P}_v^A,\mathbf{P}_{v'}^A) = \chi_{\mathcal{N}(0,1)}(A,U_{\theta}A) \le |\cos^{m+1}(\theta)|\chi^2(A,\mathcal{N}(0,1))$$

RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart'17]

Suppose that A matches its first m moments with $\mathcal{N}(0,1)$ and $\chi^2(A,\mathcal{N}(0,1)) < \infty$. Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most $d^{-\Omega(m)} \chi^2(A, \mathcal{N}(0, 1))^{1/2}$ or requires at least $2^{d^{\Omega(1)}}$ many queries.

Recipe. Encode Π as a NGCA instance:

- Construct moment-matching distribution A such that \mathbf{P}_{v}^{A} is a **valid instance** of Π . •
- Match as many low-degree moments as possible. •

EXAMPLE: SQ HARDNESS OF LEARNING GMMS

Lemma: There exists a univariate *k*-GMM *A* with nearly non-overlapping components such that: *A* agrees with $\mathcal{N}(0, 1)$ on the first 2k-1 moments.

Proof Idea:

- Construct discrete distribution *B* with support *k* matching its first 2k-1 moments with $\mathcal{N}(0,1)$.
- Rescale *B* and add a "skinny" Gaussian to get *A*.

SQ HARD INSTANCES FOR GMMS: PARALLEL PANCAKES

SQ HARDNESS FOR WIDE RANGE OF PROBLEMS

NGCA captures SQ hard instances of several well-studied learning tasks

- Learning GMMs [D-Kane-Stewart'17]
- Robust mean and covariance estimation [D-Kane-Stewart'17]
- Robust sparse mean estimation, sparse PCA [D-Kane-Stewart'17, D-Stewart'18]
- Robust linear regression [D-Kong-Stewart'19]
- List-decodable learning [D-Kane-Stewart'18, D-Kane-Pensia-Pittas-Stewart'21]
- Adversarially robust PAC learning [Bubeck-Price-Razenshteyn'18]
- Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis'20, D-Kane-Pittas-Zarifis'21]
- Learning Neural Networks [Goel-Gollakota-Jin-Karmalkar-Klivans'20, D-Kane-Kontonis-Zarifis'20]
- Learning with Massart Noise [D-Kane'20]
- ...

CONCLUSIONS AND OPEN PROBLEMS

NGCA leads to wide range of hardness results in SQ model

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reduction-based):

- Robust sparse mean estimation [Brennan-Bresler'20]
- Learning GMMs [Bruna-Regev-Song-Tang'21]

SQ hard instances are computationally hard.

Open Problem 2: How general is this phenomenon?

Open Problem 3: Prove SoS lower bounds for NGCA.