Sum of Squares Lower Bounds Versus Low-Degree Polynomial Lower Bounds Aaron Potechin University of Chicago

Outline

- I. Introduction
- II. Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved
- III. Current Knowledge About Sum of Squares Lower Bounds
- IV. Intuition for the Low-Degree Conjecture (time permitting)

Note: This talk is closely connected to Prasad Raghavendra's 4th bootcamp talk but is from a different perspective (looking at the current gaps between low-degree polynomial lower bounds and sum of squares lower bounds).

Part I: Introduction

Distinguishing Problems

- Distinguishing problems: Given a random distribution D_{random} and a planted distribution $D_{planted}$, can we distinguish between these two distributions?
- Example: Planted clique:
 - $D_{random}: G\left(n, \frac{1}{2}\right)$
 - $D_{planted}$: $G\left(n, \frac{1}{2}\right)$ + clique of size k
- Example: Tensor PCA (principal component analysis):
 - D_{random} : $T_{i_1...i_k} = N(0,1)$ (where k is the order of the tensor).
 - $D_{planted}$: $T_{i_1...i_k} = N(0,1) + \lambda v_{i_1}v_{i_2} \dots v_{i_k}$ where $\lambda > 0$ and v is a unit vector.

Planted Clique Example

- Random instance: $G\left(n, \frac{1}{2}\right)$
- Planted instance: $G\left(n, \frac{1}{2}\right) + K_k$
- Example: Which graph has a planted 5-clique?

Planted Clique Example

- Random instance: $G\left(n, \frac{1}{2}\right)$
- Planted instance: $G\left(n, \frac{1}{2}\right) + K_k$
- Example: Which graph has a planted 5-clique?

Low-Degree Polynomial Framework

- Low-Degree Polynomial Framework: Is there a low-degree polynomial f which distinguishes between D_{random} and $D_{planted}$?
- More precisely, is there a low-degree polynomial f such that
 - 1. $E_{planted}[f]$ is large.

2.
$$E_{random}[f] = 0$$
 and $E_{random}[f^2] \le 1$.
?

• If there is no such polynomial *f* then we have a low-degree polynomial lower bound.

Sum of Squares (SoS) Framework

- The sum of squares hierarchy (SoS) is most naturally applied to certification problems (i.e. certifying that a random input does not have some hidden structure).
- That said, we can analyze distinguishing problems using the pseudocalibration framework [BHK+16]:
 - 1. Use pseudo-calibration to obtain pseudo-expectation values for the random inputs.
 - 2. Construct the corresponding moment matrix *M*.
 - 3. Analyze whether $M \ge 0$.
- If $M \ge 0$ w.h.p. then we have an SoS lower bound.
- More precisely, the pseudo-expectation values \tilde{E} will satisfy all low-degree constraints satisfied by the planted distribution.

Low-Degree Conjecture

- SoS lower bound (where $\tilde{E}[1]$ is well-behaved) \Rightarrow low-degree polynomial lower bound
- Low-degree conjecture: For symmetric distinguishing problems,

Low-degree polynomial lower bound \Rightarrow SoS lower bound for a noisy version of the problem (where we add some additional noise to the planted distribution).

Part II: Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved

Low-Degree Polynomial Lower Bound $\Leftrightarrow \tilde{E}[1]$ is well-behaved

- Observation on p. 71 in Sam Hopkin's thesis: $\tilde{E}[1]$ is the low-degree likelihood ratio for the input being from the planted distribution.
- What we'll show here: If there is a low-degree polynomial f such that
 - 1. $E_{planted}[f] = C$
 - 2. $E_{random}[f] = 0$ and $E_{random}[f^2] \le 1$

then $Var(\tilde{E}[1]) \ge C^2$.

Background: Fourier Analysis and Low-Degree Projections

- Setup: We have
 - A vector space of polynomials
 - An inner product $\langle f, g \rangle = E_{random}[fg]$
 - An orthonormal basis of Fourier characters $\{\chi_i\}$ which are polynomials.
- Fourier decomposition: For any polynomial f, we can write $f = \sum_{\chi_i} \hat{f}_i \chi_i$ where $\hat{f}_i = \langle f, \chi_i \rangle = E_{random}[f\chi_i]$.
- Low-degree projection: The low-degree projection of f is

$$\sum_{low \ degree \ \chi_i} \hat{f}_i \chi_i = \sum_{low \ degree \ \chi_i} E_{random} [f \chi_i] \chi_i$$

Goal: Assigning Pseudo-expectation Values

- Setup: We have
 - Solution variables for the planted structure.
 - Fourier characters χ_i on the random input
- Example: For the planted clique problem, we have
 - Solution variables x_i where we want that $x_i = 1$ if vertex i is in the planted clique and 0 otherwise.
 - Fourier characters $X_E = (-1)^{|E \setminus E(G)|} = \prod_{e \in E} \chi_{\{e\}}$ where $\chi_{\{e\}} = 1$ if $e \in E(G)$ and -1 otherwise.
- Each planted instance assigns values to the solution variables (and thus any polynomial p in the solution variables).
- Q: Given a random instance I, can we assign a pseudo-expectation value $\tilde{E}[p](I)$ to each low-degree polynomial p in the solution variables?

Pseudo-Calibration

• Pseudo-calibration: Take $\tilde{E}[p](I)$ to be the low-degree projection of

 $\frac{\Pr_{planted}^{(I)}}{\Pr_{random}^{(I)}}p(I)$

• Reason: For any low-degree Fourier character χ_i ,

$$E_{random}\left[\tilde{E}[p](I)\chi_{i}\right] = E_{random}\left[\frac{\frac{\Pr}{planted}^{(I)}}{\Pr}_{random}(I)}p(I)\chi_{i}\right] = E_{planted}\left[p(I)\chi_{i}\right]$$

• Pseudo-calibration equation:

$$\tilde{E}[p](I) = \sum_{low-degree \chi_i} E_{planted}[p(I)\chi_i] \chi_i$$

Canonical Example: Planted Clique

- Random distribution: G(n, 1/2)
- Planted distribution: Start with a G(n, 1/2) graph and put each vertex in the planted clique with probability k/n.
- Define $x_V = \prod_{i \in V} x_i$
- Claim: $E_{planted}[x_V \chi_E] = \left(\frac{k}{n}\right)^{|V \cup V(E)|}$ where V(E) is the set of endpoints of edges in E.
- Reason:
 - If every vertex in $V \cup V(E)$ is in the planted clique then $x_V = 1$ and $\chi_E = 1$.
 - If some vertex in V is not in the planted clique then $x_V = 0$.
 - If some vertex in V(E) is not in the planted clique then $E[\chi_E] = 0$ (where the expectation is over the part of G outside of the planted clique)
- Pseudo-expectation values: $\tilde{E}[x_V] = \sum_{E:|V \cup V(E)| \le t} \left(\frac{k}{n}\right)^{|V \cup V(E)|} \chi_E$

Analyzing $\tilde{E}[1]$

- Pseudo-calibration equation: $\tilde{E}[p](I) = \sum_{low \ degree \ \chi_i} E_{planted}[p(I)\chi_i] \chi_i$
- Special case: $\tilde{E}[1] = 1 + \sum_{non-empty \ low \ degree \ \chi_i} E_{planted}[\chi_i] \ \chi_i$
- Assume we have a low-degree polynomial f such that
 - $E_{planted}[f] = C$
 - $E_{random}[f] = 0$ and $Var(f) \le 1$
- Note: All sums below are over low-degree, non-empty χ_i .
- Write $f = \sum_{\chi_i} a_i \chi_i$ and let $b_i = E_{planted}[\chi_i]$. $\tilde{E}[1] 1 = \sum_{\chi_i} b_i \chi_i$ so $Var(f) = \sum_{\chi_i} a_i^2$ and $Var(\tilde{E}[1]) = \sum_{\chi_i} b_i^2$.
- Using Cauchy-Schwarz,

$$C = E_{planted}[f] = \sum_{\chi_i} a_i b_i \leq \sqrt{\sum_{\chi_i} a_i^2} \sqrt{\sum_{\chi_i} b_i^2} = \sqrt{Var(f)Var(\tilde{E}[1])}$$

Thus, $Var(\tilde{E}[1]) \geq C^2$

Low-Degree Polynomial Lower Bounds Versus SoS Lower Bounds

Moment matrix M

Summary

- SoS lower bounds using pseudo-calibration are strictly stronger than low-degree polynomial lower bounds as they involve analyzing the entire moment matrix.
- There are many interesting techniques involved in proving SoS lower bounds.
- That said, low-degree polynomials are an excellent heuristic for determining the computational threshold where a problem is hard and it is much easier to prove low-degree polynomial lower bounds.

Part III: Current Knowledge About Sum of Squares Lower Bounds

Evidence for the Low-Degree Conjecture

- The thresholds for SoS lower bounds and low-degree polynomials lower bounds match for
 - Planted clique [BHK+16]
 - Tensor PCA [HKP+17, PR20]
 - Sparse PCA [HKP+17, DNS20, PR20]
 - Random CSPs [KMOW17]
- However, there are still significant gaps between known SoS lower bounds and known low-degree polynomial lower bounds.

Delicateness of Current SoS Lower Bounds

- Subtle issue: Current SoS lower bound techniques are sensitive to the choice of planted distribution.
- Example: Planted Clique
 - Random distribution: $G\left(n,\frac{1}{2}\right)$
 - Planted distribution used in [BHK+16]: Put each vertex in the planted clique independently with probability $\frac{k}{n}$.
 - Desired planted distribution: Plant a clique of size exactly k.
 - For planted clique, Shuo Pang [P21] recently fixed this issue by proving an SoS lower bound for the desired planted distribution.

Delicateness of Current SoS Lower Bounds

- Subtle issue: Current SoS lower bound techniques are sensitive to the choice of planted distribution.
- Example: Tensor PCA
 - Random distribution: Tensor T with Gaussian entries
 - Planted distribution used in [HKP+17] and [PR20]: $T + \lambda(v \otimes v \otimes \cdots \otimes v)$ where v is a vector where each coordinate is in $\{-\frac{1}{\sqrt{\Delta n}}, 0, \frac{1}{\sqrt{\Delta n}}\}$ with probabilities $\frac{\Delta}{2}$, $1 - \Delta$, $\frac{\Delta}{2}$ where $\Delta = n^{-\epsilon}$.
 - If we instead take v to be a unit vector with coordinates $\pm \frac{1}{\sqrt{n}}$, the current techniques for analyzing the moment matrix M don't quite work.

Example: Parallel Pancakes

- Consider the following random and planted distribuions.
- Random: *m* random vectors $d_1, ..., d_m \in \mathbb{R}^n$ with N(0,1) entries.
- Planted: First choose a unit vector $v \in \mathbb{R}^n$ with $\pm \frac{1}{\sqrt{n}}$ entries. Then choose m random vectors $d_1, \ldots, d_m \in \mathbb{R}^n$ with N(0,1) entries and a_1, \ldots, a_m from some distribution A and replace d_i with $d_i \langle v, d_i \rangle v + a_i v$.
- In other words, $\langle d_i, v \rangle$ has distribution A and d_i is Gaussian in the directions orthogonal to the hidden direction v.
- Statistical query lower bound [DKS17]: If A matches the first k moments of N(0,1) and $d_{TV}(A, N(0,1)) < \infty$ then there is a statistical query lower bound for $m \ll n^{\frac{k+1}{2}}$.

Special Case:
$$A = \{-1,1\}$$

- For the special case when $A = \{-1,1\}$, we have an SoS lower bound for $m \ll n^{3/2}$ which was used to prove an SoS lower bound for the Sherrington-Kirkpatrick problem [GJJ+20].
- Note: There is a low-degree polynomial lower bound when $m \ll n^2$.
- Open problem: Can we strengthen the SoS lower bound from $m \ll n^{3/2}$ to $m \ll n^2$?
- Open problem: Can we prove SoS lower bounds for more general distributions *A*?

Example: Independent Set on Sparse Graphs

- Q: Given a sparse graph G with average degree $\approx d$, does it have an independent set of size $\approx k = \frac{n}{d^{1/2+\epsilon}}$?
- Random Distribution: Random $G\left(n, \frac{d}{n}\right)$ graph
- Naïve Planted Distribution: Start with a random $G\left(n, \frac{d}{n}\right)_k$ graph and put each vertex in the independent set with probability $\frac{d}{n}$.
- Problem: It is easy to distinguish these distributions! In fact, counting the number of edges is sufficient. This can be fixed by starting with a $G\left(n, \frac{d'}{n}\right)$ graph instead of a $G\left(n, \frac{d}{n}\right)$ graph for $d' = d\left(\frac{n^2}{n^2 k^2}\right)$, but then counting the number of triangles is still sufficient.
- What can we do?

Example: Independent Set on Sparse Graphs

- Low-degree polynomial lower bound for recovery [SW20]: Even though it is easy to distinguish the random and planted distributions, there is no low-degree polynomial which approximates the indicator function for whether a given vertex *i* is in the independent set.
- SoS certification lower bound [JPR+21]: We can tweak the pseudoexpectation values given by pseudo-calibration to show an SoS lower bound on the certification problem of proving that a $G\left(n, \frac{d}{n}\right)$ graph does not have an independent set of size $\approx k$.
- Note: To do this, we ignore all shapes α which have a component which is disconnected from $U_{\alpha} \cup V_{\alpha}$, which corresponds to ignoring all of the global distinguishers.

Open Problem: Quiet Planting

• Q: Can we find a planted distribution for independent set on sparse graphs which is hard to distinguish from $G\left(n, \frac{d}{n}\right)$ (or alternatively, from a random d-regular graph on n vertices)?

Part IV: Intuition for the Low-Degree Conjecture

Example: Maximum Eigenvalue of a Random Matrix

- Q: Given a symmetric matrix M, is $\lambda_{max}(M) \ge 2\sqrt{n} + 2$?
- Random distribution: A random symmetric $n \times n$ matrix M with Gaussian entries
- Planted distribution:
 - 1. Start with a random matrix *M*.
 - 2. Letting v be the eigenvector of M with the largest eigenvalue, take $M' = M + (2\sqrt{n} + 2 \lambda_{max}(M))vv^{T}$.
- Note: For a random symmetric $n \times n$ matrix M with Gaussian entries, w.h.p. $\lambda_{max}(M)$ is $2\sqrt{n} + O\left(\frac{1}{n^{1/6}}\right)$ and is described by the Tracy-Widom distribution [TW94].

Example: Maximum Eigenvalue of a Random Matrix

- Q: Given a symmetric matrix M, is $\lambda_{max}(M) \ge 2\sqrt{n} + 2$?
- By its nature, SoS easily solves this problem.
- For any symmetric matrix M, $\lambda_{max}(M)Id M \ge 0$ so $x^{T}(\lambda_{max}(M)Id M)x$ is a sum of squares which certifies that for any vector x, $x^{T}Mx \le \lambda_{max}(M)||x||^{2}$.
- However, since the planted distribution is only a slight tweak of the random distribution, this is very hard for low-degree polynomials to detect.
- Note: This example is delicate. For example, if we instead ask whether $\lambda_{max}(M) \ge C\sqrt{n}$ then low-degree polynomials can solve this problem via the trace power method.

Spectral Distinguishers

- Recall: A low-degree polynomial distinguisher is a polynomial f such that
 - 1. $E_{planted}[f]$ is large.
 - 2. $E_{random}[f] = 0$ and $E_{random}[f^2] \le 1$.
- A spectral distinguisher is a matrix Q such that such that
 - 1. Each entry of Q is a low-degree polynomial in the entries of the input.
 - 2. $E_{planted}[\lambda_{max}^+(Q)]$ is large.
 - 3. $E_{random}[\lambda_{max}^+(Q)] \leq 1.$

where $\lambda_{max}^+(Q)$ is the largest positive eigenvalue of Q and is 0 if $Q \leq 0$.

• [HKP+17]: If SoS succeeds at a noisy version of the distinguishing problem (and certain technical conditions are satisfied) then there is a spectral distinguisher.

Spectral Distinguisher Example

- For the maximum eigenvalue problem, we can take $Q = C(M (2\sqrt{n} + 1)Id)$
- In the planted case, $\lambda_{max}(M) \ge 2\sqrt{n} + 2 \operatorname{so} \lambda_{max}^+(Q) \ge C$.
- In the random case, w.h.p. $\lambda_{max}(M) = 2\sqrt{n} + O\left(\frac{1}{n^{1/6}}\right)$ so $\lambda_{max}^+(Q) = 0$. Thus, $E_{random}[\lambda_{max}^+(Q)]$ is very small.

Path for Proving the Low-Degree Conjecture

- Likely strengthening of this result: If SoS solves a noisy version of the distinguishing problem then there is a matrix *M* such that
 - 1. Each entry of *M* is a low-degree polynomial in the entries of the input.
 - 2. $E_{planted}[||M||]$ is large.
 - 3. $P_{random}(||M|| > 1)$ is very small.
- If so, then $tr((MM^T)^q)$ is a low-degree distinguisher for q = O(logn).

Thank You!