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. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Max flow value
F*=10

v

no overflow on arcs: no leaks at all v#s,t
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value

4




Breaking the O(n3/2) barrier

Undirected graphs and approx. answers (O(n3/2) barrier still holds here)

[M “10]: Crude approx. of max flow value in close to linear time

[CKMST “11]: (1-€)-approx. to max flow in O(n*/3€3) time
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[LSR’13, S 13, KLOS ‘14]: (1-€)-approx. in close to linear time

But: What about the directed and exact setting?

(v “13): Exact O(n%7)=0(n*-*3)-time alg.

Today (n = # of vertices, O() hides polylog factors)



From electrical flows to
exact directed max flow

From now on: All capacities are 1, m=0(n)
and the value F* of max flow is known



Why the progress on approx. undirected max flow
does not apply to the exact directed case?

Tempting answer: Directed graphs are just different
(for one, electrical flow is an undirected notion)

But: exact directed max flow reduces

toexact  \ye need a more powerful

So, it is all about getting intermediary n

Key obstacle: Gradient descent methods (like MWU) are
inherently unable to deliver good enough accuracy



(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints
by adding a “barrier” to the objective

s.t. Ax=b
x20 \ «“ ” .
easy” constraints
\ (use projection)

“hard” constraints

LP: minc'x



(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints

cmin Ty -
LP(1): min ¢'x - p Z; log by adding a “barrier” to the objective

s.t. Ax=Db
x=>0"

Observe: The barrier term
enforces x 2 0 implicitly

Furthermore: for large pu, LP(p) is easy to solve and

LP(p) = original LP, as p=>0*

Path-following routine:
—> Start with (near-)optimal solution to LP(p) for large pu>0

- Gradually reduce p while maintaining the (near-)optimal solution
to current LP(p)



(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar 84, Renegar ’88,...]
A powerful framework for solving general LPs (and more)

Idea: Take care of “hard” constraints

cmin Ty -
LP(1): min ¢'x - p Z; log by adding a “barrier” to the objective

s.t. Ax=b o~ e
serve. e pbarrier term
M P,\.CA...A,\,. s = /A Bema e 18 =80 s 5

Based on second-order approx.
Path-following routine: f(x+y) = f(x)+y" V(x)+y H, (x)y
- Maintain (near-)optimal solutio + projection on ker(A)

- Repeat: V4
Set w’'=(1-6)u and use Newton’s method to compute from x

(near-)optimal solution to LP(W’)

Key point: Choosing step size 6 sufficiently small ensures x is close to
optimum for LP(p’) - Newton’s method convergence very rapid



>

central path = optimal solutions to LP(u) for all u>0

(0,0)

Pr=1{x| Ax = b}
X. — analytic center

Path-following routine:
—> Start with (near-)optimal solution to LP(p) for large pu>0

- Gradually reduce p (via Newton’s method) while maintaining
the (near-)optimal solution to current LP(p)



Can we use IPM to get a faster max flow alg.?
Conventional wisdom: This will be too slow!

-> Each Newton's step = solving a linear system O(n*)=0(n?2-373) time
(prohibitive!)

But: When solving flow problems — only O(m) time [Ds ‘08]

Fundamental question: What is the number of iterations?
[Renegar ’88]: O(m1/2 Iog 8'1)

Unfortunately: This gives only an O(m3/2)-time algorithm

Improve the O(m'/2) bound? T
Although believed to be very suboptimal, END ?
its improvement is a major challenge °



The Max Flow algorithm

(Self-contained, but can be seen as a variation on IPM)



From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost o-flow problem




From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost o-flow problem

arbitrary demands




From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost o-flow problem

arbitrary demahds

no capacity constraints
but flow has to be non-negative J

Result: Feasibility - Optimization
+ special structure

J




Solving Min-Cost Max Flow Instance

+1 ye -1
+1 -2 Our approach is primal-dual
+2 \\\\\ //’// -1

- Primal solution: o-flow f
(feasibility: all f, are 20)

- Dual solution: embedding y into real line
(feasibility: all slacks s, are 20)
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“No arc is too stretched” K@L




Solving Min-Cost Max Flow Instance

+1 ye -1
+1 -2 Our approach is primal-dual
+2 \\\\\ //’// -1

- Primal solution: o-flow f
(feasibility: all f, are 20)

- Dual solution: embedding y into real line
(feasibility: all slacks s, are 20)

ﬂ ' le

“No arc is too stretched” :




Solving Min-Cost Max Flow Instance

Our Goal:
Get (f,y) with small duality gap 2_f_s,

Our Approach: Iteratively improve maintained solution
while enforcing an additional constraint

Centrality:
f.s. = H, foralle
(with p being progressively smaller)

“Make all arcs have similar contribution to the duality gap”

(Maintaining centrality = following the central path)



Taking an Improvement Step

So far, our approach is fairly standard

Crucial Question:
How to improve the quality of
maintained solution?

Key Ingredient:
Use electrical flows



Taking an Improvement Step

Let (f,y) be a (centered) primal-dual solution

Key step: Compute electrical o-flow f* with r_:=s_/f,

Primal improvement: Set f':= (1-6)f + 6f*

Dual improvement: Use voltages ¢ inducing f* (via Ohm’s Law)
Sety’:=y+ 6(1-6)* ¢

Can show: When terms quadratic in 6 are ignored

fo'se =(1-8) u=
for each e

(i.e., duality gap decreases by (1-8) and centrality is preserved)

How big & can we take to have this approx. hold?



Lowerbounding 6

Can show:

61 is bounded by O(|p],) |Pff|4 meafs+ure3 f
where p_:= |f.*]/f. how different f*and fare

How to bound |p],?

Idea: Bound |p|,2|p]|,instead



Lowerbounding 6

Can show:

61 is bounded by O(|p],) |Pff|4 meafs+ure; f
where p,:= |f.*| /£, how different f*and fare

How to bound |p|,? (lpl,2lpel,)

Centrality: Tying |p|, to E(f*)
v

E(f) = 1 (lpl,)



Lowerbounding 6

Can show:

61 is bounded by O(|p],) |P|4 meas+ures
where p_:= |f.*]/f. how different f*and fare

How to bound |p],? (Iel,2lpl,)

Centrality: Tying |p|, to E(f*)
v

E(f*) = Z.r. (f1)? = Z n(f. /1) = n 2. (p.)* = 1 (Ip],)?

So, we can focus on bounding E(f*)



Lowerbounding 6

Can show:

61 is bounded by O(|p],) |P|4 meafs+ures f
where p_:= |f.*]/f. how different f*and fare

How to bound |p],? (Iel,2lpl,)

How to bound E(f*)?  (E(f)=u(lpl,)?)

Idea: Use energy-bounding argument
we used in the undirected case

Proof: Note that E(f) = £, r_(f.)2= £, p (./f.)?

Claim: E(f*) £ um



Lowerbounding 6

Can show:
61 is bounded by O(|p],) |P|4 meas+ures
where p_:= |f.*]/f. how different f*and fare
How to bound |p],? (Iel,2lpll)

How to bound E(f*)?  (E(f)=u(lpl,)?)

Idea: Use energy-bounding argument
we used in the undirected case

Proof: Notethat E(f)=2_r (f)2=32_u(f./f)2 =u ZA = um
Result: Bounding 6 <|pl,< |p], < (E(f)/1)Y/2 < m1/2

E(T") S E(T) = {m

This recovers the canonical O(m'/2)-iterations bound
for general IPMs and gives the O(m3/2log U) algorithm

Claim: E(f*) £ um



Going beyond Q(m?/2) barrier

Our reasoning before: &< |p|,< |p|,< m?/2

! /

Essentially tight
in our framework



Going beyond Q(m?/2) barrier

Our reasoning before: &< |p|,< |p|,< m?/2

When does|p|, = |pl,?
This part we need

to improve



Going beyond Q(m?/2) barrier

Our reasoning before: &< |p|,< |p|,< m?/2

Answer: If most of the norm of p is

= ? :
When does|p], = |p],: focused on only a few coordinates

Translated to our setting: |p|,=|p|, if most of
the energy of f*is contributed by only a few arcs

Can this happen? Unfortunately, yes




Going beyond Q(m?/2) barrier

Our reasoning before: &< |p|,< |p|,< m?/2

Answer: If most of the norm of p is

= ? :
When does|p|, = |p],: focused on only a few coordinates

Translated to our setting: |p|,=|p|, if most of
the energy of f*is contributed by only a few arcs

Can this happen? Unfortunately, yes

This is the only part where in principle, tight)

unit-capacity assumption is needed

N

Method: Very careful perturbation of the solution
+ certain preconditioning

Jpen too often



Going beyond Q(m?/2) barrier

Problematic case: When most of
the energy of f*is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!
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Going beyond Q(m?/2) barrier

Problematic case: When most of
the energy of f*is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Our approach then: Keep removing high-energy edges

To show this works: Used the energy of the electrical flow
as a potential function

* Energy can only increase and obeys global upper bound

* Each time removal happens - energy increases by a lot

Problems: In our framework, arc removal is
too drastic and the energy of f* is highly non-monotone



Going beyond Q(m?/2) barrier
How to deal with these problems?

-> Enforce a stronger condition than just that |p|, is small
(“smoothness”: restrict energy contributions of arc subsets)

Key fact: f* smooth - energy does not change too much
(so, energy becomes a good potential function again)

- To enforce this, keep stretching the offending arcs
(stretch = increase length by s, - this doubles the resistance r=s_/f,)

As long as s_ is small for stretched arcs, the resulting
perturbation of lengths can be corrected at the end

Remaining question: How to handle arcs with large s_?



Going beyond Q(m?/2) barrier

Observation: As f_s_= , large s, - small flow f,
and thus r=s_[f, = u/f 2is pretty large

-> For such arcs: contributing a lot of energy implies
high effective resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

+1 N -1
+1 -2
+2 \\\\\ //// -1



Going beyond Q(m?/2) barrier

Observation: As f_s_= , large s, - small flow f,
and thus r=s_[f, = u/f 2is pretty large

-» For such arcs: contributing a lot of energy implies
high effective resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

< Auxiliary star graph
P AR

+1 -1
+1 -2
+2 -1



Going beyond Q(m?/2) barrier

Observation: As f_s_= , large s, - small flow f,
and thus r=s_[f, = u/f 2is pretty large

-» For such arcs: contributing a lot of energy implies
high effective resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Auxiliary star graph

27 Trivial circulations on each pair of arcs

-1 Can show: After doing that, no arc with large s,

Putting these two techniques together + some work:

F ~ . .
O(m?3/7)-iterations convergence follows



Conclusions
and the Bigger Picture



Maximum Flows and Electrical Flows
N L=

- Interior-point - o I

method

Elect. flows + IPMs - A powerful new approach to max flow

Can this lead to a nearly-linear time
algorithm for the exact directed max flow?

We seem to have the “critical mass” of ideas

Elect. flows = next generation of “spectral” tooIs?J

o » Better “spectral” graph partitioning,
e Algorithmic grasp of random walks,




Grand challenge: Can we make algorithmic
graph theory run in nearly-linear time?

New “recipe”: Fast alg. for combinatorial problems
via linear-algebraic tools + continuous opt. methods

How about applying this framework to other

graph problems that “got stuck” at O(n3/2)?
(min-cost flow, general matchings, negative-lengths shortest path...)

Second-order/IPM-like methods:
the next frontier for fast (graph) algorithms?

A

o) = >




Max Flow and Interior-Point Methods

Contributing back: Max flow and electrical flows
as a lens for analyzing general IPMs?

Our techniques can be lifted to the general LP setting

We can solve any LP within O(m3/7L) iterations
But: this involves perturbing of this LP

Some (seemingly) new elements of our approach:

* Better grasp of £, vs. {, interplay wrt the step size 6
 Perturbing the central path when needed
 Usage of non-local convergence arguments

Can this lead to breaking the Q(m/2) barrier for all LPs?

[Lee Sidford ‘14]): O(rank(A)/2) iteration bound



Bridging the Combinatorial and the Continuous

paths, trees, partitions, matrices, eigenvalues,
routings, matchings, <mmmmmd |inear systems, gradients,
data structures... convex sets...

Powerful approach: Exploiting the interplay of the two worlds

Some other early “success stories” of this approach:

e Spectral graph theory aka the “eigenvalue connection”
* Fast SDD/Laplacian system solvers

* Graph sparsification, random spanning tree generation
* Graph partitioning

...and this is just the beginning!



Thank you

Questions?



