SQ Lower Bounds for Learning Halfspaces with Massart Noise

Ilias Diakonikolas, Daniel Kane

Learning Halfspaces

Definition: A linear threshold function (LTF) is a function f: $\mathbb{R}^d \rightarrow \{-1,1\}$ given by $f(x) = sgn(v \cdot x - t)$ for some $v \in \mathbb{R}^d$, $t \in \mathbb{R}$.

<u>Problem:</u> For some unknown distribution D on \mathbb{R}^d and unknown LTF f, given samples (x,y) with x ~ D, y = f(x), learn a hypothesis h so that: $Pr_{x\sim D}(h(x) \neq f(x)) < \varepsilon$.

Theorem [Maass-Turan'94]: This problem can be solved in $poly(d/\epsilon)$ samples and time.

Noise

It is unrealistic to assume that our data is 100% accurate.

- Assume some (small) probability that $y \neq f(x)$.
- What kinds of learning are still possible?

First question: What noise model to consider?

Agnostic Noise

[Haussler'92, Kearns-Shapire-Sellie'94]

- Allow for arbitrary (uncommon) errors.
- Can no longer hope to perfectly recover f.

<u>Problem</u>: For some distribution D on \mathbb{R}^d x {-1,1} and LTF f, let

$$OPT = Pr_{(x,y)\sim D}(f(x) \neq y).$$

Given samples (x,y) ~ D, learn a hypothesis h s.t.: $Pr_{x\sim D}(h(x) \neq y) < OPT + \epsilon.$

- This is information-theoretically possible.
- Settle for O(OPT)+ε or poly(OPT)+ε.

Hardness

Theorem [Daniely'16]: Assuming plausible hardness assumptions about random k-XOR, there is no polynomial time algorithm that distinguishes between OPT = exp(-log^{0.99}(d)) and OPT = $\frac{1}{2}$ - d^{-0.01}.

- Cannot get error much better than ½ even if OPT is almost polynomially small.
- Result also implies SQ lower bounds.
- Agnostic noise too hard.
- Want an easier noise model.

Random Noise

[Angluin-Laird'88]

Definition: A sample with random classification noise(RCN) at rate η gives a sample (x,y) with x ~ D and yis:f(x)with probability 1- η - f(x)with probability η

Theorem [Blum-Frieze-Kannan-Vempala'96]: We can learn an LTF with RCN to error $\eta + \varepsilon$ (= OPT + ε) in poly(d/ ε) samples and time.

Proof Idea

RCN behaves very well with SQ algorithms.

• $\mathbb{E}_{RCN}[G(x,y)] = (1-\eta)\mathbb{E}[G(x,y)] + \eta\mathbb{E}[G(x,-y)]$ Given h, find function G so that for all x:

$$(1-\eta)G(x,-1) + \eta G(x,1) = h(x,-1)$$

(1-\eta)G(x,1) + $\eta G(x,-1) = h(x,1)$

Then

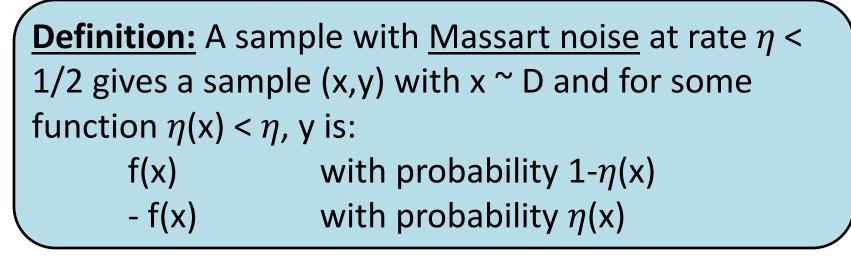
$$\mathbb{E}_{RCN}[G(x,y)] = \mathbb{E}[h(x,y)].$$

So you can simulate noiseless queries.

Better Noise Models

- RCN is too predictable.
 - Can exactly cancel noise in expectations.
 - Leads to unrealistic algorithms.
- For real problems, we would expect that some examples are more likely to be misclassified than others.
 - This would mess with our algorithms.

Massart Noise



Theorem [Diakonikolas-Gouleakis-Tzamos'19]: We

can learn an LTF with Massart noise to error η + ϵ in poly(d/ ϵ) samples and time.

Error Rates

• For RCN, OPT = η

- error η + ϵ is best possible.

- For Massart noise OPT might be much smaller.
- Can we learn to error OPT+ε?

<u>Theorem [Chen-Koehler-Moitra-Yau'20]</u>: There is no SQ algorithm with polynomial accuracy/queries that learn an LTF with Massart noise to error OPT+o(1) for all OPT and η .

What Can We Achieve?

Can we get O(OPT)? Poly(OPT)? What if we assume that OPT or η is small?

<u>Question</u>: When learning halfspaces with Massart noise, what is the best error that can be learned efficiently as a function of OPT and η ?

Hardness

Theorem [Diakonikolas-K]: There is no polynomial query/accuracy statistical query algorithm that learns an LTF with Massart noise rate $\eta = 1/3$ to error better than 1/polylog(d) even when guaranteed that OPT < exp(-log^{0.99}(d)).

- Size of OPT comparable to Daniely.
- Achievable error worse (would like $\eta + \varepsilon$).

SQ Lower Bounds

Recall the basic result for proving SQ lower bounds:

<u>Proposition</u>: Let A be a distribution on \mathbb{R} that matches k moments with N(0,1) to error ν Any SQ algorithm that distinguishes N(0,I) from P^{A}_{ν} either:

Makes queries of error at most

 $\tau = d^{-ck} \chi^2(A) + \nu^2$

• Makes at least $exp(d^c) \tau / \chi^2(A)$ queries

Needs to be able to deal inexact moment matching.

Lower Bounds for Functions

The old techniques are great for showing that it is hard to learn distributions x. But our algorithm sees (x,y) pairs and y is not remotely Gaussian.

Instead we make (x|y=1) and (x|y=-1) hard to distinguish.

It turns out this is enough.

New Lower Bound

Proposition: Let A, B be distributions on \mathbb{R} that matches k moments with N(0,1) to error ν . Let $p \in (0,1)$. For unit vector v, let P_v be the distribution on $\mathbb{R}^d x$ {-1,1} that returns (P^A_v,1) with probability p and (P^B_v,-1) with probability 1-p. Then any SQ algorithm that distinguishes N(0,I)x{-1,1} from P_v either:

• Makes queries of error at most

 $\tau = d^{-ck} (\chi^2(A) + \chi^2(B)) + \nu^2$

• Makes at least exp(d^c) τ / ($\chi^2(A)+\chi^2(B)$) queries

Need P_v to be an LTF with Massart noise.

Problem

- Any distribution A (approximately) matching O($1/\epsilon^2$) moments with a Gaussian has Pr(A>t) = Pr(G>t)+O(\epsilon).
- We cannot afford for this to happen for both (x|y=1) and (x|y=-1).
- To solve this, we will need to fool LTFs in some more complicated space.

Polynomial Threshold Functions

Definition: A degree-k Polynomial Threshold Function (PTF) is a function of the form f(x) = sgn(p(x)) for p some polynomial of degree at most k.

Note: a PTF is an LTF in the monomials of x.

- $V_k(x) = (\text{degree-}k \text{ monomials of } x) \in \mathbb{R}^N$.
- $f(x) = g(V_k(x))$ for some LTF g.

<u>Need to Show</u>: cannot learn a degree-k PTF in poly(N) = poly(d^k) samples/accuracy.

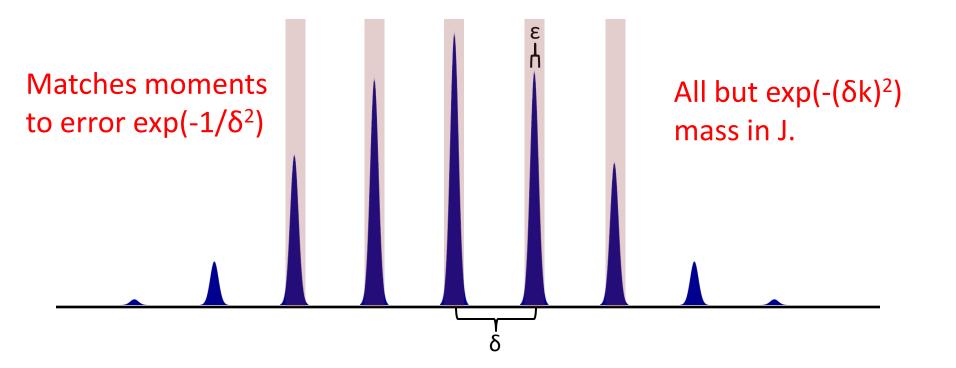
Need

This construction needs distributions A and B and J a union of k/2 intervals so that:

- A and B approximately match ω(k) moments with N(0,1).
- All but OPT of the mass of B is supported on J
- All but OPT of the mass of A is supported on J^c
- B > 2A on J
- A > 2B on J^c

B Construction

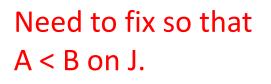
- B is a net of Gaussians.
- J is k/2 intervals around peaks.



A Construction

δ

- Start with a taller Gaussian.
 - Matches moments exactly
 - Bigger than B on J^c.



Fix

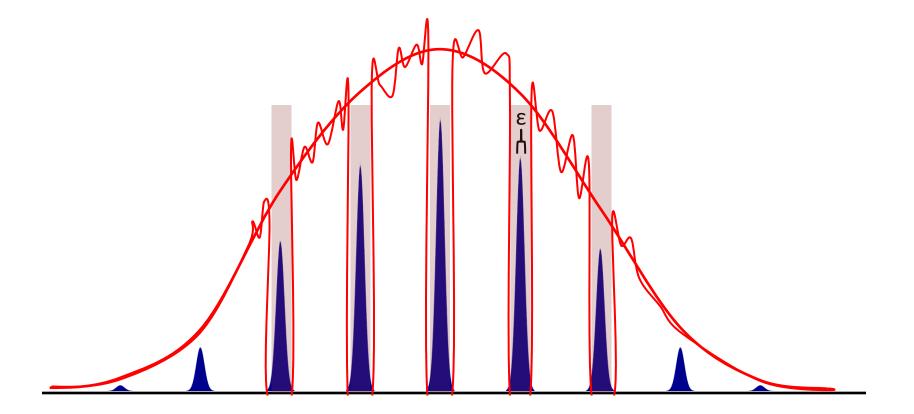
Move mass of A on J off of it without changing the first m moments.

Lemma: Let D be a distribution on [-1,1] that is approximately uniform. Let c << 1/m². There exists a distribution D' approximately uniform on [-1,1] \ [-c,c] so that D' and D match m moments.

Proof idea: modify the pdf by a polynomial.

Fix

• Apply modification about each interval in J.



Parameters

- $N = d^k$, so $k \approx log(N)$
- Need exp($1/\delta^2$) >> complexity >> N - $\delta \ll k^{-1/2}$
 - OPT $\approx \exp(-(k\delta)^2) \approx \exp(-k) \approx \text{almost 1/poly(N)}$
- $\epsilon \approx \text{Interval width} \approx 1/m^2 << 1/k^2$
 - Need A to be δ/ϵ more mass than B.
 - p ≈ ε/δ
 - Can learn to error $\varepsilon/\delta \approx 1/\text{polylog}(N)$

Improvement

A more recent refinement of this technique shows that it is hard to get better than constant error even for very small OPT.

Conclusions

- Can learn to error η + ε with Massart noise.
- Cannot do much better even if OPT is quite small.
- SQ Lower bounds are a useful tool for getting evidence of hardness for function learning problems.

Further Work

- Get similar results via reduction from some standard hard problem.
- Get lower bounds for learning other linear models like ReLUs.