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Plan for this Talk

@ Problem setup: optimizing a mean field spin glass Hamiltonian.
@ Background: Parisi formula, AMP, overlap gap property.

© New result: a tight characterization of the best value achieved
by a class of efficient algorithms.

@ Some key ideas: ultrametricity and a branching OGP.
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Mean Field Spin Glass Hamiltonians

Definition (Sherrington-Kirkpatrick 75,...)

Fix constants 71,72, ...,7k > 0. The mixed p-spin Hamiltonian
Hy : RN — R is a random degree K polynomial defined by

K
_ k=1
HN(017---70'N) = § N™"2" E Ji17~~vaikai1"'aik'
k=1 1<it,.ir<N

Here Jj, . i are IID standard gaussians.

"ik
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e Equivalently: let &(t) = Z,’le Vitk. Then Hy is the centered
Gaussian process with covariance
E[Hn(o)Hn(o')] = NE((o, o) /).

@ Two input sets will be considered:
o Ising— o € {-1,1}"
o Spherical - ||o|| = V/N.
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Motivations for the Model

@ The Sherrington-Kirkpatrick model (K = 2) was introduced to
study diluted magnetic alloys such as Copper Manganese.

@ Magpnetic interaction rapidly oscillates with distance, so use an
Ising model with random weights: Hy = Z,J Jijoio;.

M. Sellke Algorithmic Thresholds for Spin Glasses 4/18



Motivations for the Model

@ The Sherrington-Kirkpatrick model (K = 2) was introduced to
study diluted magnetic alloys such as Copper Manganese.

@ Magpnetic interaction rapidly oscillates with distance, so use an
Ising model with random weights: Hy = Z,J Jijoio;.

@ Mean field: forget the 3-D structure, make all J;; IID.

@ Higher degree interactions and spherical inputs are
mathematically natural extensions.

M. Sellke Algorithmic Thresholds for Spin Glasses 4/18



Motivations for the Model

@ The Sherrington-Kirkpatrick model (K = 2) was introduced to
study diluted magnetic alloys such as Copper Manganese.

@ Magpnetic interaction rapidly oscillates with distance, so use an
Ising model with random weights: Hy = Z,J Jijoio;.

@ Mean field: forget the 3-D structure, make all J;; IID.

@ Higher degree interactions and spherical inputs are
mathematically natural extensions.

@ Also arises as high-degree limit of random MaxCut, MaxSAT
(Dembo-Montanari-Sen 17, Panchenko 18).

@ Rich source of random non-convex functions, related to some
neural network models (Gardner—Derrida 80s, Amit-Gutfreund-

Sompolinsky 85, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15).
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The Parisi Formula

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

In both the Ising and spherical settings, the limit

L Hn(x) .
OPT = Ip\)/—_l:rono max —4 = = Clg{{Pg(()

holds for explicit Parisi functionals P, 735S P Here U is the set of
non-decreasing functions ¢ : [0,1] — R*.
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The Parisi Formula

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

In both the Ising and spherical settings, the limit

L Hn(x) .
OPT = Ip\)/—_l:rono max —4 = = Clg{{Pg(()

holds for explicit Parisi functionals P, 735S P Here U is the set of
non-decreasing functions ¢ : [0,1] — R*.

@ Question: can efficient algorithms reach (OPT — ¢)N?
@ If not, what can be done efficiently?

e Goal: compute o = A(Hp) with Hy(o) as large as possible.
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A Look at the Landscape

o If Hy is close to convex, maybe gradient descent works.
@ Not the case! On the sphere, Hy can have:
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o If Hy is close to convex, maybe gradient descent works.
@ Not the case! On the sphere, Hy can have:

e Exponentially many near-optimal local maxima. ©

e Exponentially more suboptimal local maxima. @

o Exponentially more suboptimal saddle points. @
(Auffinger-Ben Arous 13, A-BA-Cerny 13, Subag 17,
Ben Arous-Mei-Montanari-Nica 19, Subag-Zeitouni 21)
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A Look at the Landscape

o If Hy is close to convex, maybe gradient descent works.
@ Not the case! On the sphere, Hy can have:

e Exponentially many near-optimal local maxima. ©

e Exponentially more suboptimal local maxima. @

o Exponentially more suboptimal saddle points. @
(Auffinger-Ben Arous 13, A-BA-Cerny 13, Subag 17,
Ben Arous-Mei-Montanari-Nica 19, Subag-Zeitouni 21)

e Adversarial Hy: reaching |ogF/\T)c is hard (Arora-Berger-Hazan-

Kindler-Safra 05, Barak-Brandao-Harrow-Kelner-Steurer-Zhou 12).
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AMP Algorithms Succeed under No Overlap Gap

Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

ALG = inf
iEPEE)

is achievable by AMP (assuming a minimizer (. € L exists).
L 2 U contains all bounded variation functions ¢ : [0,1] — RT.
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The asymptotic value

ALG = inf
iEPEE)

is achievable by AMP (assuming a minimizer (. € L exists).
L 2 U contains all bounded variation functions ¢ : [0,1] — RT.

@ Approximate message passing (AMP) is really efficient.
o Uses only O(1) queries of VHy. Great for tons of problems.
o (Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari
11, Javanmard-Montanari 13, Bayati-Lelarge-Montanari 15,
Rush-Venkataramanan 18, Montanari-Venkataramanan 21,...)
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Theorem (Subag 18, Montanari 19, El Alaoui-Montanari-S 20, S 21)

The asymptotic value

ALG = inf
iEPEE)

is achievable by AMP (assuming a minimizer (. € L exists).
L 2 U contains all bounded variation functions ¢ : [0,1] — RT.

@ Approximate message passing (AMP) is really efficient.
o Uses only O(1) queries of VHy. Great for tons of problems.
o (Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari
11, Javanmard-Montanari 13, Bayati-Lelarge-Montanari 15,
Rush-Venkataramanan 18, Montanari-Venkataramanan 21,...)
o In brief: take small steps to simulate an SDE related to P.
o (AMS 20, roughly): No SDE-based AMP can reach ALG +¢.

@ Equality case ALG = OPT corresponds to no overlap gap.
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Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP
algorithms succeed (in even models with 3 =5 = --- =0).
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Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP
algorithms succeed (in even models with 3 =5 = --- =0).

@ Stable algorithms include:

O(1) iterations of gradient descent or AMP

. or any “constant-order method” querying VO Hy
Langevin dynamics run for O(1) time
Low degree polynomials

Poly-size circuits with depth at most 5181

2loglog N *
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Algorithmic Hardness from the Overlap Gap Property

Theorem (Gamarnik-Jagannath 20, G-J-Wein 20&21, S 21)

No stable algorithm can achieve OPT unless aforementioned AMP
algorithms succeed (in even models with 3 =5 = --- =0).

@ Stable algorithms include:

O(1) iterations of gradient descent or AMP

. or any “constant-order method” querying VO Hy
Langevin dynamics run for O(1) time
Low degree polynomials
Poly-size circuits with depth at most

log N
2loglog N *

@ Proof based on overlap gap property (OGP): a family of
topological hardness criteria.
(Achlioptas-Coja Oghlan 08, Gamarnik-Sudan 14, Gamarnik-Sudan 17
Rahman-Virag 17, Gamarnik-Zadik 17, Chen-Gamarnik-Panchenko-
Rahman 17, Gamarnik-Jagannath-Sen 19, Wein 20, ...)
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Overlap Gap Property for Spin Glasses: A Cartoon

o Consider path Hy ¢ = /1 — tHyo + VtHn 1.
e o = A(Hp,) is morally continuous in t.

Hnyp Hyi Hyy o A(Hye) = 0 ‘
*r—oo—0

O

01
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Overlap Gap Property for Spin Glasses: A Cartoon

o Consider path Hy ¢ = /1 — tHyo + VtHn 1.
e o = A(Hp,) is morally continuous in t.

Hnyp Hyi Hyy o A(Hye) = 0 ‘
*r—oo—0

O
01

e Overlap gap property: for some gogp € (0,1), if
lloo — ot|| = gogpV'N, then either og or o; is suboptimal.

min (Huo(o0), Hiva(r0)) < (OPT — ).
o “Continuity” implies ||o: — o0|| = gogpV/'N for some t € [0, 1].
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New Result: An Algorithmic Threshold

Theorem (Huang-S. 21+)

No overlap concentrated algorithm can beat ALG (in even models).

@ Overlap concentrated algorithms include:
O(1) iterations of gradient descent or AMP

. or any constant-order method querying VO Hy
Langevin dynamics run for O(1) time

Pol . : . : ! log N
2loglog N -
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@ For the algorithms listed above, result holds in a strong sense:

P[Hn(A(Hn)) > (ALG + €)N] < O(e <Ny,
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New Result: An Algorithmic Threshold

Theorem (Huang-S. 21+)

No overlap concentrated algorithm can beat ALG (in even models).

@ Overlap concentrated algorithms include:
O(1) iterations of gradient descent or AMP

. or any constant-order method querying VO Hy
Langevin dynamics run for O(1) time

Pol . : . : ! log N
2loglog N -

@ For the algorithms listed above, result holds in a strong sense:

P[Hn(A(Hn)) > (ALG + €)N] < O(e <Ny,

@ Proof relies on a new branching OGP.

@ In spherical models, branching OGP is in some sense
necessary to rule out ALG + &. Simpler OGPs cannot.
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Ultrametric Spaces and Trees

@ Recall: ultrametric spaces X satisfy the ultrametric triangle
inequality

d(x,y) < max(d(x,z),d(y,z)), Vx,y,zeX.

Equivalent to hierarchical clustering, or graph metrics of leaves
of a rooted tree.
(All ultrametrics will be finite with sensible diameter.)

A
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Ultrametric Spaces and Trees

@ Recall: ultrametric spaces X satisfy the ultrametric triangle
inequality

d(x,y) < max(d(x,z),d(y,z)), Vx,y,zeX.

Equivalent to hierarchical clustering, or graph metrics of leaves
of a rooted tree.
(All ultrametrics will be finite with sensible diameter.)

A

o For all 8 > 0, Gibbs measure e?"(?)do /Z is “~ ultrametric”.
(Parisi 82, Mézard-Parisi-Sourlas-Toulouse-Virasoro 84, Derrida 85, Ruelle
87, Panchenko 13, Jagannath 17, Chatterjee-Sloman 20,...)
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Algorithms and Ultrametrics

@ Turns out algorithms can build ultrametric spaces!

o AMP algorithms for this problem explore using many small
steps. Branch to get a multi-valued algorithm.

Branching IAMP

() O —)
@) @) @) @)
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Algorithms and Ultrametrics

@ Turns out algorithms can build ultrametric spaces!

o AMP algorithms for this problem explore using many small
steps. Branch to get a multi-valued algorithm.

Branching IAMP

() O —)
@) @) @) @)

@ Result: for any finite ultrametric X, branching IAMP can
output a configuration (o x)xex approximating X:

Hy(ox) =~ ALG- N, Vx € X,
lox — || = dx(x, y)VN, Vx,y € X.

(Subag 18, El Alaoui-Montanari 20, S 21)
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Branching OGP

o If algorithms can recreate any ultrametric, we should use a
stronger OGP.
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Branching OGP

o If algorithms can recreate any ultrametric, we should use a
stronger OGP.

o Classic OGP: rule out pairs (o1, 02) at distance gogpv/N.
° OGP: tuples (o1, ...,0,) with all distances gogp/N.
° OGP: Dist(c;,1,span(c1,...,0;)) = 6v/N.
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o If algorithms can recreate any ultrametric, we should use a
stronger OGP.

Classic OGP: rule out pairs (o1, 072) at distance gogpV/N.

1 layer OGP: tuples (o1, . .., 0 m) with all distances gogpv/N.
OGP: Dist(a;1,span(o1,...,0;)) = 6v/N.

Branching OGP: rule out configurations (o )xex

approximating an arbitrarily complicated ultrametric space.

M. Sellke Algorithmic Thresholds for Spin Glasses 13 /18



Branching OGP

o If algorithms can recreate any ultrametric, we should use a
stronger OGP.

Classic OGP: rule out pairs (o1, 072) at distance gogpV/N.
1 layer OGP: tuples (o1, . .., 0 m) with all distances gogpv/N.
OGP: Dist(a;1,span(o1,...,0;)) = 6v/N.

Branching OGP: rule out configurations (o )xex
approximating an arbitrarily complicated ultrametric space.

e But...why would branching OGP imply hardness?
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Overlap Concentrated Algorithms
An algorithm A is overlap concentrated if the random distance

| A(HN,0) = A(Hn.t)ll
VN

tightly concentrates around its mean x(t), uniformly over t € [0, 1].
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Overlap Concentrated Algorithms
An algorithm A is overlap concentrated if the random distance

| A(HN,0) = A(Hn.t)ll
VN

tightly concentrates around its mean x(t), uniformly over t € [0, 1].

@ Holds by concentration of measure if A is Lipschitz in Hy.
o — gradient descent, AMP, ...are overlap concentrated.
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Ultrametric Transformations from Overlap Concentration

@ For ultrametric X, create correlated Hamiltonians (Hp x)xex-
e Outputs o = A(Hp ) form a new ultrametric space x(X):

10 =00l

VN
@ /O\

ﬂX—)X(X)g p
O Q

O OO e db

(dx(Xl,Xz)) x1, X2 € X.
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Ultrametric Transformations from Overlap Concentration

@ For ultrametric X, create correlated Hamiltonians (Hp x)xex-
e Outputs o = A(Hp ) form a new ultrametric space x(X):

10 =00l

VN
@ /O\

ﬂX—)X(X)g p
O O

O OO e dbdb

@ X is continuous, so we can make x(X) any ultrametric.

e — if A achieves (ALG + )N, then there is a configuration
(ox)xex approximating any desired ultrametric x(X) with

(dx(Xl,Xz)) x1, X2 € X.

Hnx(ox) > (ALG +€)N, Vx € X.
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Ruling Out a Complicated Ultrametric

e Take x(X) a k-ary tree branching at depths [0, 4, 24, ..., 1].
e These are “universal” for finite ultrametrics as 6 — 0.
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Ruling Out a Complicated Ultrametric

e Take x(X) a k-ary tree branching at depths [0, 4, 24, ..., 1].
e These are “universal” for finite ultrametrics as 6 — 0.

@ Parisi formula upper bound generalizes to richer settings.
Control average of Hy (o) over all x(X)-configurations:

UXzH

Oy —
e {|X Z Hi () - ”\m ~ dy(x)(x1,x2) Vx1,x € X}.

(O'X xEX

@ Upper bounds from any increasing function ¢ : [0,1] — RT,
expressed as multi-dimensional generalizations ng of Pe.
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Ruling Out a Complicated Ultrametric

e Take x(X) a k-ary tree branching at depths [0, 4, 24, ..., 1].
e These are “universal” for finite ultrametrics as 6 — 0.

@ Parisi formula upper bound generalizes to richer settings.
Control average of Hy (o) over all x(X)-configurations:

UXzH

Oy —
e {|X Z Hi () - ”\m ~ dy(x)(x1,x2) Vx1,x € X}.

(Cfx xeX
@ Upper bounds from any increasing function ¢ : [0,1] — RT,
expressed as multi-dimensional generalizations ng of Pe.

e Eventually, obtain upper bound P¢(() in terms of the original
Parisi functional.

@ Increasing ( transforms into no-longer increasing
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Ruling Out a Complicated Ultrametric

@ The ratio (/( is piece-wise constant, shrinks at each j§.
@ Hence ( approximates any (. € L, get upper bound ALG + ¢.

{()eU

) eL

w
te[01]
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@ The ratio (/( is piece-wise constant, shrinks at each j§.
@ Hence ( approximates any (. € L, get upper bound ALG + ¢.
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() eL

U
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@ Classic OGP: tree branches once, so ( decreases once.
o Cannot approximate general functions, cannot reach ALG.
e This limitation is fundamental:

M. Sellke Algorithmic Thresholds for Spin Glasses 17 /18



Ruling Out a Complicated Ultrametric

@ The ratio (/( is piece-wise constant, shrinks at each j§.
@ Hence ( approximates any (. € L, get upper bound ALG + ¢.

(el
() eL

U

te[01]

@ Classic OGP: tree branches once, so ( decreases once.
o Cannot approximate general functions, cannot reach ALG.
e This limitation is fundamental:

Theorem (Huang-S 21+)

On the sphere, to rule out (ALG + €) with forbidden ultrametric trees,
the trees must contain full binary subtrees of unbounded size (as e — 0).
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Conclusion

@ Problem: optimize a mean field spin glass Hamiltonian.

@ Result: ALG is the best asymptotic value achievable by overlap
concentrated algorithms, so existing AMP algorithms are
optimal within this class (modulo technical points).
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@ Result: ALG is the best asymptotic value achievable by overlap
concentrated algorithms, so existing AMP algorithms are
optimal within this class (modulo technical points).

@ Overlap concentrated algorithms include constant-order
methods such as GD and AMP with O(1) iterations.

@ Proof uses a branching OGP based on general ultrametric
trees, which is in some sense necessary.
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Conclusion

@ Problem: optimize a mean field spin glass Hamiltonian.

@ Result: ALG is the best asymptotic value achievable by overlap
concentrated algorithms, so existing AMP algorithms are
optimal within this class (modulo technical points).

@ Overlap concentrated algorithms include constant-order
methods such as GD and AMP with O(1) iterations.

@ Proof uses a branching OGP based on general ultrametric
trees, which is in some sense necessary.

@ A natural open direction: how generally does branching OGP
identify the exact algorithmic threshold?
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