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(Slightly) harder variant: given any basis for the column span of B
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Computationally (poly-time) feasible when:

> p < 1/v/d (linear programming) [Demanet, Hand '13]

» d < n'/* (non-convex) [Qu, Sun, Wright '14]

> /pd < \/n (sum-of-squares) [Barak, Kelner, Steurer '13]
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Our contributions:
» Spectral method succeeds when pd < /n
» Evidence for computational hardness when pd > /n
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A Helpful Reformulation

(P1) Observe n x d matrix Y = BR
» v has i.i.d. entries drawn from p (some distribution on R)

» R is a random orthogonal matrix

(P2) Observe n x d matrix Y with rows yi,...,y,

» Draw random unit vector u € R9

» Each y; € R? is independent (given u) with distribution y in
direction u and otherwise gaussian:

> <_)/i,U>:V,'N,u
> (y,,w) ~N(0,1) forall w L u, [|w| =1

Claim: P1 and P2 are equivalent (same distribution over Y)
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Hope: leading eigenvector ~ u v =Yu

Our improvements to analysis:

» Improved condition d < /n — pd < +/n
» Guarantees in /o, norm instead of /5

» Implies exact recovery of v
» Proof: “leave-one-out” analysis

» Covers dense case p = 1 (planted £1 vector)

» Spectral method (bottom eigenvector) succeeds when d < +/n

» (and hard when d > /n)
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» “Centering” ||y;j|| — d is important here

Result: spectral method succeeds when

dyn  Vd|v|lx
e <1
vl vz

’||v||2 — 3n‘ >en and

n

Note: for p-sparse Rademacher v: |v||5 ~ ;

1
|——3‘Ze and pd < /n
o
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Q (null): Observe n x d matrix Y with rows y1,...,y,
» Draw each y; ~ N(0, Iy)

Goal: distinguish between P and Q with high probability, given a
single Y

Hardness of detection implies hardness of recovery
(poly-time reduction)
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Low-Degree Spectral Methods

Recall spectral method:

n

M=MY)=> (lyill* - d) yiy;' —3nlq
i=1

» d x d matrix where each entry is a degree-4 polynomial in the

entries of Y

» Our analysis shows that when pd < +/n, can distinguish P
from Q by thresholding |M(Y)]|

Might there be a better spectral method?
» Could use different polynomials, maybe of higher degree...

We answer this in the negative: any poly-size spectral method with
constant-degree entries cannot distinguish P, Q when pd > +/n
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Limits of Spectral Methods

Theorem: (i) (Easy regime) If pd < /n there exists a d x d
degree-4 matrix M and threshold 7 > 0 such that

P(|M]| > 27) > 1 - n~*),

Q(IM|| <7)>1—n+W),

(ii)) (Hard regime) If pd > +/n then for any constants /¢, k,e > 0,
there is no n® x n® degree-k symmetric matrix M and threshold

7 > 0 such that .
P(IMII =z (1+€)7) =21 -7,
Q(IM|| <7)>1-n"¢,

for a constant C = C(¢, k, €).

So pd ~ /n is the precise threshold for spectral methods; suggests
a fundamental barrier

9/13
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Two steps to show that all spectral methods fail when pd > /n:

(1) Any spectral method M(Y') can be approximated by a
low-degree polynomial f : R" — R:

o for g =~ logn

F(Y)=Tr(M?7) =) A9~ 221

Degree of f is 2qgk ~ log n (where k is degree of each entry of M)

(1) If pd > /n, any polynomial f : R — R of degree
D = O(log n) fails at detection:

o Byl
LIV e 1 R
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Low-Degree Polynomial Lower Bounds

o Eyslf()]
A S By lr OV

(Also called ||L=D|| or \/XgD(PHQ) +1)

O(1)

Follows a long line of work on low-degree polynomial lower bounds:
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16] [Hopkins, Steurer '17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins "18 (PhD thesis)] [Kunisky, W., Bandeira "19 (survey)]

Similar low-degree lower bounds for many problems:
planted clique (and variants), sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart matrix, sparse clustering, planted submatrix, planted
dense subgraph, p-spin optimization, max independent set, ...

Low-degree polynomials provide a unified explanation for why all
these problems are hard in the (conjectured) “hard” regime

11/13



A Key Lemma

General analysis of “planted non-gaussian direction” problems

P: Observe n x d matrix Y with rows yi,...,y,
» Draw random unit vector u ~ U (some distribution)

» Each y; € RY has distribution p in direction u and otherwise
gaussian:
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A Key Lemma

General analysis of “planted non-gaussian direction” problems

P: Observe n x d matrix Y with rows yi,...,y,
» Draw random unit vector u ~ U (some distribution)

» Each y; € RY has distribution p in direction u and otherwise
gaussian:

> <y,',U>N,Ll,
> (yi,w) ~N(0,1) forall w L u, [|w| =1

Q: Observe n x d matrix Y with rows yq,...,yn
» Draw each y; ~ N(0, Iy)
Lemma: for any p (with finite moments) and U,

D

n 2
poio =Y B[]S TT (8 1)

k=0 aeN" =1
la|=k
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» More generally, depends on ||v||3 — 3n

» Matching lower bound: no spectral method (or low-degree
polynomial) can succeed when pd > \/n

» “Low-degree barrier’ similar to planted clique, sparse PCA, etc.

» Open: hardness via reduction from planted clique?
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