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NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on R¢, find a hidden “non-Gaussian” direction.

» Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

« Studied extensively from algorithmic standpoint.

[ Kawanabe-Theis'06; Kawanabe-Sugiyama-Blanchard-Muller’07;
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13;
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-0ja’16;

Vempala-Xiao’'11; Tan-Vershynin'18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let v be a unit vector in R and A : R — R be a pdf. We define Pf to be the
distribution with v - projection equal to A and vt projection an independent standard Gaussian.

NGCA Problem: Given A that matches the first m moments with A'(0,1):
Using i.i.d. samples from P;j‘ where v is unknown, find the hidden direction v.




NGCA captures interesting instances of several well-studied learning tasks



EXAMPLE: NGCA ENCODES GMMSs
Note that P2 (z) = A(v-z)exp(—|z — (v- z)v||3)/(2m)d~1)/2

Suppose that
A P4 (x)
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(INFORMAL) MAIN RESULT OF THIS TALK

Fact: Non-Gaussian Component Analysis
« Can be solved with poly(d, m) samples.
- All known efficient algorithms require at least ¢f*(™) samples (and time).

Informal Theorem: For any “nice” univariate distribution A matching its first m moments withl
the standard Gaussian, any* algorithm that solves NGCA

. either draws at least d<(™) samples
Q(1
. or has runtime 24"

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS’17]



NGCA captures SQ hard instances of several well-studied learning tasks

Learning GMMs [D-Kane-Stewart’17]

Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’ 17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart’19]

List-decodable learning [D-Kane-Stewart’ 18, D-Kane-Pensia-Pittas-Stewart’21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’'18]

Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
Learning Neural Networks [Goel-Gollakota-Jin-Karmalkar-Klivans’20, D-Kane-Kontonis-Zarifis’20]
Learning with Massart Noise [D-Kane'20]



STATISTICAL QUERY (SQ) MODEL [KEARNS 93]
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Complexity measures
* Number of queries: ¢ Runtime

* Query tolerance: T Sample complexity




INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
» either requires queries of tolerance at most 7

« or makes at least g queries.

Then we can interpret:

I Any SQ algorithm* for problem P

I
: - either requires at least 1/72 samples |
|
I

1 orhas runtime at least g.



POWER OF SQ ALGORITHMS

Restricted Model: Can prove unconditional lower bounds.

Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:

- PAC Learning: AC?, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods,
k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM17]

Known Exception: Gaussian elimination over finite fields (aka, learning parities).

For all problems in this talk, strongest known algorithms are SQ.



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Hypothesis Testing Problem: Given access to a distribution D on R% with promise that
« eitherD = D,

« or Dis selected randomly from D = {D,, },,cs according to prior

the goal is to distinguish between the two cases.

Pairwise correlation: Xp,(?,q9) = Ex~p,[(p/Do)(z)(q/Dp)(z)] — 1

Theorem [FGRVX’17]: Suppose there exists a “large” set of distributions in D with “small”
pairwise correlation with respect to Dy . Then any SQ algorithm for hypothesis testing task:

« either requires at least one “high-accuracy” query
« orrequires a "large” number of queries.




STATISTICAL QUERY HARDNESS OF NGCA

Testing Version of NGCA: Given access to a distribution D on R? with the promise that
« either D = N(0,1)

+ or D =P#, where v is a uniformly random unit vector

the goal is to distinguish between the two cases.

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first m moments with A"(0, 1) and x*(4,N(0,1)) < oc.
Any SQ algorithm for the testing version of NGCA:

« either requires a query of tolerance at most d=(™) x2(A4, N(0,1))
* orrequires at least 9d?) many queries.

1/2




INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

- Degree at most m moment tensor of P2 identical to that of A(0, 1)

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.




KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let O be the distribution of v/ - X, where X ~ P?}. Then, we have that:
X*(Q,N(0,1)) < (v- o)™ HIx2(A4,N(0,1))

Q=Uy(A)

Ornstein-Uhlenbeck
operator




SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many P;j1 's that are nearly uncorrelated.

 Pick set V of near-orthogonal unit vectors. Can get |V| = 9d”"

+ Have
XN(O,Id)(Pf> P;jl’) - XN(O,I)(Aa UOA) < | COSmI_*_l(H)b(2 (Aa N(O’ 1))



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first  moments with A’(0, 1) and x*(4,N(0,1)) < .
Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most d—(™) x2(A, N(0,1))/2

* orrequires at least 0d? many queries.

Recipe. EncodeIl as a NGCA instance:

»  Construct moment-matching distribution 4 such that P2 is a valid instance of IT .

« Match as many low-degree moments as possible.




EXAMPLE: SQ HARDNESS OF LEARNING GMMSs

Lemma: There exists a univariate ~~-GMM A with nearly non-overlapping components such that:
A agrees with V'(0, 1) on the first 2k-1 moments.

Proof Idea:

« Construct discrete distribution B with support £ matching its first
2k-1 moments with V'(0,1).

» Rescale B and add a “skinny” Gaussian to get A4.




SQ HARD INSTANCES FOR GMMSs: PARALLEL PANCAKES
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SQ HARDNESS FOR WIDE RANGE OF PROBLEMS

NGCA captures SQ hard instances of several well-studied learning tasks

Learning GMMs [D-Kane-Stewart’17]

Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’ 17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart’19]

List-decodable learning [D-Kane-Stewart’ 18, D-Kane-Pensia-Pittas-Stewart’21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’'18]

Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
Learning Neural Networks [Goel-Gollakota-Jin-Karmalkar-Klivans’20, D-Kane-Kontonis-Zarifis’20]
Learning with Massart Noise [D-Kane'20]



CONCLUSIONS AND OPEN PROBLEMS

NGCA leads to wide range of hardness results in SQ model

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reduction-based):
* Robust sparse mean estimation [Brennan-Bresler'20]
% Learning GMMs [Bruna-Regev-Song-Tang'21]

SQ hard instances are computationally hard.

Open Problem 2: How general is this phenomenon?

Open Problem 3: Prove SoS lower bounds for NGCA.




