Sum of Squares Lower Bounds Versus Low-Degree Polynomial Lower Bounds

Aaron Potechin
University of Chicago

Outline

I. Introduction
II. Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved
III. Current Knowledge About Sum of Squares Lower Bounds
IV. Intuition for the Low-Degree Conjecture (time permitting)

Note: This talk is closely connected to Prasad Raghavendra's $4^{\text {th }}$ bootcamp talk but is from a different perspective (looking at the current gaps between low-degree polynomial lower bounds and sum of squares lower bounds).

Part I: Introduction

Distinguishing Problems

- Distinguishing problems: Given a random distribution $D_{\text {random }}$ and a planted distribution $D_{\text {planted }}$, can we distinguish between these two distributions?
- Example: Planted clique:
- $D_{\text {random }}: G\left(n, \frac{1}{2}\right)$
- $D_{\text {planted }}: G\left(n, \frac{1}{2}\right)+$ clique of size k
- Example: Tensor PCA (principal component analysis):
- $D_{\text {random }}: T_{i_{1} \ldots i_{k}}=N(0,1)$ (where k is the order of the tensor).
- $D_{\text {planted }}: T_{i_{1} \ldots i_{k}}=N(0,1)+\lambda v_{i_{1}} v_{i_{2}} \ldots v_{i_{k}}$ where $\lambda>0$ and v is a unit vector.

Planted Clique Example

- Random instance: $G\left(n, \frac{1}{2}\right)$
- Planted instance: $G\left(n, \frac{1}{2}\right)+K_{k}$
- Example: Which graph has a planted 5-clique?

Planted Clique Example

- Random instance: $G\left(n, \frac{1}{2}\right)$
- Planted instance: $G\left(n, \frac{1}{2}\right)+K_{k}$
- Example: Which graph has a planted 5-clique?

Low-Degree Polynomial Framework

- Low-Degree Polynomial Framework: Is there a low-degree polynomial f which distinguishes between $D_{\text {random }}$ and $D_{\text {planted }}$?
- More precisely, is there a low-degree polynomial f such that

1. $E_{\text {planted }}[f]$ is large.
2. $E_{\text {random }}[f]=0$ and $E_{\text {random }}\left[f^{2}\right] \leq 1$. ?

- If there is no such polynomial f then we have a low-degree polynomial lower bound.

Sum of Squares (SoS) Framework

- The sum of squares hierarchy (SoS) is most naturally applied to certification problems (i.e. certifying that a random input does not have some hidden structure).
- That said, we can analyze distinguishing problems using the pseudocalibration framework [BHK+16]:

1. Use pseudo-calibration to obtain pseudo-expectation values for the random inputs.
2. Construct the corresponding moment matrix M.
3. Analyze whether $M \succcurlyeq 0$.

- If $M \succcurlyeq 0$ w.h.p. then we have an SoS lower bound.
- More precisely, the pseudo-expectation valules \tilde{E} will satisfy all lowdegree constraints satisfied by the planted distribution.

Summary

Start with a random and planted distribution.

Show that there is no low-degree polynomial f such that

1. $E_{\text {planted }}[f]$ is large
2. $E_{\text {random }}[f]=0$ and

Construct the corresponding moment matrix M.
$E_{\text {random }}\left[f^{2}\right] \leq 1$
Use pseudo-calibration to obtain pseudo-expectation values \tilde{E}.

Low-Degree Conjecture

- SoS lower bound (where $\tilde{E}[1]$ is well-behaved) \Rightarrow low-degree polynomial lower bound
- Low-degree conjecture: For symmetric distinguishing problems, Low-degree polynomial lower bound \Rightarrow SoS lower bound for a noisy version of the problem (where we add some additional noise to the planted distribution).

Part II: Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved

Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved

- Observation on p. 71 in Sam Hopkin's thesis: $\tilde{E}[1]$ is the low-degree likelihood ratio for the input being from the planted distribution.
- What we'll show here: If there is a low-degree polynomial f such that

1. $E_{\text {planted }}[f]=C$
2. $E_{\text {random }}[f]=0$ and $E_{\text {random }}\left[f^{2}\right] \leq 1$ then $\operatorname{Var}(\tilde{E}[1]) \geq C^{2}$.

Background: Fourier Analysis and Low-Degree Projections

- Setup: We have
- A vector space of polynomials
- An inner product $\langle f, g\rangle=E_{\text {random }}[f g]$
- An orthonormal basis of Fourier characters $\left\{\chi_{i}\right\}$ which are polynomials.
- Fourier decomposition: For any polynomial f, we can write $f=\sum_{\chi_{i}} \hat{f}_{i} \chi_{i}$ where $\hat{f}_{i}=\left\langle f, \chi_{i}\right\rangle=E_{\text {random }}\left[f \chi_{i}\right]$.
- Low-degree projection: The low-degree projection of f is

$$
\sum_{\text {low degree } \chi_{i}} \hat{f}_{i} \chi_{i}=\sum_{\text {low degree } \chi_{i}} E_{\text {random }}\left[f \chi_{i}\right] \chi_{i}
$$

Goal: Assigning Pseudo-expectation Values

- Setup: We have
- Solution variables for the planted structure.
- Fourier characters χ_{i} on the random input
- Example: For the planted clique problem, we have
- Solution variables x_{i} where we want that $x_{i}=1$ if vertex i is in the planted clique and 0 otherwise.
- Fourier characters $X_{E}=(-1)^{|E \backslash E(G)|}=\prod_{e \in E} \chi_{\{e\}}$ where $\chi_{\{e\}}=1$ if $e \in E(G)$ and
- 1 otherwise.
- Each planted instance assigns values to the solution variables (and thus any polynomial p in the solution variables).
- Q: Given a random instance I, can we assign a pseudo-expectation value $\tilde{E}[p](I)$ to each low-degree polynomial p in the solution variables?

Pseudo-Calibration

- Pseudo-calibration: Take $\tilde{E}[p](I)$ to be the low-degree projection of

$$
\frac{\operatorname{planted}_{\mathrm{Pr}_{\text {random }}(I)}^{\mathrm{Pr}}(I)}{} p(I)
$$

- Reason: For any low-degree Fourier character χ_{i},

$$
\mathrm{E}_{\text {random }}\left[\tilde{E}[p](I) \chi_{i}\right]=E_{\text {random }}\left[\frac{\mathrm{prg}^{\mathrm{Pr} t e d}(I)}{\mathrm{Pr}_{\text {random }}(I)} p(I) \chi_{i}\right]=E_{\text {planted }}\left[p(I) \chi_{i}\right]
$$

- Pseudo-calibration equation:

$$
\tilde{E}[p](I)=\sum_{\text {low-degree } \chi_{i}} E_{\text {planted }}\left[p(I) \chi_{i}\right] \chi_{i}
$$

Canonical Example: Planted Clique

- Random distribution: $G(n, 1 / 2)$
- Planted distribution: Start with a $G(n, 1 / 2)$ graph and put each vertex in the planted clique with probability k / n.
- Define $x_{V}=\prod_{i \in V} x_{i}$
- Claim: $E_{\text {planted }}\left[x_{V} \chi_{E}\right]=\left(\frac{k}{n}\right)^{|V \cup V(E)|}$ where $V(E)$ is the set of endpoints of edges in E.
- Reason:
- If every vertex in $V \cup V(E)$ is in the planted clique then $x_{V}=1$ and $\chi_{E}=1$.
- If some vertex in V is not in the planted clique then $x_{V}=0$.
- If some vertex in $V(E)$ is not in the planted clique then $E\left[\chi_{E}\right]=0$ (where the expectation is over the part of G outside of the planted clique)
- Pseudo-expectation values: $\tilde{E}\left[x_{V}\right]=\sum_{E:|V \cup V(E)| \leq t}\left(\frac{k}{n}\right)^{|V \cup V(E)|} \chi_{E}$

Analyzing $\tilde{E}[1]$

- Pseudo-calibration equation: $\tilde{E}[p](I)=\sum_{\text {low degree } \chi_{i}} E_{\text {planted }}\left[p(I) \chi_{i}\right] \chi_{i}$
- Special case: $\tilde{E}[1]=1+\sum_{\text {non-empty }}$ low degree $\chi_{i} E_{\text {planted }}\left[\chi_{i}\right] \chi_{i}$
- Assume we have a low-degree polynomial f such that
- $E_{\text {planted }}[f]=C$
- $E_{\text {random }}[f]=0$ and $\operatorname{Var}(f) \leq 1$
- Note: All sums below are over low-degree, non-empty χ_{i}.
- Write $f=\sum_{\chi_{i}} a_{i} \chi_{i}$ and let $b_{i}=E_{\text {planted }}\left[\chi_{i}\right] . \tilde{E}[1]-1=\sum_{\chi_{i}} b_{i} \chi_{i}$ so $\operatorname{Var}(f)=\sum_{\chi_{i}} a_{i}^{2}$ and $\operatorname{Var}(\tilde{E}[1])=\sum_{\chi_{i}} b_{i}^{2}$.
- Using Cauchy-Schwarz,

$$
C=E_{\text {planted }}[f]=\sum_{\chi_{i}} a_{i} b_{i} \leq \sqrt{\sum_{\chi_{i}} a_{i}^{2}} \sqrt{\sum_{\chi_{i}} b_{i}^{2}}=\sqrt{\operatorname{Var}(f) \operatorname{Var}(\tilde{E}[1])}
$$

- Thus, $\operatorname{Var}(\tilde{E}[1]) \geq C^{2}$

Low-Degree Polynomial Lower Bounds Versus SoS Lower Bounds

Moment matrix M

Summary

- SoS lower bounds using pseudo-calibration are strictly stronger than low-degree polynomial lower bounds as they involve analyzing the entire moment matrix.
- There are many interesting techniques involved in proving SoS lower bounds.
- That said, low-degree polynomials are an excellent heuristic for determining the computational threshold where a problem is hard and it is much easier to prove low-degree polynomial lower bounds.

Part III: Current Knowledge About Sum of Squares Lower Bounds

Evidence for the Low-Degree Conjecture

- The thresholds for SoS lower bounds and low-degree polynomials lower bounds match for
- Planted clique [BHK+16]
- Tensor PCA [HKP+17, PR20]
- Sparse PCA [HKP+17, DNS20, PR20]
- Random CSPs [KMOW17]
- However, there are still significant gaps between known SoS lower bounds and known low-degree polynomial lower bounds.

Delicateness of Current SoS Lower Bounds

- Subtle issue: Current SoS lower bound techniques are sensitive to the choice of planted distribution.
- Example: Planted Clique
- Random distribution: $G\left(n, \frac{1}{2}\right)$
- Planted distribution used in [BHK+16]: Put each vertex in the planted clique independently with probability $\frac{k}{n}$.
- Desired planted distribution: Plant a clique of size exactly k.
- For planted clique, Shuo Pang [P21] recently fixed this issue by proving an SoS lower bound for the desired planted distribution.

Delicateness of Current SoS Lower Bounds

- Subtle issue: Current SoS lower bound techniques are sensitive to the choice of planted distribution.
- Example: Tensor PCA
- Random distribution: Tensor T with Gaussian entries
- Planted distribution used in [HKP+17] and [PR20]: $T+\lambda(v \otimes v \otimes \cdots \otimes v)$ where v is a vector where each coordinate is in $\left\{-\frac{1}{\sqrt{\Delta n}}, 0, \frac{1}{\sqrt{\Delta n}}\right\}$ with probabilities $\frac{\Delta}{2}, 1-\Delta, \frac{\Delta}{2}$ where $\Delta=n^{-\epsilon}$.
- If we instead take v to be a unit vector with coordinates $\pm \frac{1}{\sqrt{n}}$, the current techniques for analyzing the moment matrix M don't quite work.

Example: Parallel Pancakes

- Consider the following random and planted distribtions.
- Random: m random vectors $d_{1}, \ldots, d_{m} \in \mathbb{R}^{n}$ with $N(0,1)$ entries.
- Planted: First choose a unit vector $v \in \mathbb{R}^{n}$ with $\pm \frac{1}{\sqrt{n}}$ entries. Then choose m random vectors $d_{1}, \ldots, d_{m} \in \mathbb{R}^{n}$ with $N(0,1)$ entries and a_{1}, \ldots, a_{m} from some distribution A and replace d_{i} with $d_{i}-\left\langle v, d_{i}\right\rangle v+a_{i} v$.
- In other words, $\left\langle d_{i}, v\right\rangle$ has distribution A and d_{i} is Gaussian in the directions orthogonal to the hidden direction v.
- Statistical query lower bound [DKS17]: If A matches the first k moments of $N(0,1)$ and $d_{T V}(A, N(0,1))<\infty$ then there is a statistical query lower bound for $m \ll n^{\frac{k+1}{2}}$.

Special Case: $A=\{-1,1\}$

- For the special case when $A=\{-1,1\}$, we have an SoS lower bound for $m \ll n^{3 / 2}$ which was used to prove an SoS lower bound for the Sherrington-Kirkpatrick problem [GJJ+20].
- Note: There is a low-degree polynomial lower bound when $m \ll n^{2}$.
- Open problem: Can we strengthen the SoS lower bound from $m \ll n^{3 / 2}$ to $m \ll n^{2}$?
- Open problem: Can we prove SoS lower bounds for more general distributions A ?

Example: Independent Set on Sparse Graphs

- Q: Given a sparse graph G with average degree $\approx d$, does it have an independent set of size $\approx k=\frac{n}{d^{1 / 2+\epsilon}}$?
- Random Distribution: Random $G\left(n, \frac{d}{n}\right)$ graph
- Naïve Planted Distribution: Start with a random $G\left(n, \frac{d}{n}\right)_{k}$ graph and put each vertex in the independent set with probability $\frac{k}{n}$.
- Problem: It is easy to distinguish these distributions! In fact, counting the number of edges is sufficient. This can be fixed by starting with a $G\left(n, \frac{d^{\prime}}{n}\right)$ graph instead of a $G\left(n, \frac{d}{n}\right)$ graph for $d^{\prime}=d\left(\frac{n^{2}}{n^{2}-k^{2}}\right)$, but then counting the number of triangles is still sufficient.
- What can we do?

Example: Independent Set on Sparse Graphs

- Low-degree polynomial lower bound for recovery [SW20]: Even though it is easy to distinguish the random and planted distributions, there is no low-degree polynomial which approximates the indicator function for whether a given vertex i is in the independent set.
- SoS certification lower bound [JPR+21]: We can tweak the pseudoexpectation values given by pseudo-calibration to show an SoS lower bound on the certification problem of proving that a $G\left(n, \frac{d}{n}\right)$ graph does not have an independent set of size $\approx k$.
- Note: To do this, we ignore all shapes α which have a component which is disconnected from $U_{\alpha} \cup V_{\alpha}$, which corresponds to ignoring all of the global distinguishers.

Open Problem: Quiet Planting

- Q: Can we find a planted distribution for independent set on sparse graphs which is hard to distinguish from $G\left(n, \frac{d}{n}\right)$ (or alternatively, from a random d-regular graph on n vertices)?

Part IV: Intuition for the Low-Degree Conjecture

Example: Maximum Eigenvalue of a Random Matrix

- Q: Given a symmetric matrix M, is $\lambda_{\max }(M) \geq 2 \sqrt{n}+2$?
- Random distribution: A random symmetric $n \times n$ matrix M with Gaussian entries
- Planted distribution:

1. Start with a random matrix M.
2. Letting v be the eigenvector of M with the largest eigenvalue, take $M^{\prime}=$ $M+\left(2 \sqrt{n}+2-\lambda_{\max }(M)\right) v v^{T}$.

- Note: For a random symmetric $n \times n$ matrix M with Gaussian entries, w.h.p. $\lambda_{\max }(M)$ is $2 \sqrt{n}+O\left(\frac{1}{n^{1 / 6}}\right)$ and is described by the TracyWidom distribution [TW94].

Example: Maximum Eigenvalue of a Random Matrix

- Q : Given a symmetric matrix M, is $\lambda_{\max }(M) \geq 2 \sqrt{n}+2$?
- By its nature, SoS easily solves this problem.
- For any symmetric matrix $M, \lambda_{\max }(M) I d-M \succcurlyeq 0$ so $\mathrm{x}^{\mathrm{T}}\left(\lambda_{\max }(M) I d-M\right) x$ is a sum of squares which certifies that for any vector $x, x^{T} M x \leq \lambda_{\max }(M)\|x\|^{2}$.
- However, since the planted distribution is only a slight tweak of the random distribution, this is very hard for low-degree polynomials to detect.
- Note: This example is delicate. For example, if we instead ask whether $\lambda_{\max }(M) \geq C \sqrt{n}$ then low-degree polynomials can solve this problem via the trace power method.

Spectral Distinguishers

- Recall: A low-degree polynomial distinguisher is a polynomial f such that

1. $E_{\text {planted }}[f]$ is large.
2. $E_{\text {random }}[f]=0$ and $E_{\text {random }}\left[f^{2}\right] \leq 1$.

- A spectral distinguisher is a matrix Q such that such that

1. Each entry of Q is a low-degree polynomial in the entries of the input.
2. $E_{\text {planted }}\left[\lambda_{\max }^{+}(Q)\right]$ is large.
3. $E_{\text {random }}\left[\lambda_{\text {max }}^{+}(Q)\right] \leq 1$.
where $\lambda_{\max }^{+}(Q)$ is the largest positive eigenvalue of Q and is 0 if $Q \leqslant 0$.

- [HKP+17]: If SoS succeeds at a noisy version of the distinguishing problem (and certain technical conditions are satisfied) then there is a spectral distinguisher.

Spectral Distinguisher Example

- For the maximum eigenvalue problem, we can take

$$
Q=C(M-(2 \sqrt{n}+1) I d)
$$

- In the planted case, $\lambda_{\max }(M) \geq 2 \sqrt{n}+2$ so $\lambda_{\max }^{+}(Q) \geq C$.
- In the random case, w.h.p. $\lambda_{\max }(M)=2 \sqrt{n}+O\left(\frac{1}{n^{1 / 6}}\right)$ so $\lambda_{\max }^{+}(Q)=0$. Thus, $E_{\text {random }}\left[\lambda_{\max }^{+}(Q)\right]$ is very small.

Path for Proving the Low-Degree Conjecture

- Likely strengthening of this result: If SoS solves a noisy version of the distinguishing problem then there is a matrix M such that

1. Each entry of M is a low-degree polynomial in the entries of the input.
2. $E_{\text {planted }}[\|M\|]$ is large.
3. $\quad P_{\text {random }}(\|M\|>1)$ is very small.

- If so, then $\operatorname{tr}\left(\left(M M^{T}\right)^{q}\right)$ is a low-degree distinguisher for $q=O(\log n)$.

Thank You!

