Optimal Spectral Recovery of a Planted Vector in a Subspace

Alex Wein Simons Institute

Joint work with:

Cheng Mao Georgia Tech

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

► Structure: e.g. sparsity $||v||_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

Structure: e.g. sparsity $\|v\|_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

Structure: e.g. sparsity
$$\|v\|_0 = \rho n$$
 with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

► Structure: e.g. sparsity $\|v\|_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

Model: observe
$$Y = BR$$

basis

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

Structure: e.g. sparsity $\|v\|_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

Structure: e.g. sparsity $\|v\|_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

d « n

Goal: recover a **structured** vector $v \in \mathbb{R}^n$ planted in a **random** *d*-dimensional subspace of \mathbb{R}^n

Structure: e.g. sparsity $\|v\|_0 = \rho n$ with nonzero entries $\pm \frac{1}{\sqrt{\rho}}$

Generic task in machine learning: related to dictionary learning, matrix sparsification, sparse PCA, ...

(Slightly) harder variant: given any basis for the column span of B

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0, 1) \quad \longleftarrow \quad \text{sparsity}$ $d = n^{\beta}, \ \beta \in (0, 1) \quad \longleftarrow \quad \text{dimension}$

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0, 1)$ \leftarrow sparsity $d = n^{\beta}, \ \beta \in (0, 1)$ \leftarrow dimension

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14]

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0,1)$ \leftarrow sparsity $d = n^{\beta}, \ \beta \in (0,1)$ \leftarrow dimension

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14] Computationally (poly-time) feasible when:

 $\blacktriangleright
ho \ll 1/\sqrt{d}$ (linear programming) [Demanet, Hand '13]

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0,1)$ \leftarrow sparsity $d = n^{\beta}, \ \beta \in (0,1)$ \leftarrow dimension

- $\blacktriangleright
 ho \ll 1/\sqrt{d}$ (linear programming) [Demanet, Hand '13]
- ▶ $d \ll n^{1/4}$ (non-convex) [Qu, Sun, Wright '14]

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0,1)$ \leftarrow sparsity $d = n^{\beta}, \ \beta \in (0,1)$ \leftarrow dimension

- $ightarrow
 ho \ll 1/\sqrt{d}$ (linear programming) [Demanet, Hand '13]
- ▶ $d \ll n^{1/4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{
 ho} d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0,1)$ \leftarrow sparsity $d = n^{\beta}, \ \beta \in (0,1)$ \leftarrow dimension

- $ightarrow
 ho \ll 1/\sqrt{d}$ (linear programming) [Demanet, Hand '13]
- ▶ $d \ll n^{1/4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{\rho}d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]
- $d \ll \sqrt{n}$ (spectral method) [Hopkins, Schramm, Shi, Steurer '15]

Scaling regime: $n \to \infty$ $\rho = n^{-\alpha}, \ \alpha \in (0, 1) \quad \longleftarrow \quad \text{sparsity}$ $d = n^{\beta}, \ \beta \in (0, 1) \quad \longleftarrow \quad \text{dimension}$

Information-theoretically possible (brute-force) [Qu, Sun, Wright '14] Computationally (poly-time) feasible when:

- $\blacktriangleright
 ho \ll 1/\sqrt{d}$ (linear programming) [Demanet, Hand '13]
- ▶ $d \ll n^{1/4}$ (non-convex) [Qu, Sun, Wright '14]
- $\sqrt{\rho} d \ll \sqrt{n}$ (sum-of-squares) [Barak, Kelner, Steurer '13]
- ▶ $d \ll \sqrt{n}$ (spectral method) [Hopkins, Schramm, Shi, Steurer '15]

Our contributions:

- ► Spectral method succeeds when $\rho d \ll \sqrt{n}$
- Evidence for computational hardness when $\rho d \gg \sqrt{n}$

(P1) Observe $n \times d$ matrix Y = BR

- \blacktriangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- ▶ Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \triangleright \quad \langle y_i, u \rangle = v_i \sim \mu \\ \triangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

(P1) Observe $n \times d$ matrix Y = BR

- \blacktriangleright *v* has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \triangleright \quad \langle y_i, u \rangle = v_i \sim \mu \\ \triangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

(P1) Observe $n \times d$ matrix Y = BR

▶ v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left[\left| \left| \left| \right| \right] \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- ▶ Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \triangleright \quad \langle y_i, u \rangle = v_i \sim \mu \\ \triangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right] \mathcal{Y}^{\mathfrak{I}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\begin{array}{l} \triangleright \quad \langle y_i, u \rangle = v_i \sim \mu \\ \triangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

y;

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right] \mathcal{Y}^{\mathfrak{I}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian: rs/

$$\begin{array}{l} \blacktriangleright \quad \langle y_i, u \rangle = v_i \sim \mu \\ \blacktriangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \ \|w\| = 1 \end{array}$$

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$ $Y \qquad J \qquad B$

Y;

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right] \mathcal{J}^{\mathfrak{I}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle = v_i \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$$

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

y:

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right] \mathcal{Y}^{\mathfrak{I}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\langle y_i, u \rangle = v_i \sim \mu \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, ||w|| = 1$$

 $Y_{i} \sim \mathcal{N}(v_{i}u_{1}, I_{3} - uu^{T}) \qquad v_{i} \sim \mathcal{M}(v_{i}u_{1}, I_{3} - uu^{T})$ Claim: P1 and P2 are equivalent (same distribution over Y)

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$

Y;

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right]^{\mathcal{J}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle = v_i \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

$$Y_i \sim N(v_i u, I_d - u u^T) \quad v_i \sim \mu$$

Claim: P1 and P2 are equivalent (same distribution over Y)

▶ Proof: u^{\top} corresponds to the first row of R

•
$$Yu = v$$

(P1) Observe $n \times d$ matrix Y = BR

 \triangleright (v)has i.i.d. entries drawn from μ (some distribution on \mathbb{R})

 $\left[\left[\left| \left| \right| \right] \right] = \left[\left| \left| \left| \right| \right| \right] \right] \left[\begin{array}{c} \\ R \end{array} \right]$ $Y \qquad J \qquad B$

y:

R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $\Upsilon = \left[= \right] \mathcal{J}^{\mathfrak{I}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\langle y_i, u \rangle = \bigvee_i \sim \mu \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, ||w|| = 1$$

$$Y_i \sim N(v_i u, I_d - u u^T)$$
 $v_i \sim \mu$

Claim: P1 and P2 are equivalent (same distribution over Y)

▶ Proof: u^{\top} corresponds to the first row of R

•
$$Yu = v$$

(P1) Observe $n \times d$ matrix Y = BR

- $\begin{bmatrix} \left[\left| \left| \right| \right] \right] = \begin{bmatrix} \left| \left| \left| \right| \right| \right] \end{bmatrix} \begin{bmatrix} \\ R \end{bmatrix} e^{u^{T}} \\ R \end{bmatrix}$ \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $Y = \blacksquare$

- ▶ Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle = v_i \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array}$$

$$y_i \sim N(v_i u, I_d - uu^T) \quad v_i \sim \mu$$

Claim: P1 and P2 are equivalent (same distribution over Y)

▶ Proof: u^{\top} corresponds to the first row of R

•
$$Yu = v$$

Y;

(P1) Observe $n \times d$ matrix Y = BR

- \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $Y = \left[= \right]^{\mathcal{Y}^{\mathcal{Y}}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:
 - $\lor \langle y_i, u \rangle = v_i \sim \mu$ • $\langle y_i, w \rangle \sim \mathcal{N}(0, 1)$ for all $w \perp u$, ||w|| = 1

$$\forall i \sim N(v_i u, I_d - uu^T) \quad v_i \sim \mu$$

Claim: P1 and P2 are equivalent (same distribution over Y)

▶ Proof: u^{\top} corresponds to the first row of R

•
$$Yu = v$$

Y;

(P1) Observe $n \times d$ matrix Y = BR

- \triangleright v has i.i.d. entries drawn from μ (some distribution on \mathbb{R})
- R is a random orthogonal matrix

(P2) Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n \blacktriangleright Draw random unit vector $u \in \mathbb{R}^d$ $Y = \left[= \right]^{\mathcal{Y}^{\mathcal{Y}}}$

- ▶ Each $y_i \in \mathbb{R}^d$ is independent (given u) with distribution μ in direction *u* and otherwise gaussian:
 - $\lor \langle y_i, u \rangle = v_i \sim \mu$ • $\langle y_i, w \rangle \sim \mathcal{N}(0, 1)$ for all $w \perp u$, ||w|| = 1

$$\forall i \sim N(v; u, I_d - uu^T) \quad v_i \sim \mu$$

Claim: P1 and P2 are equivalent (same distribution over Y)

▶ Proof: u^{\top} corresponds to the first row of R

•
$$Yu = v$$

Y;

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - \underbrace{3n I_d}_{\sim}$$

Hope: leading eigenvector $\approx u$

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$ $\lor = Yu$

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$ $\lor = Yu$

Our improvements to analysis:

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$ $\vee = Yu$

Our improvements to analysis:

▶ Improved condition $d \ll \sqrt{n} \rightarrow \rho d \ll \sqrt{n}$

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$ $\lor = Yu$

Our improvements to analysis:

- ▶ Improved condition $d \ll \sqrt{n} \rightarrow \rho d \ll \sqrt{n}$
- Guarantees in ℓ_{∞} norm instead of ℓ_2
 - Implies exact recovery of v
 - Proof: "leave-one-out" analysis

Algorithm [Hopkins, Schramm, Shi, Steurer '15]: leading eigenvector of $d \times d$ matrix

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

Hope: leading eigenvector $\approx u$ $\lor = Yu$

Our improvements to analysis:

- ▶ Improved condition $d \ll \sqrt{n} \rightarrow \rho d \ll \sqrt{n}$
- Guarantees in ℓ_{∞} norm instead of ℓ_2
 - Implies exact recovery of v
 - Proof: "leave-one-out" analysis
- Covers dense case $\rho = 1$ (planted ± 1 vector)
 - Spectral method (bottom eigenvector) succeeds when $d \ll \sqrt{n}$
 - (and hard when $d \gg \sqrt{n}$)

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

"Signal part": $\mathbb{E}[M] \approx \left(\|v\|_4^4 - 3n \right) uu^{\top}$

▶ Note: $g \sim \mathcal{N}(0, I_n)$ has $\|g\|_4^4 \approx 3n$

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

"Signal part": $\mathbb{E}[M] \approx \left(\|v\|_4^4 - 3n \right) uu^{\top}$

▶ Note:
$$g \sim \mathcal{N}(0, I_n)$$
 has $\|g\|_4^4 \approx 3n$

"Noise part": $\|M - \mathbb{E}[M]\| \lesssim \cdots$

• "Centering"
$$||y_i||^2 - d$$
 is important here

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

"Signal part": $\mathbb{E}[M] \approx \left(\|v\|_4^4 - 3n \right) uu^{\top}$

• Note:
$$g \sim \mathcal{N}(0, I_n)$$
 has $\|g\|_4^4 \approx 3n$

"Noise part": $\|M - \mathbb{E}[M]\| \lesssim \cdots$

• "Centering"
$$||y_i||^2 - d$$
 is important here

Result: spectral method succeeds when

$$|\|v\|_{4}^{4} - 3n| \ge \epsilon n$$
 and $\frac{d\sqrt{n}}{\|v\|_{4}^{4}} + \frac{\sqrt{d}\|v\|_{\infty}}{\|v\|_{4}^{2}} \ll 1$

$$M = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

"Signal part": $\mathbb{E}[M] \approx \left(\|v\|_4^4 - 3n \right) uu^{\top}$

▶ Note:
$$g \sim \mathcal{N}(0, I_n)$$
 has $\|g\|_4^4 \approx 3n$

"Noise part": $\|M - \mathbb{E}[M]\| \lesssim \cdots$

• "Centering"
$$||y_i||^2 - d$$
 is important here

Result: spectral method succeeds when

$$|||v||_{4}^{4} - 3n| \ge \epsilon n$$
 and $\frac{d\sqrt{n}}{\|v\|_{4}^{4}} + \frac{\sqrt{d}\|v\|_{\infty}}{\|v\|_{4}^{2}} \ll 1$

Note: for ρ -sparse Rademacher v: $||v||_4^4 \approx \frac{n}{\rho}$

$$\left|\frac{1}{\rho}-3\right|\geq\epsilon$$
 and $ho d\ll\sqrt{n}$

Sufficient to show hardness of detection/testing problem:

Sufficient to show hardness of detection/testing problem:

 \mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \blacktriangleright \quad \langle y_i, u \rangle \sim \mu \\ \blacktriangleright \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \ \|w\| = 1 \end{array}$$

Sufficient to show hardness of detection/testing problem:

 \mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$$

 \mathbb{Q} (null): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

• Draw each $y_i \sim \mathcal{N}(0, I_d)$

Sufficient to show hardness of detection/testing problem:

 \mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$$

 \mathbb{Q} (null): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

• Draw each
$$y_i \sim \mathcal{N}(0, I_d)$$

Goal: distinguish between $\mathbb P$ and $\mathbb Q$ with high probability, given a single Y

Sufficient to show hardness of detection/testing problem:

 \mathbb{P} (planted): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

- Draw random unit vector $u \in \mathbb{R}^d$
- Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$$

 \mathbb{Q} (null): Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

• Draw each $y_i \sim \mathcal{N}(0, I_d)$

Goal: distinguish between $\mathbb P$ and $\mathbb Q$ with high probability, given a single Y

Hardness of detection implies hardness of recovery (poly-time reduction)

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (||y_i||^2 - d) y_i y_i^{\top} - 3n I_d$$

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

d × d matrix where each entry is a degree-4 polynomial in the entries of Y

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

d × d matrix where each entry is a degree-4 polynomial in the entries of Y

• Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\| \lesssim \operatorname{exsy}^*$

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

d × d matrix where each entry is a degree-4 polynomial in the entries of Y

• Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\| \sim e^{-sy^*}$

Might there be a better spectral method?

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

d × d matrix where each entry is a degree-4 polynomial in the entries of Y

• Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\| \sim e^{-sy^*}$

Might there be a better spectral method?

Could use different polynomials, maybe of higher degree...

Recall spectral method:

$$M = M(Y) = \sum_{i=1}^{n} (\|y_i\|^2 - d) y_i y_i^{\top} - 3n I_d$$

d × d matrix where each entry is a degree-4 polynomial in the entries of Y

• Our analysis shows that when $\rho d \ll \sqrt{n}$, can distinguish \mathbb{P} from \mathbb{Q} by thresholding $\|M(Y)\| \sim e^{-sy^*}$

Might there be a better spectral method?

Could use different polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with constant-degree entries cannot distinguish \mathbb{P}, \mathbb{Q} when $\rho d \gg \sqrt{n}$

Limits of Spectral Methods

Theorem: (i) (Easy regime) If $\rho d \ll \sqrt{n}$ there exists a $d \times d$ degree-4 matrix M and threshold $\tau > 0$ such that

 $\mathbb{P}(\|M\| \ge 2\tau) \ge 1 - n^{-\omega(1)},$

 $\mathbb{Q}(\|M\| \leq au) \geq 1 - n^{-\omega(1)}.$

(ii) (Hard regime) If $\rho d \gg \sqrt{n}$ then for any constants $\ell, k, \epsilon > 0$, there is no $n^{\ell} \times n^{\ell}$ degree-k symmetric matrix M and threshold $\tau > 0$ such that

$$\mathbb{P}(\|M\| \ge (1+\epsilon) au) \ge 1-rac{\epsilon}{4},$$

$$\mathbb{Q}(\|M\| \leq \tau) \geq 1 - n^{-C},$$

for a constant $C = C(\ell, k, \epsilon)$.

So $\rho d \approx \sqrt{n}$ is the precise threshold for spectral methods; suggests a fundamental barrier

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:

(I) Any spectral method M(Y) can be approximated by a low-degree polynomial $f : \mathbb{R}^{nd} \to \mathbb{R}$:

$$f(Y) = \operatorname{Tr}(M^{2q}) = \sum_{i} \lambda_i^{2q} \approx \lambda_{\max}^{2q}$$
 for $q \approx \log n$

Degree of f is $2qk \approx \log n$ (where k is degree of each entry of M)

Proof: Failure of Spectral Methods

Two steps to show that all spectral methods fail when $\rho d \gg \sqrt{n}$:

(I) Any spectral method M(Y) can be approximated by a low-degree polynomial $f : \mathbb{R}^{nd} \to \mathbb{R}$:

$$f(Y) = \operatorname{Tr}(M^{2q}) = \sum_{i} \lambda_i^{2q} \approx \lambda_{\max}^{2q}$$
 for $q \approx \log n$

Degree of f is $2qk \approx \log n$ (where k is degree of each entry of M)

(11) If $\rho d \gg \sqrt{n}$, any polynomial $f : \mathbb{R}^{nd} \to \mathbb{R}$ of degree $D = O(\log n)$ fails at detection:

$$\mathsf{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = O(1)$$

Low-Degree Polynomial Lower Bounds

(Also

$$\begin{aligned} \mathsf{Adv}_{\leq D} &:= \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = O(1) \\ \text{called } \|L^{\leq D}\| \text{ or } \sqrt{\chi^2_{\leq D}(\mathbb{P}\|\mathbb{Q}) + 1}) \end{aligned}$$

Follows a long line of work on low-degree polynomial lower bounds:[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16][Hopkins, Steurer '17][Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17][Hopkins '18 (PhD thesis)][Kunisky, W., Bandeira '19 (survey)]

Similar low-degree lower bounds for many problems:

planted clique (and variants), sparse PCA, community detection, tensor PCA, planted CSPs, spiked Wigner/Wishart matrix, sparse clustering, planted submatrix, planted dense subgraph, p-spin optimization, max independent set, ...

Low-degree polynomials provide a unified explanation for why all these problems are hard in the (conjectured) "hard" regime

A Key Lemma

General analysis of "planted non-gaussian direction" problems

- \mathbb{P} : Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n
 - **b** Draw random unit vector $u \sim \mathcal{U}$ (some distribution)
 - Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\triangleright \langle y_i, u \rangle \sim$$

- $\begin{array}{l} \flat \quad \langle y_i, u \rangle \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$
- Q: Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n
 - **b** Draw each $y_i \sim \mathcal{N}(0, I_d)$

A Key Lemma

General analysis of "planted non-gaussian direction" problems

 \mathbb{P} : Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

▶ Draw random unit vector $u \sim U$ (some distribution)

Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\blacktriangleright \langle y_i, u \rangle \sim$$

- $\langle y_i, u \rangle \sim \mu$ $\langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, ||w|| = 1$
- Q: Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n
 - **b** Draw each $y_i \sim \mathcal{N}(0, I_d)$

A Key Lemma

General analysis of "planted non-gaussian direction" problems

 \mathbb{P} : Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

▶ Draw random unit vector $u \sim U$ (some distribution)

Each $y_i \in \mathbb{R}^d$ has distribution μ in direction u and otherwise gaussian:

$$\begin{array}{l} \flat \quad \langle y_i, u \rangle \sim \mu \\ \flat \quad \langle y_i, w \rangle \sim \mathcal{N}(0, 1) \text{ for all } w \perp u, \|w\| = 1 \end{array} \end{array}$$

 \mathbb{Q} : Observe $n \times d$ matrix Y with rows y_1, \ldots, y_n

• Draw each
$$y_i \sim \mathcal{N}(0, I_d)$$

Lemma: for any μ (with finite moments) and \mathcal{U} ,

$$\mathsf{Adv}_{\leq D}^2 = \sum_{k=0}^{D} \mathop{\mathbb{E}}_{u,u'\sim\mathcal{U}} [\langle u, u' \rangle^k] \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha|=k}} \prod_{i=1}^{n} \left(\mathop{\mathbb{E}}_{x\sim\mu} [h_{\alpha_i}(x)] \right)^2$$

▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

• More generally, depends on $||v||_4^4 - 3n$

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

• More generally, depends on $||v||_4^4 - 3n$

▶ Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

• More generally, depends on $||v||_4^4 - 3n$

- ▶ Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
 - "Low-degree barrier" similar to planted clique, sparse PCA, etc.

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

• More generally, depends on $||v||_4^4 - 3n$

- ▶ Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
 - "Low-degree barrier" similar to planted clique, sparse PCA, etc.
- Open: hardness via reduction from planted clique?

- ▶ Planted ρ -sparse vector in a *d*-dimensional subspace of \mathbb{R}^n
- ▶ Reformulation: planted distribution μ in direction u
- ▶ Improved analysis of [HSSS'15] spectral algorithm: succeeds when $\rho d \ll \sqrt{n}$

• More generally, depends on $||v||_4^4 - 3n$

- ▶ Matching lower bound: no spectral method (or low-degree polynomial) can succeed when $\rho d \gg \sqrt{n}$
 - "Low-degree barrier" similar to planted clique, sparse PCA, etc.
- Open: hardness via reduction from planted clique?

Thanks!