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Note: This talk is closely connected to Prasad Raghavendra’s 4th

bootcamp talk but is from a different perspective (looking at the 
current gaps between low-degree polynomial lower bounds and sum of 
squares lower bounds).



Part I: Introduction



Distinguishing Problems

• Distinguishing problems: Given a random distribution 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 and a 
planted distribution 𝐷𝑝𝑙𝑎𝑛𝑡𝑒𝑑, can we distinguish between these two 
distributions?

• Example: Planted clique:

• 𝐷𝑟𝑎𝑛𝑑𝑜𝑚: 𝐺 𝑛,
1

2

• 𝐷𝑝𝑙𝑎𝑛𝑡𝑒𝑑: 𝐺 𝑛,
1

2
+ clique of size k

• Example: Tensor PCA (principal component analysis):
• 𝐷𝑟𝑎𝑛𝑑𝑜𝑚: 𝑇𝑖1…𝑖𝑘 = 𝑁 0,1 (where 𝑘 is the order of the tensor).

• 𝐷𝑝𝑙𝑎𝑛𝑡𝑒𝑑: 𝑇𝑖1…𝑖𝑘 = 𝑁 0,1 + 𝜆𝑣𝑖1𝑣𝑖2 …𝑣𝑖𝑘 where 𝜆 > 0 and 𝑣 is a unit vector.



• Random instance: 𝐺 𝑛,
1

2

• Planted instance: 𝐺 𝑛,
1

2
+ 𝐾𝑘

• Example: Which graph has a planted 5-clique?
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Low-Degree Polynomial Framework

• Low-Degree Polynomial Framework: Is there a low-degree polynomial 
𝑓 which distinguishes between 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 and 𝐷𝑝𝑙𝑎𝑛𝑡𝑒𝑑?

• More precisely, is there a low-degree polynomial 𝑓 such that
1. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 is large.

2. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1.

?

• If there is no such polynomial 𝑓 then we have a low-degree 
polynomial lower bound.



Sum of Squares (SoS) Framework

• The sum of squares hierarchy (SoS) is most naturally applied to 
certification problems (i.e. certifying that a random input does not 
have some hidden structure).

• That said, we can analyze distinguishing problems using the pseudo-
calibration framework [BHK+16]:

1. Use pseudo-calibration to obtain pseudo-expectation values for the random 
inputs.

2. Construct the corresponding moment matrix 𝑀.
3. Analyze whether 𝑀 ≽ 0.

• If 𝑀 ≽ 0 w.h.p. then we have an SoS lower bound.

• More precisely, the pseudo-expectation valules ෨𝐸 will satisfy all low-
degree constraints satisfied by the planted distribution.



Summary

Start with a random and planted distribution.

Show that there is no low-degree 
polynomial 𝑓 such that 

1. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 is large

2. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 
𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1

Low-degree polynomial lower bound SoS lower bound

Use pseudo-calibration to obtain 
pseudo-expectation values ෨𝐸.

Construct the corresponding 
moment matrix 𝑀.

Show 𝑀 ≽ 0 w.h.p.



Low-Degree Conjecture

• SoS lower bound (where ෨𝐸 1 is well-behaved) ⇒ low-degree 
polynomial lower bound

• Low-degree conjecture: For symmetric distinguishing problems, 

Low-degree polynomial lower bound ⇒ SoS lower bound for a noisy 
version of the problem (where we add some additional noise to the 
planted distribution).



Part II: Low-Degree Polynomial Lower 
Bound ⇔ ෨𝐸[1] is well-behaved



Low-Degree Polynomial Lower Bound ⇔ ෨𝐸[1] is well-behaved

• Observation on p. 71 in Sam Hopkin’s thesis: ෨𝐸[1] is the low-degree 
likelihood ratio for the input being from the planted distribution.

• What we’ll show here: If there is a low-degree polynomial 𝑓 such that
1. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 = 𝐶

2. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1

then 𝑉𝑎𝑟 ෨𝐸 1 ≥ 𝐶2.



Background: Fourier Analysis and Low-Degree Projections

• Setup: We have 
• A vector space of polynomials

• An inner product 𝑓, 𝑔 = 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑔

• An orthonormal basis of Fourier characters {𝜒𝑖} which are polynomials.

• Fourier decomposition: For any polynomial 𝑓, we can write 𝑓 = σ𝜒𝑖
መ𝑓𝑖𝜒𝑖

where መ𝑓𝑖 = 𝑓, 𝜒𝑖 = 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝜒𝑖 .

• Low-degree projection: The low-degree projection of 𝑓 is 

σ𝑙𝑜𝑤 𝑑𝑒𝑔𝑟𝑒𝑒 𝜒𝑖
መ𝑓𝑖𝜒𝑖 = σ𝑙𝑜𝑤 𝑑𝑒𝑔𝑟𝑒𝑒 𝜒𝑖

𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝜒𝑖 𝜒𝑖



Goal: Assigning Pseudo-expectation Values

• Setup: We have
• Solution variables for the planted structure.
• Fourier characters 𝜒𝑖 on the random input

• Example: For the planted clique problem, we have
• Solution variables 𝑥𝑖 where we want that 𝑥𝑖 = 1 if vertex 𝑖 is in the planted clique 

and 0 otherwise.

• Fourier characters 𝑋𝐸 = −1 |𝐸∖𝐸(𝐺)| = ς𝑒∈𝐸 𝜒{𝑒} where 𝜒{𝑒} = 1 if 𝑒 ∈ 𝐸(𝐺) and 
− 1 otherwise.

• Each planted instance assigns values to the solution variables (and thus 
any polynomial 𝑝 in the solution variables).

• Q: Given a random instance 𝐼, can we assign a pseudo-expectation value
෨𝐸 𝑝 (𝐼) to each low-degree polynomial 𝑝 in the solution variables?



Pseudo-Calibration

• Pseudo-calibration: Take ෨𝐸 𝑝 (𝐼) to be the low-degree projection of
Pr

𝑝𝑙𝑎𝑛𝑡𝑒𝑑
𝐼

Pr
𝑟𝑎𝑛𝑑𝑜𝑚

𝐼
𝑝(𝐼)

• Reason: For any low-degree Fourier character 𝜒𝑖,

E𝑟𝑎𝑛𝑑𝑜𝑚 ෨𝐸 𝑝 𝐼 𝜒𝑖 = 𝐸𝑟𝑎𝑛𝑑𝑜𝑚
Pr

𝑝𝑙𝑎𝑛𝑡𝑒𝑑
𝐼

Pr
𝑟𝑎𝑛𝑑𝑜𝑚

𝐼
𝑝 𝐼 𝜒𝑖 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑[𝑝 𝐼 𝜒𝑖]

• Pseudo-calibration equation:

෨𝐸 𝑝 𝐼 = σ𝑙𝑜𝑤−𝑑𝑒𝑔𝑟𝑒𝑒 𝜒𝑖
𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑝 𝐼 𝜒𝑖 𝜒𝑖



Canonical Example: Planted Clique
• Random distribution: 𝐺(𝑛, 1/2)

• Planted distribution: Start with a 𝐺(𝑛, 1/2) graph and put each vertex 
in the planted clique with probability 𝑘/𝑛.

• Define 𝑥𝑉 = ς𝑖∈𝑉 𝑥𝑖

• Claim: 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑥𝑉𝜒𝐸 =
𝑘

𝑛

|𝑉∪𝑉 𝐸 |
where 𝑉(𝐸) is the set of 

endpoints of edges in 𝐸.

• Reason: 
• If every vertex in 𝑉 ∪ 𝑉(𝐸) is in the planted clique then 𝑥𝑉 = 1 and 𝜒𝐸 = 1.
• If some vertex in 𝑉 is not in the planted clique then 𝑥𝑉 = 0.
• If some vertex in 𝑉(𝐸) is not in the planted clique then 𝐸 𝜒𝐸 = 0 (where the 

expectation is over the part of 𝐺 outside of the planted clique)

• Pseudo-expectation values: ෨𝐸 𝑥𝑉 = σ𝐸: 𝑉∪𝑉 𝐸 ≤𝑡
𝑘

𝑛

|𝑉∪𝑉 𝐸 |
𝜒𝐸



Analyzing ෨𝐸 1

• Pseudo-calibration equation: ෨𝐸 𝑝 (𝐼) = σ𝑙𝑜𝑤 𝑑𝑒𝑔𝑟𝑒𝑒 𝜒𝑖
𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑝(𝐼)𝜒𝑖 𝜒𝑖

• Special case: ෨𝐸 1 = 1 + σ𝑛𝑜𝑛−𝑒𝑚𝑝𝑡𝑦 𝑙𝑜𝑤 𝑑𝑒𝑔𝑟𝑒𝑒 𝜒𝑖
𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝑖 𝜒𝑖

• Assume we have a low-degree polynomial 𝑓 such that 
• 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 = 𝐶
• 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝑉𝑎𝑟 𝑓 ≤ 1

• Note: All sums below are over low-degree, non-empty 𝜒𝑖.

• Write 𝑓 = σ𝜒𝑖 𝑎𝑖𝜒𝑖 and let 𝑏𝑖 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜒𝑖 . ෨𝐸 1 − 1 = σ𝜒𝑖 𝑏𝑖 𝜒𝑖 so 
V𝑎𝑟 𝑓 = σ𝜒𝑖 𝑎𝑖

2 and Var ෨𝐸 1 = σ𝜒𝑖 𝑏𝑖
2.

• Using Cauchy-Schwarz,

𝐶 = 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 = σ𝜒𝑖 𝑎𝑖𝑏𝑖 ≤ σ𝜒𝑖
𝑎𝑖
2 σ𝜒𝑖

𝑏𝑖
2 = 𝑉𝑎𝑟 𝑓 𝑉𝑎𝑟( ෨𝐸[1])

• Thus, 𝑉𝑎𝑟 ෨𝐸 1 ≥ 𝐶2



Low-Degree Polynomial Lower Bounds Versus SoS Lower Bounds

Low-degree polynomial 
lower bound ≽ 0

SoS lower bound



Summary

• SoS lower bounds using pseudo-calibration are strictly stronger than 
low-degree polynomial lower bounds as they involve analyzing the 
entire moment matrix.

• There are many interesting techniques involved in proving SoS lower 
bounds.

• That said, low-degree polynomials are an excellent heuristic for 
determining the computational threshold where a problem is hard and 
it is much easier to prove low-degree polynomial lower bounds.



Part III: Current Knowledge About Sum 
of Squares Lower Bounds



Evidence for the Low-Degree Conjecture

• The thresholds for SoS lower bounds and low-degree polynomials 
lower bounds match for
• Planted clique [BHK+16]

• Tensor PCA [HKP+17, PR20]

• Sparse PCA [HKP+17, DNS20, PR20]

• Random CSPs [KMOW17]

• However, there are still significant gaps between known SoS lower 
bounds and known low-degree polynomial lower bounds.



Delicateness of Current SoS Lower Bounds

• Subtle issue: Current SoS lower bound techniques are sensitive to the 
choice of planted distribution.

• Example: Planted Clique

• Random distribution: 𝐺 𝑛,
1

2

• Planted distribution used in [BHK+16]: Put each vertex in the planted clique 

independently with probability 
𝑘

𝑛
.

• Desired planted distribution: Plant a clique of size exactly 𝑘.

• For planted clique, Shuo Pang [P21] recently fixed this issue by proving an SoS
lower bound for the desired planted distribution.



Delicateness of Current SoS Lower Bounds

• Subtle issue: Current SoS lower bound techniques are sensitive to the 
choice of planted distribution.

• Example: Tensor PCA
• Random distribution: Tensor 𝑇 with Gaussian entries

• Planted distribution used in [HKP+17] and [PR20]: 𝑇 + 𝜆(𝑣 ⊗ 𝑣⊗⋯⊗ 𝑣)

where 𝑣 is a vector where each coordinate is in {−
1

Δ𝑛
, 0,

1

Δ𝑛
} with 

probabilities 
Δ

2
, 1 − Δ, 

Δ

2
where Δ = 𝑛−𝜖.

• If we instead take 𝑣 to be a unit vector with coordinates ±
1

𝑛
, the current 

techniques for analyzing the moment matrix 𝑀 don’t quite work.



Example: Parallel Pancakes

• Consider the following random and planted distribtions.

• Random: 𝑚 random vectors 𝑑1, … , 𝑑𝑚 ∈ ℝ𝑛 with 𝑁(0,1) entries.

• Planted: First choose a unit vector 𝑣 ∈ ℝ𝑛 with ±
1

𝑛
entries. Then choose 

𝑚 random vectors 𝑑1, … , 𝑑𝑚 ∈ ℝ𝑛 with 𝑁(0,1) entries and 𝑎1, … , 𝑎𝑚
from some distribution 𝐴 and replace 𝑑𝑖 with 𝑑𝑖 − 𝑣, 𝑑𝑖 𝑣 + 𝑎𝑖𝑣.

• In other words, 𝑑𝑖 , 𝑣 has distribution 𝐴 and 𝑑𝑖 is Gaussian in the 
directions orthogonal to the hidden direction 𝑣.

• Statistical query lower bound [DKS17]: If 𝐴 matches the first 𝑘 moments of 
𝑁 0,1 and 𝑑𝑇𝑉 𝐴,𝑁 0,1 < ∞ then there is a statistical query lower 

bound for 𝑚 ≪ 𝑛
𝑘+1

2 .



Special Case: 𝐴 = {−1,1}

• For the special case when 𝐴 = {−1,1}, we have an SoS lower bound for 
𝑚 ≪ 𝑛3/2 which was used to prove an SoS lower bound for the 
Sherrington-Kirkpatrick problem [GJJ+20].

• Note: There is a low-degree polynomial lower bound when 𝑚 ≪ 𝑛2.

• Open problem: Can we strengthen the SoS lower bound from 𝑚 ≪ 𝑛3/2

to 𝑚 ≪ 𝑛2?

• Open problem: Can we prove SoS lower bounds for more general 
distributions 𝐴?



Example: Independent Set on Sparse Graphs

• Q: Given a sparse graph 𝐺 with average degree ≈ 𝑑, does it have an 
independent set of size ≈ 𝑘 =

𝑛

𝑑1/2+𝜖
?

• Random Distribution: Random 𝐺 𝑛,
𝑑

𝑛
graph

• Naïve Planted Distribution: Start with a random 𝐺 𝑛,
𝑑

𝑛
graph and 

put each vertex in the independent set with probability 
𝑘

𝑛
.

• Problem: It is easy to distinguish these distributions! In fact, counting 
the number of edges is sufficient. This can be fixed by starting with a 

𝐺 𝑛,
𝑑′

𝑛
graph instead of a 𝐺 𝑛,

𝑑

𝑛
graph for 𝑑′ = 𝑑

𝑛2

𝑛2−𝑘2
, but 

then counting the number of triangles is still sufficient.

• What can we do?



Example: Independent Set on Sparse Graphs

• Low-degree polynomial lower bound for recovery [SW20]: Even 
though it is easy to distinguish the random and planted distributions, 
there is no low-degree polynomial which approximates the indicator 
function for whether a given vertex 𝑖 is in the independent set.

• SoS certification lower bound [JPR+21]: We can tweak the pseudo-
expectation values given by pseudo-calibration to show an SoS lower 

bound on the certification problem of proving that a 𝐺 𝑛,
𝑑

𝑛
graph 

does not have an independent set of size ≈ 𝑘.

• Note: To do this, we ignore all shapes 𝛼 which have a component 
which is disconnected from 𝑈𝛼 ∪ 𝑉𝛼, which corresponds to ignoring 
all of the global distinguishers.



Open Problem: Quiet Planting

• Q: Can we find a planted distribution for independent set on sparse 

graphs which is hard to distinguish from 𝐺 𝑛,
𝑑

𝑛
(or alternatively, 

from a random 𝑑-regular graph on 𝑛 vertices)?



Part IV: Intuition for the Low-Degree Conjecture



Example: Maximum Eigenvalue of a Random Matrix

• Q: Given a symmetric matrix 𝑀, is 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2?

• Random distribution: A random symmetric 𝑛 × 𝑛 matrix 𝑀 with 
Gaussian entries

• Planted distribution:
1. Start with a random matrix 𝑀.

2. Letting 𝑣 be the eigenvector of 𝑀 with the largest eigenvalue, take 𝑀′ =

𝑀 + 2 𝑛 + 2 − 𝜆𝑚𝑎𝑥 𝑀 𝑣𝑣𝑇.

• Note: For a random symmetric 𝑛 × 𝑛 matrix 𝑀 with Gaussian entries, 

w.h.p. 𝜆𝑚𝑎𝑥(𝑀) is 2 𝑛 + 𝑂
1

𝑛1/6
and is described by the Tracy-

Widom distribution [TW94].



Example: Maximum Eigenvalue of a Random Matrix

• Q: Given a symmetric matrix 𝑀, is 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2?

• By its nature, SoS easily solves this problem.

• For any symmetric matrix 𝑀, 𝜆𝑚𝑎𝑥 𝑀 𝐼𝑑 −𝑀 ≽ 0 so 
xT 𝜆𝑚𝑎𝑥 𝑀 𝐼𝑑 −𝑀 𝑥 is a sum of squares which certifies that for 
any vector 𝑥, 𝑥𝑇𝑀𝑥 ≤ 𝜆𝑚𝑎𝑥 𝑀 𝑥 2.

• However, since the planted distribution is only a slight tweak of the 
random distribution, this is very hard for low-degree polynomials to 
detect. 

• Note: This example is delicate. For example, if we instead ask whether 
𝜆𝑚𝑎𝑥 𝑀 ≥ 𝐶 𝑛 then low-degree polynomials can solve this problem 
via the trace power method.



Spectral Distinguishers

• Recall: A low-degree polynomial distinguisher is a polynomial f such that
1. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑓 is large.

2. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓 = 0 and 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝑓2 ≤ 1.

• A spectral distinguisher is a matrix 𝑄 such that such that
1. Each entry of 𝑄 is a low-degree polynomial in the entries of the input.

2. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝜆𝑚𝑎𝑥
+ (𝑄) is large.

3. 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝜆𝑚𝑎𝑥
+ 𝑄 ≤ 1.

where 𝜆𝑚𝑎𝑥
+ (𝑄) is the largest positive eigenvalue of 𝑄 and is 0 if 𝑄 ≼ 0.

• [HKP+17]: If SoS succeeds at a noisy version of the distinguishing 
problem (and certain technical conditions are satisfied) then there is a 
spectral distinguisher.



Spectral Distinguisher Example

• For the maximum eigenvalue problem, we can take 
𝑄 = 𝐶 𝑀 − 2 𝑛 + 1 𝐼𝑑

• In the planted case, 𝜆𝑚𝑎𝑥 𝑀 ≥ 2 𝑛 + 2 so 𝜆𝑚𝑎𝑥
+ 𝑄 ≥ 𝐶.

• In the random case, w.h.p. 𝜆𝑚𝑎𝑥 𝑀 = 2 𝑛 + 𝑂
1

𝑛1/6
so 𝜆𝑚𝑎𝑥

+ 𝑄 = 0. 

Thus, 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 𝜆𝑚𝑎𝑥
+ 𝑄 is very small. 



Path for Proving the Low-Degree Conjecture

• Likely strengthening of this result: If SoS solves a noisy version of the 
distinguishing problem then there is a matrix 𝑀 such that 

1. Each entry of 𝑀 is a low-degree polynomial in the entries of the input.

2. 𝐸𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑀 is large.

3. 𝑃𝑟𝑎𝑛𝑑𝑜𝑚 𝑀 > 1 is very small.

• If so, then 𝑡𝑟 𝑀𝑀𝑇 𝑞
is a low-degree distinguisher for 𝑞 = 𝑂(𝑙𝑜𝑔𝑛).



Thank You!


