
Optimal Spectral Recovery of a Planted
Vector in a Subspace

Alex Wein

Simons Institute

Joint work with:

Cheng Mao
Georgia Tech

1 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Planted Vector Problem

Goal: recover a structured vector v 2 Rn planted in a random
d-dimensional subspace of Rn

I Structure: e.g. sparsity kvk0 = ⇢n with nonzero entries ± 1p
⇢

Generic task in machine learning: related to dictionary learning,
matrix sparsification, sparse PCA, ...

Model: observe Y = BR

(Slightly) harder variant: given any basis for the column span of B

2 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

Prior Work

Scaling regime: n ! 1
⇢ = n

�↵, ↵ 2 (0, 1)

d = n
� , � 2 (0, 1)

Information-theoretically possible (brute-force) [Qu, Sun, Wright ’14]

Computationally (poly-time) feasible when:

I ⇢ ⌧ 1/
p
d (linear programming) [Demanet, Hand ’13]

I d ⌧ n
1/4 (non-convex) [Qu, Sun, Wright ’14]

I p
⇢d ⌧

p
n (sum-of-squares) [Barak, Kelner, Steurer ’13]

I d ⌧
p
n (spectral method) [Hopkins, Schramm, Shi, Steurer ’15]

Our contributions:

I Spectral method succeeds when ⇢d ⌧
p
n

I Evidence for computational hardness when ⇢d �
p
n

3 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

A Helpful Reformulation

(P1) Observe n ⇥ d matrix Y = BR

I v has i.i.d. entries drawn from µ (some distribution on R)
I R is a random orthogonal matrix

(P2) Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd is independent (given u) with distribution µ in
direction u and otherwise gaussian:
I hyi , ui = vi ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Claim: P1 and P2 are equivalent (same distribution over Y)

I Proof: u> corresponds to the first row of R

I Yu = v

4 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound (Algorithm)

Algorithm [Hopkins, Schramm, Shi, Steurer ’15]: leading eigenvector
of d ⇥ d matrix

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

Hope: leading eigenvector ⇡ u

Our improvements to analysis:

I Improved condition d ⌧
p
n ! ⇢d ⌧

p
n

I Guarantees in `1 norm instead of `2
I Implies exact recovery of v
I Proof: “leave-one-out” analysis

I Covers dense case ⇢ = 1 (planted ±1 vector)
I Spectral method (bottom eigenvector) succeeds when d ⌧

p
n

I (and hard when d �
p
n)

5 / 13

Upper Bound: Proof Idea

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

“Signal part”: E[M] ⇡
�
kvk4

4
� 3n

�
uu

>

I Note: g ⇠ N (0, In) has kgk44 ⇡ 3n

“Noise part”: kM � E[M]k . · · ·
I “Centering” kyik2 � d is important here

Result: spectral method succeeds when
��kvk44 � 3n

�� � ✏n and
d
p
n

kvk4
4

+

p
dkvk1
kvk2

4

⌧ 1

Note: for ⇢-sparse Rademacher v : kvk4
4
⇡ n

⇢����
1

⇢
� 3

���� � ✏ and ⇢d ⌧
p
n

6 / 13

Upper Bound: Proof Idea

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

“Signal part”: E[M] ⇡
�
kvk4

4
� 3n

�
uu

>

I Note: g ⇠ N (0, In) has kgk44 ⇡ 3n

“Noise part”: kM � E[M]k . · · ·
I “Centering” kyik2 � d is important here

Result: spectral method succeeds when
��kvk44 � 3n

�� � ✏n and
d
p
n

kvk4
4

+

p
dkvk1
kvk2

4

⌧ 1

Note: for ⇢-sparse Rademacher v : kvk4
4
⇡ n

⇢����
1

⇢
� 3

���� � ✏ and ⇢d ⌧
p
n

6 / 13

Upper Bound: Proof Idea

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

“Signal part”: E[M] ⇡
�
kvk4

4
� 3n

�
uu

>

I Note: g ⇠ N (0, In) has kgk44 ⇡ 3n

“Noise part”: kM � E[M]k . · · ·
I “Centering” kyik2 � d is important here

Result: spectral method succeeds when
��kvk44 � 3n

�� � ✏n and
d
p
n

kvk4
4

+

p
dkvk1
kvk2

4

⌧ 1

Note: for ⇢-sparse Rademacher v : kvk4
4
⇡ n

⇢����
1

⇢
� 3

���� � ✏ and ⇢d ⌧
p
n

6 / 13

Upper Bound: Proof Idea

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

“Signal part”: E[M] ⇡
�
kvk4

4
� 3n

�
uu

>

I Note: g ⇠ N (0, In) has kgk44 ⇡ 3n

“Noise part”: kM � E[M]k . · · ·
I “Centering” kyik2 � d is important here

Result: spectral method succeeds when
��kvk44 � 3n

�� � ✏n and
d
p
n

kvk4
4

+

p
dkvk1
kvk2

4

⌧ 1

Note: for ⇢-sparse Rademacher v : kvk4
4
⇡ n

⇢����
1

⇢
� 3

���� � ✏ and ⇢d ⌧
p
n

6 / 13

Upper Bound: Proof Idea

M =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

“Signal part”: E[M] ⇡
�
kvk4

4
� 3n

�
uu

>

I Note: g ⇠ N (0, In) has kgk44 ⇡ 3n

“Noise part”: kM � E[M]k . · · ·
I “Centering” kyik2 � d is important here

Result: spectral method succeeds when
��kvk44 � 3n

�� � ✏n and
d
p
n

kvk4
4

+

p
dkvk1
kvk2

4

⌧ 1

Note: for ⇢-sparse Rademacher v : kvk4
4
⇡ n

⇢����
1

⇢
� 3

���� � ✏ and ⇢d ⌧
p
n

6 / 13

Lower Bound (Hardness)

Su�cient to show hardness of detection/testing problem:

P (planted): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q (null): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)

7 / 13

Lower Bound (Hardness)

Su�cient to show hardness of detection/testing problem:

P (planted): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q (null): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)

7 / 13

Lower Bound (Hardness)

Su�cient to show hardness of detection/testing problem:

P (planted): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q (null): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)

7 / 13

Lower Bound (Hardness)

Su�cient to show hardness of detection/testing problem:

P (planted): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q (null): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)

7 / 13

Lower Bound (Hardness)

Su�cient to show hardness of detection/testing problem:

P (planted): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u 2 Rd

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q (null): Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)

7 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Low-Degree Spectral Methods

Recall spectral method:

M = M(Y) =
nX

i=1

�
kyik2 � d

�
yiy

>
i � 3n Id

I d ⇥ d matrix where each entry is a degree-4 polynomial in the
entries of Y

I Our analysis shows that when ⇢d ⌧
p
n, can distinguish P

from Q by thresholding kM(Y)k

Might there be a better spectral method?

I Could use di↵erent polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P,Q when ⇢d �

p
n

8 / 13

Limits of Spectral Methods

Theorem: (i) (Easy regime) If ⇢d ⌧
p
n there exists a d ⇥ d

degree-4 matrix M and threshold ⌧ > 0 such that

P(kMk � 2⌧) � 1� n
�!(1),

Q(kMk ⌧) � 1� n
�!(1).

(ii) (Hard regime) If ⇢d �
p
n then for any constants `, k , ✏ > 0,

there is no n
` ⇥ n

` degree-k symmetric matrix M and threshold
⌧ > 0 such that

P(kMk � (1 + ✏)⌧) � 1� ✏

4
,

Q(kMk ⌧) � 1� n
�C ,

for a constant C = C (`, k , ✏).

So ⇢d ⇡
p
n is the precise threshold for spectral methods; suggests

a fundamental barrier

9 / 13

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when ⇢d �
p
n:

(I) Any spectral method M(Y) can be approximated by a
low-degree polynomial f : Rnd ! R:

f (Y) = Tr(M2q) =
X

i

�2q
i ⇡ �2q

max for q ⇡ log n

Degree of f is 2qk ⇡ log n (where k is degree of each entry of M)

(II) If ⇢d �
p
n, any polynomial f : Rnd ! R of degree

D = O(log n) fails at detection:

AdvD := max
f deg D

EY⇠P[f (Y)]p
EY⇠Q[f (Y)2]

= O(1)

10 / 13

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when ⇢d �
p
n:

(I) Any spectral method M(Y) can be approximated by a
low-degree polynomial f : Rnd ! R:

f (Y) = Tr(M2q) =
X

i

�2q
i ⇡ �2q

max for q ⇡ log n

Degree of f is 2qk ⇡ log n (where k is degree of each entry of M)

(II) If ⇢d �
p
n, any polynomial f : Rnd ! R of degree

D = O(log n) fails at detection:

AdvD := max
f deg D

EY⇠P[f (Y)]p
EY⇠Q[f (Y)2]

= O(1)

10 / 13

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when ⇢d �
p
n:

(I) Any spectral method M(Y) can be approximated by a
low-degree polynomial f : Rnd ! R:

f (Y) = Tr(M2q) =
X

i

�2q
i ⇡ �2q

max for q ⇡ log n

Degree of f is 2qk ⇡ log n (where k is degree of each entry of M)

(II) If ⇢d �
p
n, any polynomial f : Rnd ! R of degree

D = O(log n) fails at detection:

AdvD := max
f deg D

EY⇠P[f (Y)]p
EY⇠Q[f (Y)2]

= O(1)

10 / 13

Low-Degree Polynomial Lower Bounds

AdvD := max
f deg D

EY⇠P[f (Y)]p
EY⇠Q[f (Y)2]

= O(1)

(Also called kLDk or
q
�2

D(PkQ) + 1)

Follows a long line of work on low-degree polynomial lower bounds:
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16] [Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)] [Kunisky, W., Bandeira ’19 (survey)] . . .

Similar low-degree lower bounds for many problems:
planted clique (and variants), sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart matrix, sparse clustering, planted submatrix, planted

dense subgraph, p-spin optimization, max independent set, . . .

Low-degree polynomials provide a unified explanation for why all
these problems are hard in the (conjectured) “hard” regime

11 / 13

A Key Lemma

General analysis of “planted non-gaussian direction” problems

P: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u ⇠ U (some distribution)

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Lemma: for any µ (with finite moments) and U ,

Adv2D =
DX

k=0

E
u,u0⇠U

[hu, u0ik]
X

↵2Nn

|↵|=k

nY

i=1

✓
E

x⇠µ
[h↵i (x)]

◆2

12 / 13

A Key Lemma

General analysis of “planted non-gaussian direction” problems

P: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u ⇠ U (some distribution)

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Lemma: for any µ (with finite moments) and U ,

Adv2D =
DX

k=0

E
u,u0⇠U

[hu, u0ik]
X

↵2Nn

|↵|=k

nY

i=1

✓
E

x⇠µ
[h↵i (x)]

◆2

12 / 13

A Key Lemma

General analysis of “planted non-gaussian direction” problems

P: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw random unit vector u ⇠ U (some distribution)

I Each yi 2 Rd has distribution µ in direction u and otherwise
gaussian:
I hyi , ui ⇠ µ
I hyi ,wi ⇠ N (0, 1) for all w ? u, kwk = 1

Q: Observe n ⇥ d matrix Y with rows y1, . . . , yn
I Draw each yi ⇠ N (0, Id)

Lemma: for any µ (with finite moments) and U ,

Adv2D =
DX

k=0

E
u,u0⇠U

[hu, u0ik]
X

↵2Nn

|↵|=k

nY

i=1

✓
E

x⇠µ
[h↵i (x)]

◆2

12 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

Summary

I Planted ⇢-sparse vector in a d-dimensional subspace of Rn

I Reformulation: planted distribution µ in direction u

I Improved analysis of [HSSS’15] spectral algorithm: succeeds
when ⇢d ⌧

p
n

I More generally, depends on kvk4
4
� 3n

I Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when ⇢d �

p
n

I “Low-degree barrier” similar to planted clique, sparse PCA, etc.

I Open: hardness via reduction from planted clique?

Thanks!

13 / 13

