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Learning Halfspaces 
Definition: A linear threshold function (LTF) is a 
function f: ℝd → {-1,1} given by 

f(x) = sgn(v·x – t)  
for some v ∈ ℝd, t ∈ ℝ. 

Problem: For some unknown distribution D on ℝd 
and unknown LTF f, given samples (x,y) with x ~ D,  
y = f(x), learn a hypothesis h so that: 

Prx~D(h(x) ≠ f(x)) < ε. 

Theorem [Maass-Turan’94]: This problem can be 
solved in poly(d/ε) samples and time. 



Noise 

It is unrealistic to assume that our data is 100% 
accurate.  

• Assume some (small) probability that y ≠ f(x). 

• What kinds of learning are still possible? 

 

First question: What noise model to consider? 



Agnostic Noise  
[Haussler’92, Kearns-Shapire-Sellie’94] 

• Allow for arbitrary (uncommon) errors. 

• Can no longer hope to perfectly recover f. 

 

 

 

 

• This is information-theoretically possible. 

• Settle for O(OPT)+ε or poly(OPT)+ε. 

Problem: For some distribution D on ℝd x {-1,1} and  
LTF f, let 

OPT = Pr(x,y)~D(f(x) ≠ y). 
Given samples (x,y)  ~ D, learn a hypothesis h s.t.: 

Prx~D(h(x) ≠ y) < OPT + ε. 



Hardness 

Theorem [Daniely’16]: Assuming plausible hardness 
assumptions about random k-XOR, there is no 
polynomial time algorithm that distinguishes 
between OPT = exp(-log0.99(d)) and OPT = ½ - d-0.01. 

• Cannot get error much better than ½ even if 
OPT is almost polynomially small. 
• Result also implies SQ lower bounds. 
• Agnostic noise too hard. 
• Want an easier noise model. 



Random Noise 
[Angluin-Laird’88] 

Definition: A sample with random classification noise 
(RCN) at rate 𝜂 gives a sample (x,y) with x ~ D and y 
is: 
 f(x)   with probability 1-𝜂 
 - f(x)   with probability 𝜂 

Theorem [Blum-Frieze-Kannan-Vempala’96]: We 
can learn an LTF with RCN to error 𝜂+ε ( = OPT + ε) 
in poly(d/ε) samples and time. 



Proof Idea 

RCN behaves very well with SQ algorithms. 

• 𝔼RCN[G(x,y)] = (1-𝜂)𝔼[G(x,y)] + 𝜂𝔼[G(x,-y)] 

Given h, find function G so that for all x: 

  (1-𝜂)G(x,-1) + 𝜂G(x,1)  = h(x,-1) 

  (1-𝜂)G(x,1) + 𝜂G(x,-1)  = h(x,1) 

Then 

   𝔼RCN[G(x,y)] = 𝔼[h(x,y)]. 

So you can simulate noiseless queries. 



Better Noise Models 

• RCN is too predictable.  

– Can exactly cancel noise in expectations. 

– Leads to unrealistic algorithms. 

• For real problems, we would expect that some 
examples are more likely to be misclassified 
than others. 

– This would mess with our algorithms. 



Massart Noise 
Definition: A sample with Massart noise at rate 𝜂 < 
1/2 gives a sample (x,y) with x ~ D and for some 
function 𝜂(x) < 𝜂, y is: 
 f(x)   with probability 1-𝜂(x) 
 - f(x)   with probability 𝜂(x) 

Theorem [Diakonikolas-Gouleakis-Tzamos'19]: We 
can learn an LTF with Massart noise to error 𝜂+ε in 
poly(d/ε) samples and time. 



Error Rates 

• For RCN, OPT = 𝜂 

– error 𝜂+ε is best possible. 

• For Massart noise OPT might be much smaller. 

• Can we learn to error OPT+ε? 
Theorem [Chen-Koehler-Moitra-Yau’20]: There is 
no SQ algorithm with polynomial accuracy/queries 
that learn an LTF with Massart noise to error 
OPT+o(1) for all OPT and 𝜂. 



What Can We Achieve? 

Question: When learning halfspaces with Massart 
noise, what is the best error that can be learned 
efficiently as a function of OPT and 𝜂? 

Can we get O(OPT)? Poly(OPT)? 
What if we assume that OPT or 𝜂 is small?  



Hardness 

• Size of OPT comparable to Daniely. 

• Achievable error worse (would like 𝜂+ε). 

Theorem [Diakonikolas-K]: There is no polynomial 
query/accuracy statistical query algorithm that 
learns an LTF with Massart noise rate 𝜂 = 1/3 to 
error better than 1/polylog(d) even when 
guaranteed that OPT < exp(-log0.99(d)). 



SQ Lower Bounds 

Recall the basic result for proving SQ lower 
bounds: 

 

 

 

 

 

Proposition: Let A be a distribution on ℝ that 
matches k moments with N(0,1) to error � 
Any SQ algorithm that distinguishes N(0,I) from PA

v 
either: 
• Makes queries of error at most 
   τ = d-ck χ2(A) + 𝜈2 

• Makes at least exp(dc) τ / χ2(A) queries 

to error 𝜈 

+ 𝜈2 

Needs to be able to deal inexact moment matching. 
 



Lower Bounds for Functions 

The old techniques are great for showing that it 
is hard to learn distributions x. But our 
algorithm sees (x,y) pairs and y is not remotely 
Gaussian. 

Instead we make (x|y=1) and (x|y=-1) hard to 
distinguish. 

It turns out this is enough. 



New Lower Bound 

Proposition: Let A, B be distributions on ℝ that 
matches k moments with N(0,1) to error 𝜈. Let 
p∈(0,1). For unit vector v, let Pv be the distribution 
on ℝdx{-1,1} that returns (PA

v,1) with probability p 
and (PB

v,-1) with probability 1-p. Then any SQ 
algorithm that distinguishes N(0,I)x{-1,1} from Pv 
either: 
• Makes queries of error at most 
   τ = d-ck (χ2(A)+χ2(B)) + 𝜈2 

• Makes at least exp(dc) τ / (χ2(A)+χ2(B)) queries 

Need Pv to be an LTF with Massart noise. 



Problem 

Any distribution A (approximately) matching 
O(1/ε2) moments with a Gaussian has  

Pr(A>t) = Pr(G>t)+O(ε). 

We cannot afford for this to happen for both 
(x|y=1) and (x|y=-1). 

To solve this, we will need to fool LTFs in some 
more complicated space. 



Polynomial Threshold Functions 
Definition: A degree-k Polynomial Threshold Function 
(PTF) is a function of the form  

f(x) = sgn(p(x)) 
for p some polynomial of degree at most k. 
 

Note: a PTF is an LTF in the monomials of x. 
• Vk(x) = (degree-k monomials of x) ∈ ℝN. 
• f(x) = g(Vk(x)) for some LTF g. 
 
Need to Show: cannot learn a degree-k PTF in 
poly(N) = poly(dk) samples/accuracy. 
 



Need 

This construction needs distributions A and B 
and J a union of k/2 intervals so that: 

• A and B approximately match ω(k) moments 
with N(0,1). 

• All but OPT of the mass of B is supported on J 

• All but OPT of the mass of A is supported on Jc 

• B > 2A on J 

• A > 2B on Jc 



B Construction 

• B is a net of Gaussians. 

• J is k/2 intervals around peaks. 

δ 

ε 

Matches moments 
to error exp(-1/δ2) 
 

All but exp(-(δk)2) 
mass in J. 



A Construction 
• Start with a taller Gaussian. 

– Matches moments exactly 

– Bigger than B on Jc. 

δ 

ε Need to fix so that 
A < B on J. 



Fix 

Move mass of A on J off of it without changing 
the first m moments. 

Lemma: Let D be a distribution on [-1,1] that is 
approximately uniform. Let c << 1/m2. There exists a 
distribution D’ approximately uniform on 
[-1,1] \ [-c,c] so that D’ and D match m moments. 

Proof idea: modify the pdf by a polynomial. 



Fix 
• Apply modification about each interval in J. 

ε 



Parameters 

• N = dk, so k ≈ log(N) 

• Need exp(1/δ2) >> complexity >> N 

– δ << k-1/2 

– OPT ≈ exp(-(kδ)2) ≈ exp(-k) ≈ almost 1/poly(N) 

• ε ≈ Interval width ≈ 1/m2 << 1/k2 

– Need A to be δ/ε more mass than B. 

– p ≈ ε/δ 

– Can learn to error ε/δ ≈ 1/polylog(N) 



Improvement 

A more recent refinement of this technique 
shows that it is hard to get better than 
constant error even for very small OPT. 



Conclusions 

• Can learn to error 𝜂+ε with Massart noise. 

• Cannot do much better even if OPT is quite 
small. 

• SQ Lower bounds are a useful tool for getting 
evidence of hardness for function learning 
problems. 



Further Work 

• Get similar results via reduction from some 
standard hard problem. 

• Get lower bounds for learning other linear 
models like ReLUs. 


