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GENERIC QUESTIONS:

• How hard is it to sampling from the posterior ?         
• How hard is it to compute the ML estimate? 

• How does the energy/loss landscape affect the 
behaviour of gradient descent & sampling algorithms? 

• Does the presence of spurious minima matter?  

• How these approaches compare with message passing? 

For high-dimensional non-convex learning problems:



IN THIS TALK

An attempt to answer these questions in a simple yet generic problem 

A synthetic problems where the optimal 
performances can be determined, the 
energy landscape characterised, and the 
behaviour of many algorithms (Message 
passing, Sampling, Gradient descent) 
analysed … 

👉The Matrix-Tensor spiked model on the sphere



SPIKED MATRIX-TENSOR PROBLEM 

∈ ℝNx*
Choose a normed vector 

, randomly on the 
sphere in N-dimension

∥x*∥2
2 = N

Yij =
1

N
x*i x*j + ξij ξij ∼ 𝒩(0,Δ2)

Create a rank-noise noisy (symmetric) matrix 

Create a rank-noise noisy (symmetric) tensor 

Ti1…ip =
(p − 1)!

N(p−1)/2
x*i1 …x*ip + ξi1…ip

ξi1,…,ip ∼ 𝒩(0,Δp)

Given the matrix T and the tensor Y, can one recover x*?



For the same signal x* in       & observe a matrix Y and a tensor T: 

Y =
1

N
x*x*T + Δ2W

T =
(p − 1)!

N(p−1)/2
x*⊗p + ΔpZ

ℝN

Zijk ∼ 𝒩(0,1)

Wij ∼ 𝒩(0,1)

Can one recover x* from T and Y?

SPIKED MATRIX-TENSOR PROBLEM 



Define the Hamiltonian (or cost function):

ℋ(x) = −
1

Δ2 N ∑
i<j

Yijxixj −
(p − 1)!

ΔpN(p−1)/2 ∑
i1<…<ip

Ti1…ipxi1…xip

N

∑
i=1

x2
i = Nspherical constraint:

PGibbs(x |Y, T ) =
1

Z(Y, T )
e−ℋY,T(x)x̂ = 𝔼P(X|Y,T)[x]

Bayes-optimal estimation = marginals of Gibbs measure

MMSE = ∥x̂ − x*∥2
2

[Derrida 81, Mezard-Gross ’84, many others]

SPIKED MATRIX-TENSOR PROBLEM 
PLANTED VERSION OF THE ‘2+P’ SPIN GLASS IN STATISTICAL PHYSICS 



Define the Hamiltonian (or cost function):

ℋ(x) = −
1

Δ2 N ∑
i<j

Yijxixj −
(p − 1)!

ΔpN(p−1)/2 ∑
i1<…<ip

Ti1…ipxi1…xip

N

∑
i=1

x2
i = Nspherical constraint:

Maximum likelihood (MLE)

ℒ(x) =
1

2Δ2
∥Y −

xxT

N
∥2

2 +
1

p!Δp
∥T − (p − 1)!

x⊗p

N(p−1)/2
∥2

2

∥x∥2
2 = Nℒ(x) subject to  Minimize 

SPIKED MATRIX-TENSOR PROBLEM 
PLANTED VERSION OF THE ‘2+P’ SPIN GLASS IN STATISTICAL PHYSICS 



Computational-Statistical Gaps: 
What do we know?
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OPTIMAL LEARNING 
INFORMATION THEORETIC PERFORMANCES

1
N

log Z(Y )From the free energy,                  , we can compute anything

Mutual Information 
I(X; Y )

N
=

(𝔼[X2])2

4Δ
− 𝔼Y [ 1

N
log Z(Y )]

Likelihood ratio 1
N

log (
Pspiked(Y )
Pnull(Y ) ) =

1
N

log Z(Y )

Kullback-Leibler DKL(PSpiked∥PNull) = 𝔼Y log Z(Y )

PGibbs(x |Y, T) =
1

Z(Y, T)
e−ℋY,T(x)



concentrates around the max of 

Theorem 1 (informally): “replica symmetric potential”  
1
N

log Z(Y, Δ)

m ∈ [0,1]

ΦRS(m)For large N,

ΦRS =
1
2

log(1 − m) +
m
2

+
m2

4Δ2
+

mp

2pΔp

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborová ’18]

OPTIMAL LEARNING 
INFORMATION THEORETIC PERFORMANCES



concentrates around the max of 

Theorem 1 (informally): “replica symmetric potential”  
1
N

log Z(Y, Δ)

m ∈ [0,1]

ΦRS(m)For large N,

ΦRS =
1
2

log(1 − m) +
m
2

+
m2

4Δ2
+

mp

2pΔp

Theorem 2 (informally): MMSE  

MMSE = 1 − argmax [Φrs(m)] = 1 − m*

m * = 1 −
1

1 + m*
Δ2

+ (m*)p−1

Δp

m* =
1
N

𝔼X|Y,T[x] ⋅ x*

OPTIMAL LEARNING 
INFORMATION THEORETIC PERFORMANCES

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborová ’18]



Possible

λ2 =
1

Δ2

1
λp

= Δp

m* > 0

m* = 0

OPTIMAL LEARNING 
INFORMATION THEORETIC PERFORMANCES



WHAT ARE THE BEST 
ALGORITHMS SO FAR?



APPROXIMATE MESSAGE PASSING 
AN ITERATIVE THRESHOLDING ALGORITHM

Approximate Message Passing 

B(2,t) =
1

Δ2 N
Yx̂t −

1
Δ2

̂σtx̂t−1

B(p,t) =
(p − 1)!

ΔpN(p−1)/2
T(x̂t)⊗p−1 −

p − 1
Δp

̂σt [ (x̂t) ⋅ (x̂t−1)
N ]

p−2

x̂t−1

A(2,t) =
∥x̂t∥2

2

Δ2N
A(p,t) =

(∥x̂t∥2
2)p−1

ΔpN

η(A, B) =
B

1 + A
̂σt+1 =

1
1 + A(2,t) + A(p,t)

̂xt+1 = η(A(2,t) + A(p,t), B(2,t) + B(p,t))

[Montanari, Richard ’15; Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborová ’18] 



Bayes-optimal performance & AMP 

THE HARD PHASE OF AMP 

λ2 =
1

Δ2

1
λp

= Δp



λ =
1
Δ

10IMPOSSIBLE EASY

Bayes-optimal performance & AMP 

TWO LIMITS 

1
λp

= Δp

λ2 =
1

Δ2

No tensor information 

Pure spiked-matrix model 

Spectral method optimal 

BBP Transition



Bayes-optimal performance & AMP 

TWO LIMITS 

λ2 =
1

Δ2

1
λp

= Δp



Bayes-optimal performance & AMP 

TWO LIMITS 

λ2 =
1

Δ2

1
λp

= Δp

Best algorithms works for

λp > N(p−2)/4Δp < N−(p−2)/4

Dominated by Tensor information  

Pure Tensor-Spike model 

[Montanari, Richard ’14, Hopkins,  Shi,  Steurer '15  
Wein,  El Alaoui,  Moore ’19, ….]



Bayes-optimal performance & AMP 

THE HARD PHASE OF AMP 

λ2 =
1

Δ2

1
λp

= Δp



WHAT ABOUT PRACTICAL                
OFF-THE-SHELVES ALGORITHMS?

Sampling the posterior with MCMC or Langevin ? 

MLE with gradient descent?  

Connection gradient descent with property of the landscapes? 

Presence/Absence of spurious minima? 

All these can be studied analytically & quantitively  
in the spherical spiked matrix-tensor model 



Sampling the posterior  
with Langevin dynamics
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LANGEVIN ALGORITHM

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

+ ηi(t)

⟨ηi(t)ηj(t′ )⟩ = 2δijδ(t − t′ )

At large time (exponential in N) samples the posterior measure.  

Where does it go in large but constant time? 

T=1 noise

gradient

spherical constraint 



LANGEVIN ALGORITHM

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

+ ηi(t)

Martin, Siggia, Rose ‘73, De Dominicis ‘76, Jensen ‘76

P({x}) = ∫ P({η})
t

∏
τ=1

dη(t)
t

∏
τ=1

δ(∂tx(t) + ∂xℋ(t) + μx(t) − η(t))

𝔼Y,x* ∫
t

∏
τ=1

dη(t)P({x}) = … = 𝔼x* ∫ DxDx̂e ∫t
0 dτS(x̂,x,x*)



LANGEVIN STATE EVOLUTION

Generalization of the CHSCK equations that includes the spike x*. 
[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborová ’18]

= mLangevin(t)



LANGEVIN STATE EVOLUTION 
(NUMERICAL SOLUTION)

co
rr

el
at

io
n 

w
ith

 g
ro

un
d 

tr
ut

h

AMP

Langevin

http://github.com/sphinxteam/spiked_matrix-tensor

Δ2 = 0.7



AMP SAMPLNG  
VS LANGEVIN SAMPLING

OK, Langevin is slower….

… but does it work as well as 
AMP in the long run             

(i.e linear but large time)? 



LANGEVIN STATE EVOLUTION 
(NUMERICAL SOLUTION)

http://github.com/sphinxteam/spiked_matrix-tensor

Δ2 = 0.7

co
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w
ith

 g
ro

un
d 

tr
ut

h



A LANGEVIN PHASE TRANSITION

Langevin  
hard

1
Δ2

= λ2 =
Δp

2
=

1
2λp



We expect the same picture to hold in all problems having 
hard phase associated to the first order phase transition.  

(e.g. GLM, Teacher-Student Neural networks, … )

Physicists: “Residual glassiness prevents a correct sampling” 

Langevin dynamics display worst performances w.r.t. Bayes-AMP

AMP BEATS LANGEVIN



A PARISI-FRANZ VISION 
BEWARE: THIS SLIDE IS FOR REPLICA GEEKS

Consider the free energy of a system conditioned at a 
given overlap m from truth vector x* 

AMP try to optimize the  
Replica-Symetric potentiel

Langevin try to optimize the  
Actual (RSB) potential

[Antenucci, Franz, Urbani, Zdeborova '19]

Pa
ri

si
-F

ra
nz

 p
ot

en
tia

l

m
0 m*

ΦFP(m) = lim
N→∞

1
N

𝔼Y log Z(Y, m)

log Z(Y, m) = ∫ dxe−ℋ1 (m −
x ⋅ x*

N )
argmaxΦ(m)



MLE, Gradient & Landscapes
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MLE AND MINIMIZATION

For the same signal x* observe a matrix Y and a tensor T as: 

Yij =
1

N
x*i x*j + ξij

Ti1…ip =
(p − 1)!

N(p−1)/2
x*i1 …x*ip + ξi1…ip

ξij ∼ 𝒩(0,Δ2)

ξi1,…,ip ∼ 𝒩(0,Δp)

Maximum likelihood (MLE)

ℒ(x) =
1

2Δ2
∥Y −

xxT

N
∥2

2 +
1

2Δp
∥T − (p − 1)!

x⊗p

N(p−1)/2
∥2

2

∥x∥2
2 = Nℒ(x)Minimize subject to  



GRADIENT FLOW 
ZERO TEMPERATURE LIMIT OF LANGEVIN

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

+ ηi(t)

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

Can be analysed again with the Langevin State evolution 

Simply the T → 0 limit of the CHSCK equations 



LANGEVIN STATE EVOLUTION 
ZERO TEMPERATURE LIMIT: GRADIENT FLOW

= mGD(t)

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborová ’18]



NUMERICAL INTEGRATION

1
λp

= Δp

λ2 =
1

Δ2

Gradient works

Gradient stuck in  
spurious minima



ANALYTICAL SOLUTION 
(LONG TIME EXTRAPOLATION)

1
λp

= Δp

λ2 =
1

Δ2

Gradient works

Gradient stuck in  
spurious minima

ΔGF
2 =

−Δp + Δ2
p + 4(p − 1)Δp

2(p − 1)



ENERGY LANDSCAPE

Maximum likelihood (MLE)

ℒ(x) =
1

2Δ2
∥Y −

xxT

N
∥2

F +
1

p!Δp
∥T − (p − 1)!

x⊗p

N(p−1)/2
∥2

F

∥x∥2
2 = Nℒ(x) subject to  Minimize 

Can we compute the property of the energy landscape ? 

Number of minimas/saddles at each energy level? 

Are the minima spurious or good ones?



LANDSCAPE & MINIMAS 
THE KAC-RICE FORMULA

[Fyodorov Y. V. ’03; Auffinger A., Ben Arous G., & Cerny J ’13] 

lim
N→∞

1
N

log 𝔼 [𝒩(m, ϵ2, ϵp)] = Σ̃Δ2,Δp
(m, ϵ2, ϵp)



[Ben Arous, Mei, Montanari, & Nica ’17, Sarao, FK, Urbani & Zdeborova ’19]

lim
N→∞

1
N

log 𝔼 [𝒩(m, ϵ2, ϵp)] = Σ̃Δ2,Δp
(m, ϵ2, ϵp)

LANDSCAPE & MINIMAS 
KAC-RICE FOR THE SPIKE MODEL

(Note: we also checked that annealed is equal to 
quenched, thanks to the replica method)



LANDSCAPE ANALYSIS
en

er
gy

(exponentially many saddles points )

Low SNR / large noise situation

⛷

Similar as in Levent, Guney, Ben Arous & LeCun ‘14



LANDSCAPE ANALYSIS

Trivialisation

Increasing the SNR

en
er

gy

(exponentially many saddles points )



WHAT IS ACTUALLY GOING ON

1
λp

= Δp

λ2 =
1

Δ2

1
λp

= Δp

λ2 =
1

Δ2

Trivialization line

Exponentially many spurious minima… 
… yet gradient flow works just fine!

Actual Gradient 
flow line



LANDSCAPE ANALYSIS

Trivialisation

Increasing the SNR

en
er

gy



LANDSCAPE ANALYSIS

Increasing the SNR

en
er

gy

Trivialisation

Former minima develop a negative slope 
 in the direction of the spike!

⛷



ANALYTICAL SOLUTION 
(LANDCSAPE ANALYSIS)

1
λp

= Δp

λ2 =
1

Δ2

Trivialization line
Fate of the 

spurious line
= Gradient flow line



IN A NUTSHELL



• Spherical spike matrix-tensor problem has interesting properties; 
Many quantities can be computed (Optimal performances, energy 
landscape, performance of AMP, Langevin, Gradient descent…) 

• Observed Gap between Langevin sampling and message passing 
performances: MCMC not as good as Langevin? 

• Minimisation algorithms are observed to work just fine even in 
presence of (exponentially many) spurious minima 

CONCLUSIONS… 



… PERSPECTIVES? 
More on monte-carlo sampling in M. C. Angelini’s talk tomorrow  

Other non convex learning and signal processing problems           
(e.g. Phase retrieval, see Antoine Maillard’s talk tomorrow) 

Effect of prior information (see Bruno Loureiro’s talk next) 

Neural networks: Single layer perceptron, teacher-student multi-
layer deep networks, over-parametrization, etc…  

Non convex setting with other gradient-based algorithms -  SGD, 
Nesterov, momentum, etc ….,                                                                
(Recent papers by Zdeborova, Mignacco, Urbani…) 
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