Optimal Spectral Recovery of a Planted Vector in a Subspace

Alex Wein
Simons Institute

Joint work with:

Cheng Mao
Georgia Tech

Planted Vector Problem

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}} \curvearrowright$

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$ d

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$ d

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

Model: observe $Y=B R$

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$ d

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

Model: observe $Y=B R$

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $v \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}} \curvearrowright$

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

Model: observe $Y=B R$

Planted Vector Problem

$$
d \ll n
$$

Goal: recover a structured vector $\underset{\sim}{v} \in \mathbb{R}^{n}$ planted in a random d-dimensional subspace of \mathbb{R}^{n}

- Structure: e.g. sparsity $\|v\|_{0}=\rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}} \curvearrowright$

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

Model: observe $Y=B R$

(Slightly) harder variant: given any basis for the column span of B

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \longleftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

- $\rho \ll 1 / \sqrt{d}$ (linear programming) [Demanet, Hand '13]

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

- $\rho \ll 1 / \sqrt{d}$ (linear programming) [Demanet, Hand '13]
- $d \ll n^{1 / 4}$ (non-convex) [Qu, Sun, Wright '14]

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

- $\rho \ll 1 / \sqrt{d}$ (linear programming) [Demanet, Hand '13]
- $d \ll n^{1 / 4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{\rho} d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

- $\rho \ll 1 / \sqrt{d}$ (linear programming) [Demanet, Hand '13]
- $d \ll n^{1 / 4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{\rho} d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]
- $d \ll \sqrt{n}$ (spectral method) [Hopkins, Schramm, Shi, Steurer '15]

Prior Work

Scaling regime: $n \rightarrow \infty$

$$
\begin{aligned}
& \rho=n^{-\alpha}, \alpha \in(0,1) \quad \longleftarrow \text { sparsity } \\
& d=n^{\beta}, \beta \in(0,1) \quad \leftarrow \text { dimension }
\end{aligned}
$$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]
Computationally (poly-time) feasible when:

- $\rho \ll 1 / \sqrt{d}$ (linear programming) [Demanet, Hand '13]
- $d \ll n^{1 / 4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{\rho} d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]
- $d \ll \sqrt{n}$ (spectral method) [Hopkins, Schramm, Shi, Steurer '15]

Our contributions:

- Spectral method succeeds when $\rho d \ll \sqrt{n}$
- Evidence for computational hardness when $\rho d \gg \sqrt{n}$

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

- Proof: u^{\top} corresponds to the first row of R
- $Y u=v$

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$
-(V)has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
$-\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

- Proof: u^{\top} corresponds to the first row of R
- $Y u=v$

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $(u) \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

- Proof: u^{\top} corresponds to the first row of R
- $Y u=v$

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
\text { * } \quad y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

- Proof: u^{\top} corresponds to the first row of R
- $Y u=v$

A Helpful Reformulation

(P1) Observe $n \times d$ matrix $Y=B R$

- v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix
(P2) Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw random unit vector $u \in \mathbb{R}^{d}$

$$
Y=[\equiv] e^{y_{i}}
$$

- Each $y_{i} \in \mathbb{R}^{d}$ is independent (given u) with distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle=v_{i} \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

$$
\text { * } y_{i} \sim N\left(v_{i} u, I_{d}-u u^{\top}\right) \quad v_{i} \sim \mu
$$

Claim: P1 and P2 are equivalent (same distribution over Y)

- Proof: u^{\top} corresponds to the first row of R
- $Y u=v$

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n l_{d} \quad\left[\frac{\bar{\sum}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u$

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d} \quad\left[\frac{\bar{\sum}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u$

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n l_{d} \quad\left[\frac{\bar{\sum}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u \quad v=Y u$

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d} \quad\left[\frac{\bar{\equiv}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u \quad v=Y u$
Our improvements to analysis:

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d} \quad\left[\frac{\bar{\equiv}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u \quad v=Y u$
Our improvements to analysis:

- Improved condition $d \ll \sqrt{n} \quad \rightarrow \quad \rho d \ll \sqrt{n}$

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d} \quad\left[\frac{\bar{\equiv}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u \quad v=Y u$
Our improvements to analysis:

- Improved condition $d \ll \sqrt{n} \quad \rightarrow \quad \rho d \ll \sqrt{n}$
- Guarantees in ℓ_{∞} norm instead of ℓ_{2}
- Implies exact recovery of v
- Proof: "leave-one-out" analysis

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d} \quad\left[\frac{\bar{\equiv}}{\bar{Y}}\right] y_{i}
$$

Hope: leading eigenvector $\approx u \quad v=Y u$
Our improvements to analysis:

- Improved condition $d \ll \sqrt{n} \quad \rightarrow \quad \rho d \ll \sqrt{n}$
- Guarantees in ℓ_{∞} norm instead of ℓ_{2}
- Implies exact recovery of v
- Proof: "leave-one-out" analysis
- Covers dense case $\rho=1$ (planted ± 1 vector)
- Spectral method (bottom eigenvector) succeeds when $d \ll \sqrt{n}$
- (and hard when $d \gg \sqrt{n}$)

Upper Bound: Proof Idea

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

Upper Bound: Proof Idea

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

"Signal part": $\mathbb{E}[M] \approx\left(\|v\|_{4}^{4}-3 n\right) u u^{\top}$

- Note: $g \sim \mathcal{N}\left(0, I_{n}\right)$ has $\|g\|_{4}^{4} \approx 3 n$

Upper Bound: Proof Idea

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

"Signal part": $\mathbb{E}[M] \approx\left(\|v\|_{4}^{4}-3 n\right) u u^{\top}$

- Note: $g \sim \mathcal{N}\left(0, I_{n}\right)$ has $\|g\|_{4}^{4} \approx 3 n$
"Noise part": $\|M-\mathbb{E}[M]\| \lesssim \cdots$
- "Centering" $\left\|y_{i}\right\|^{2}-d$ is important here

Upper Bound: Proof Idea

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

"Signal part": $\mathbb{E}[M] \approx\left(\|v\|_{4}^{4}-3 n\right) u u^{\top}$

- Note: $g \sim \mathcal{N}\left(0, I_{n}\right)$ has $\|g\|_{4}^{4} \approx 3 n$
"Noise part": $\|M-\mathbb{E}[M]\| \lesssim \cdots$
- "Centering" $\left\|y_{i}\right\|^{2}-d$ is important here

Result: spectral method succeeds when

$$
\left|\|v\|_{4}^{4}-3 n\right| \geq \epsilon n \quad \text { and } \quad \frac{d \sqrt{n}}{\|v\|_{4}^{4}}+\frac{\sqrt{d}\|v\|_{\infty}}{\|v\|_{4}^{2}} \ll 1
$$

Upper Bound: Proof Idea

$$
M=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

"Signal part": $\mathbb{E}[M] \approx\left(\|v\|_{4}^{4}-3 n\right) u u^{\top}$

- Note: $g \sim \mathcal{N}\left(0, I_{n}\right)$ has $\|g\|_{4}^{4} \approx 3 n$
"Noise part": $\|M-\mathbb{E}[M]\| \lesssim \cdots$
- "Centering" $\left\|y_{i}\right\|^{2}-d$ is important here

Result: spectral method succeeds when

$$
\left|\|v\|_{4}^{4}-3 n\right| \geq \epsilon n \quad \text { and } \quad \frac{d \sqrt{n}}{\|v\|_{4}^{4}}+\frac{\sqrt{d}\|v\|_{\infty}}{\|v\|_{4}^{2}} \ll 1
$$

Note: for ρ-sparse Rademacher $v:\|v\|_{4}^{4} \approx \frac{n}{\rho}$

$$
\left|\frac{1}{\rho}-3\right| \geq \epsilon \quad \text { and } \quad \rho d \ll \sqrt{n}
$$

Lower Bound (Hardness)

Sufficient to show hardness of detection/testing problem:

Lower Bound (Hardness)

Sufficient to show hardness of detection/testing problem:
\mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$

Lower Bound (Hardness)

Sufficient to show hardness of detection/testing problem:
\mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
$\mathbb{Q}($ null $):$ Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

Lower Bound (Hardness)

Sufficient to show hardness of detection/testing problem:
\mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
$\mathbb{Q}($ null $):$ Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

Goal: distinguish between \mathbb{P} and \mathbb{Q} with high probability, given a single Y

Lower Bound (Hardness)

Sufficient to show hardness of detection/testing problem:
\mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \in \mathbb{R}^{d}$
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
$\mathbb{Q}($ null $):$ Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

Goal: distinguish between \mathbb{P} and \mathbb{Q} with high probability, given a single Y

Hardness of detection implies hardness of recovery (poly-time reduction)

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n l_{d}
$$

- $d \times d$ matrix where each entry is a degree-4 polynomial in the entries of Y

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n l_{d}
$$

- $d \times d$ matrix where each entry is a degree-4 polynomial in the entries of Y
- Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\|$

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

- $d \times d$ matrix where each entry is a degree-4 polynomial in the entries of Y
- Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\|$

Might there be a better spectral method?

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

- $d \times d$ matrix where each entry is a degree-4 polynomial in the entries of Y
- Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\|$

Might there be a better spectral method?

- Could use different polynomials, maybe of higher degree...

Low-Degree Spectral Methods

Recall spectral method:

$$
M=M(Y)=\sum_{i=1}^{n}\left(\left\|y_{i}\right\|^{2}-d\right) y_{i} y_{i}^{\top}-3 n I_{d}
$$

- $d \times d$ matrix where each entry is a degree-4 polynomial in the entries of Y
- Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\|$

Might there be a better spectral method?

- Could use different polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with constant-degree entries cannot distinguish \mathbb{P}, \mathbb{Q} when $\rho d \gg \sqrt{n}$

Limits of Spectral Methods

Theorem: (i) (Easy regime) If $\rho d \ll \sqrt{n}$ there exists a $d \times d$ degree-4 matrix M and threshold $\tau>0$ such that

$$
\begin{aligned}
& \mathbb{P}(\|M\| \geq 2 \tau) \geq 1-n^{-\omega(1)} \\
& \mathbb{Q}(\|M\| \leq \tau) \geq 1-n^{-\omega(1)}
\end{aligned}
$$

(ii) (Hard regime) If $\rho d \gg \sqrt{n}$ then for any constants $\ell, k, \epsilon>0$, there is no $n^{\ell} \times n^{\ell}$ degree- k symmetric matrix M and threshold $\tau>0$ such that

$$
\begin{gathered}
\mathbb{P}(\|M\| \geq(1+\epsilon) \tau) \geq 1-\frac{\epsilon}{4} \\
\mathbb{Q}(\|M\| \leq \tau) \geq 1-n^{-C}
\end{gathered}
$$

for a constant $C=C(\ell, k, \epsilon)$.
So $\rho d \approx \sqrt{n}$ is the precise threshold for spectral methods; suggests a fundamental barrier

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:
(I) Any spectral method $M(Y)$ can be approximated by a low-degree polynomial $f: \mathbb{R}^{n d} \rightarrow \mathbb{R}$:

$$
f(Y)=\operatorname{Tr}\left(M^{2 q}\right)=\sum_{i} \lambda_{i}^{2 q} \approx \lambda_{\max }^{2 q} \quad \text { for } q \approx \log n
$$

Degree of f is $2 q k \approx \log n$ (where k is degree of each entry of M)

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:
(I) Any spectral method $M(Y)$ can be approximated by a low-degree polynomial $f: \mathbb{R}^{n d} \rightarrow \mathbb{R}$:

$$
f(Y)=\operatorname{Tr}\left(M^{2 q}\right)=\sum_{i} \lambda_{i}^{2 q} \approx \lambda_{\max }^{2 q} \quad \text { for } q \approx \log n
$$

Degree of f is $2 q k \approx \log n$ (where k is degree of each entry of M)
(II) If $\rho d \gg \sqrt{n}$, any polynomial $f: \mathbb{R}^{n d} \rightarrow \mathbb{R}$ of degree
$D=O(\log n)$ fails at detection:

$$
\operatorname{Adv}_{\leq D}:=\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}\left[f(Y)^{2}\right]}}=O(1)
$$

Low-Degree Polynomial Lower Bounds

$$
\operatorname{Adv}_{\leq D}:=\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}\left[f(Y)^{2}\right]}}=O(1)
$$

(Also called $\left\|L^{\leq D}\right\|$ or $\sqrt{\chi_{\leq D}^{2}(\mathbb{P} \| \mathbb{Q})+1}$)
Follows a long line of work on low-degree polynomial lower bounds: [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16] [Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins '18 (PhD thesis)] [Kunisky, W., Bandeira '19 (survey)]
Similar low-degree lower bounds for many problems: planted clique (and variants), sparse PCA, community detection, tensor PCA, planted CSPs, spiked Wigner/Wishart matrix, sparse clustering, planted submatrix, planted dense subgraph, p-spin optimization, max independent set, ...

Low-degree polynomials provide a unified explanation for why all these problems are hard in the (conjectured) "hard" regime

A Key Lemma

General analysis of "planted non-gaussian direction" problems
\mathbb{P} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \sim \mathcal{U}$ (some distribution)
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
\mathbb{Q} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

A Key Lemma

General analysis of "planted non-gaussian direction" problems
\mathbb{P} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \sim \mathcal{U}$ (some distribution)
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
\mathbb{Q} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

A Key Lemma

General analysis of "planted non-gaussian direction" problems
\mathbb{P} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}

- Draw random unit vector $u \sim \mathcal{U}$ (some distribution)
- Each $y_{i} \in \mathbb{R}^{d}$ has distribution μ in direction u and otherwise gaussian:
- $\left\langle y_{i}, u\right\rangle \sim \mu$
- $\left\langle y_{i}, w\right\rangle \sim \mathcal{N}(0,1)$ for all $w \perp u,\|w\|=1$
\mathbb{Q} : Observe $n \times d$ matrix Y with rows y_{1}, \ldots, y_{n}
- Draw each $y_{i} \sim \mathcal{N}\left(0, I_{d}\right)$

Lemma: for any μ (with finite moments) and \mathcal{U},

$$
\operatorname{Adv}_{\leq D}^{2}=\sum_{k=0}^{D} \underset{u, u^{\prime} \sim \mathcal{U}}{\mathbb{E}}\left[\left\langle u, u^{\prime}\right\rangle^{k}\right] \sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} \prod_{i=1}^{n}\left(\underset{x \sim \mu}{\mathbb{E}}\left[h_{\alpha_{i}}(x)\right]\right)^{2}
$$

Summary

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$
- More generally, depends on $\|v\|_{4}^{4}-3 n$

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$
- More generally, depends on $\|v\|_{4}^{4}-3 n$
- Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$
- More generally, depends on $\|v\|_{4}^{4}-3 n$
- Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
- "Low-degree barrier" similar to planted clique, sparse PCA, etc.

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$
- More generally, depends on $\|v\|_{4}^{4}-3 n$
- Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
- "Low-degree barrier" similar to planted clique, sparse PCA, etc.
- Open: hardness via reduction from planted clique?

Summary

- Planted ρ-sparse vector in a d-dimensional subspace of \mathbb{R}^{n}
- Reformulation: planted distribution μ in direction u
- Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$
- More generally, depends on $\|v\|_{4}^{4}-3 n$
- Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
- "Low-degree barrier" similar to planted clique, sparse PCA, etc.
- Open: hardness via reduction from planted clique?

Thanks!

