Electrical Flows, Optimization, and New Approaches to the Maximum Flow Problem

Aleksander Mądry

Maximum flow problem

value = net flow out of s

Input: Directed graph G, integer capacities u_e, source s and sink t

Max flow value F*=10

no overflow on arcs: $0 \le f(e) \le u(e)$

no leaks at all v≠s,t

Task: Find a feasible s-t flow of max value

Breaking the O(n^{3/2}) barrier

Undirected graphs and approx. answers (O(n^{3/2}) barrier still holds here)

[M '10]: Crude approx. of max flow value in close to linear time

[CKMST '11]: (1- ϵ)-approx. to max flow in $\tilde{O}(n^{4/3}\epsilon^{-3})$ time

[LSR '13, S '13, KLOS '14]: (1- ϵ)-approx. in close to linear time

But: What about the **directed** and **exact** setting?

[M '13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$ -time alg.

Today

 $(n = # of vertices, \tilde{O}() hides polylog factors)$

From electrical flows to exact directed max flow

From now on: All capacities are 1, m=O(n) and the value F* of max flow is known

Why the progress on **approx. undirected** max flow does not apply to the **exact directed** case?

Tempting answer: Directed graphs are just different (for one, electrical flow is an undirected notion)

Key obstacle: Gradient descent methods (like MWU) are inherently unable to deliver good enough accuracy

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

LP: $min c^Tx$

s.t. Ax = b

x ≥ 0

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

"easy" constraints
(use projection)

"hard" constraints

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

LP(
$$\mu$$
): min c^Tx - $\mu \Sigma_i \log x_i$
s.t. Ax = b

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

Observe: The barrier term enforces $x \ge 0$ implicitly

Furthermore: for large μ , LP(μ) is easy to solve and

$$LP(\mu) \rightarrow \text{original } LP, \text{ as } \mu \rightarrow 0^+$$

Path-following routine:

- \rightarrow Start with (near-)optimal solution to LP(μ) for large μ >0
- \rightarrow Gradually reduce μ while maintaining the (near-)optimal solution to current LP(μ)

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

LP(
$$\mu$$
): min c^Tx - $\mu \Sigma_i \log x_i$
s.t. Ax = b

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

Observe: The barrier term

enforces y > 1 implicitly

Based on **second-order approx.**

$$f(x+y) \approx f(x) + y^{\mathrm{T}} \nabla f(x) + y^{\mathrm{T}} H_{\mathrm{f}}(x) y$$

+ projection on ker(A)

Path-following routine:

- → Maintain (near-)optimal solutio
- → Repeat:

Set $\mu'=(1-\delta)\mu$ and use **Newton's method** to compute from **x** (near-)optimal solution to $LP(\mu')$

Key point: Choosing step size δ sufficiently small ensures \mathbf{x} is close to optimum for LP(μ ') \rightarrow Newton's method convergence very rapid

Path-following routine:

- \rightarrow Start with (near-)optimal solution to LP(μ) for large μ >0
- \rightarrow Gradually reduce μ (via **Newton's method**) while maintaining the (near-)optimal solution to current **LP**(μ)

Can we use IPM to get a faster max flow alg.?

Conventional wisdom: This will be too slow!

⇒ Each Newton's step = solving a linear system $O(n^{\omega})=O(n^{2.373})$ time (prohibitive!)

But: When solving flow problems – only Õ(m) time [DS '08]

Fundamental question: What is the number of iterations?

[Renegar '88]: $O(m^{1/2} \log \epsilon^{-1})$

Unfortunately: This gives only an $\tilde{O}(m^{3/2})$ -time algorithm

Improve the O(m^{1/2}) bound?

Although believed to be **very** suboptimal, its improvement is a major challenge

The Max Flow algorithm

(Self-contained, but can be seen as a variation on IPM)

From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

Result: Feasibility → Optimization + special structure

Solving Min-Cost Max Flow Instance

Our approach is primal-dual

→ Primal solution: σ-flow f (feasibility: all f_e are ≥0)

→ Dual solution: embedding y into real line (feasibility: all slacks s_e are ≥0)

"No arc is too stretched"

Solving Min-Cost Max Flow Instance

Our approach is primal-dual

→ Primal solution: σ-flow f (feasibility: all f_e are ≥0)

→ Dual solution: embedding y into real line (feasibility: all slacks s_e are ≥0)

"No arc is too stretched"

Solving Min-Cost Max Flow Instance

Our Goal:

Get (f,y) with small duality gap $\Sigma_e f_e s_e$

Our Approach: Iteratively improve maintained solution while enforcing an additional constraint

Centrality:

 $f_e s_e \approx \mu$, for all e (with μ being progressively smaller)

"Make all arcs have similar contribution to the duality gap"

(Maintaining centrality = following the central path)

Taking an Improvement Step

So far, our approach is fairly standard

Crucial Question:

How to improve the quality of maintained solution?

Key Ingredient:

Use electrical flows

Taking an Improvement Step

Let (f,y) be a (centered) primal-dual solution

Key step: Compute electrical σ -flow f⁺ with r_e := s_e/f_e

Primal improvement: Set $f' := (1-\delta)f + \delta f^+$

Dual improvement: Use voltages φ inducing f^+ (via Ohm's Law) Set $y':= y + δ(1-δ)^{-1} φ$

Can show: When terms quadratic in δ are ignored

$$f_e' s_e' \approx (1-\delta) \mu = \mu'$$

for each **e**

(i.e., duality gap decreases by $(1-\delta)$ and centrality is preserved)

How big δ can we take to have this approx. hold?

Can show:

 δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$ |p|₄ measures how different f⁺ and f are

How to bound $|\rho|_4$?

Idea: Bound |ρ|₂≥|ρ|₄ instead

Can show:

 $δ^{-1}$ is bounded by $O(|ρ|_4)$ where $ρ_e := |f_e^+|/f_e$ |p|₄ measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

Centrality: Tying
$$|\rho|_2$$
 to $E(f^+)$
 $f_e s_e \approx \mu \rightarrow r_e = s_e / f_e \approx \mu / (f_e)^2$
 \downarrow
 $E(f^+) \approx \mu (|\rho|_2)^2$

Can show:

 $δ^{-1}$ is bounded by $O(|ρ|_4)$ where $ρ_e := |f_e^+|/f_e$ |\rho|_4 measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

Centrality: Tying
$$|\rho|_2$$
 to $E(f^+)$

$$f_e s_e \approx \mu \rightarrow r_e = s_e / f_e \approx \mu / (f_e)^2$$

$$\downarrow$$

$$E(f^{+}) = \Sigma_{e} r_{e} (f_{e}^{+})^{2} \approx \Sigma_{e} \mu (f_{e}^{+}/f_{e}^{+})^{2} = \mu \Sigma_{e} (\rho_{e})^{2} = \mu (|\rho|_{2})^{2}$$

So, we can focus on bounding E(f+)

Can show:

 $δ^{-1}$ is bounded by $O(|ρ|_4)$ where $ρ_e := |f_e^+|/f_e$ |p|₄ measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

How to bound $E(f^+)$? $(E(f^+) \approx \mu (|\rho|_2)^2)$

Idea: Use energy-bounding argument we used in the undirected case

Claim: E(f⁺) ≤ µm

Proof: Note that $E(f) = \Sigma_e r_e (f_e)^2 \approx \Sigma_e \mu (f_e/f_e)^2$

Can show:

 $δ^{-1}$ is bounded by $O(|ρ|_4)$ where $ρ_e := |f_e^+|/f_e$ |p|₄ measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

How to bound $E(f^+)$? $(E(f^+) \approx \mu (|\rho|_2)^2)$

Idea: Use energy-bounding argument we used in the undirected case

Claim: E(f⁺) ≤ µm

Proof: Note that $E(f) = \sum_{n=1}^{\infty} r_n (f_n)^2 \approx \sum_{n=1}^{\infty} u_n (f_n/f_n)^2 = u_n \sum_{n=1}^{\infty} 1 = u_n \sum_{n=1}^{\infty} \frac{1}{u_n} = u_n \sum_{n=1}^$

Result: Bounding $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le (E(f^+)/\mu)^{1/2} \le m^{1/2}$

E(t⁺) ≤ **E(t)** ≈ μ**m**

This recovers the canonical $O(m^{1/2})$ -iterations bound for **general IPMs** and gives the $\tilde{O}(m^{3/2} \log U)$ algorithm

Our reasoning before: $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le m^{1/2}$

Essentially tight in our framework

Our reasoning before: $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

This part we need to improve

Our reasoning before: $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

Answer: If most of the norm of ρ is focused on only a few coordinates

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f^+ is contributed by only a few arcs

Can this happen?

Unfortunately, yes

Our reasoning before: $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

Answer: If most of the norm of ρ is focused on only a few coordinates

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f^+ is contributed by only a few arcs

Can this happen?

Unfortunately, yes

This is the **only** part where **unit-capacity** assumption is needed

in principle, tight)

pen too often

Method: Very careful perturbation of the solution + certain preconditioning

Problematic case: When most of the energy of **f**⁺ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Problematic case: When most of the energy of **f**⁺ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Our approach then: Keep removing high-energy edges

To show this works: Used the energy of the electrical flow

as a potential function

- Energy can only increase and obeys global upper bound
- Each time removal happens → energy increases by a lot

Problems: In our framework, arc removal is **too drastic** and the energy of **f**⁺ is **highly non-monotone**

How to deal with these problems?

 \rightarrow Enforce a **stronger** condition than just that $|\rho|_4$ is small ("smoothness": restrict energy contributions of arc subsets)

Key fact: f⁺ smooth → energy does not change too much (so, energy becomes a good potential function again)

→ To enforce this, keep **stretching** the offending arcs (**stretch** = increase length by \mathbf{s}_e - this doubles the resistance $\mathbf{r}_e = \mathbf{s}_e / \mathbf{f}_e$)

As long as s_e is small for stretched arcs, the resulting perturbation of lengths can be corrected at the end

Remaining question: How to handle arcs with large s_e?

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Auxiliary star graph

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

F

Putting these two techniques together + some work: $\tilde{O}(m^{3/7})$ -iterations convergence follows

Conclusions and the Bigger Picture

Maximum Flows and Electrical Flows

Elect. flows + IPMs → A powerful new approach to max flow

Can this lead to a **nearly-linear time** algorithm for the **exact directed** max flow?

We seem to have the "critical mass" of ideas

Elect. flows = next generation of "spectral" tools?

- Better "spectral" graph partitioning,
- Algorithmic grasp of random walks,
- ...

Grand challenge: Can we make algorithmic graph theory run in nearly-linear time?

New "recipe": Fast alg. for **combinatorial** problems via **linear-algebraic** tools **+ continuous opt.** methods

How about applying this framework to other graph problems that "got stuck" at O(n^{3/2})? (min-cost flow, general matchings, negative-lengths shortest path...)

Second-order/IPM-like methods:

the next frontier for fast (graph) algorithms?

Max Flow and Interior-Point Methods

Contributing back: Max flow and electrical flows as a lens for analyzing general IPMs?

Our techniques can be lifted to the general LP setting

We can solve **any** LP within $\tilde{O}(m^{3/7}L)$ iterations **But:** this involves **perturbing** of this LP

Some (seemingly) new elements of our approach:

- Better grasp of ℓ_2 vs. ℓ_4 interplay wrt the step size δ
- Perturbing the central path when needed
- Usage of non-local convergence arguments

Can this lead to breaking the $\Omega(m^{1/2})$ barrier for all LPs?

[Lee Sidford '14]: $\tilde{O}(rank(A)^{1/2})$ iteration bound

Bridging the Combinatorial and the Continuous

paths, trees, partitions, routings, matchings, data structures...

matrices, eigenvalues, linear systems, gradients, convex sets...

Powerful approach: Exploiting the interplay of the two worlds

Some other early "success stories" of this approach:

- Spectral graph theory aka the "eigenvalue connection"
- Fast SDD/Laplacian system solvers
- Graph sparsification, random spanning tree generation
- Graph partitioning

...and this is just the beginning!

Thank you

Questions?