Electrical Flows, Optimization, and New Approaches to the Maximum Flow Problem

Aleksander Mądry
Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t

value = net flow out of s

no overflow on arcs: $0 \leq f(e) \leq u(e)$

no leaks at all $v \neq s, t$

Task: Find a feasible s-t flow of max value

Here, value = 7
What is known about Max Flow?

A (very) rough history outline

[Dantzig ‘51] O(mn^2 U)
[Ford Fulkerson ‘56] O(mn U)
[Dinitz ‘70] O(mn^2)
[Dinitz ‘70] [Edmonds Karp ‘72] O(m^2 n)
[Dinitz ‘73] [Edmonds Karp ‘72] O(m^2 log U)
[Dinitz ‘73] [Gabow ‘85] O(mn log U)
[Goldberg Rao ‘98] Õ(m min(m^{1/2}, n^{2/3}) log U)
[Lee Sidford ‘14] Õ(mn^{1/2} log U)

Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

→ It is a good benchmark for combinatorial graph algorithms
→ Already captures interesting problems, e.g., **bipartite matching**

(n = # of vertices, m = # of arcs, U = max capacity, Õ() hides polylogs)
What is known about Max Flow?

A (very) rough history outline

<table>
<thead>
<tr>
<th>Reference</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Dantzig ‘51]</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>[Ford Fulkerson ‘56]</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Dinitz ‘70]</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>[Dinitz ‘70] [Edmonds Karp ’72]</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>[Dinitz ‘73] [Edmonds Karp ’72]</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>[Dinitz ‘73] [Gabow ’85]</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>[Goldberg Rao ’98]</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>[Lee Sidford ’14]</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

Our focus: Sparse graph ($m=O(n)$) and unit-capacity ($U=1$) regime

→ It is a good benchmark for combinatorial graph algorithms
→ Already captures interesting problems, e.g., bipartite matching

$(n = \# \text{ of vertices}, m = \# \text{ of arcs}, U = \text{max capacity}, \tilde{O}() \text{ hides polylogs})$
Breaking the $O(n^{3/2})$ barrier

Undirected graphs and approx. answers ($O(n^{3/2})$ barrier still holds here)

[M ‘10]: Crude approx. of max flow value in close to linear time

[CKMST ‘11]: (1-\(\varepsilon\))-approx. to max flow in $\tilde{O}(n^{4/3}\varepsilon^{-3})$ time

[LSR ‘13, S ‘13, KLOS ‘14]: (1-\(\varepsilon\))-approx. in close to linear time

But: What about the directed and exact setting?

[M ‘13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$-time alg.

($n =$ # of vertices, $\tilde{O}()$ hides polylog factors)
Electrical flows

Input: Undirected graph G, resistances r_e, source s and sink t

Principle of least energy

Electrical flow of value F:
The unique minimizer of the energy

$$E(f) = \Sigma_{e} r_e f(e)^2$$

among all s-t flows f of value F

Electrical flows = ℓ_2-minimization

Recall: We can compute it in nearly-linear time
From electrical flows to **undirected** max flow
Approx. undirected max flow [Christiano Kelner M. Spielman Teng ’11] via electrical flows

Assume: F^* known (via binary search)

→ Treat edges as resistors of resistance 1
→ Compute electrical flow of value F^*
 (This flow has no leaks, but can overflow some edges)
→ To fix that: Increase resistances on the overflowing edges
 Repeat (hope: it doesn’t happen too often)

Surprisingly: This approach can be made work!

But: One needs to be careful how to fill in the blanks

We will do this now
Filling in the blanks

Recall: We are dealing with undirected graphs

From now on: All capacities are 1, $m=O(n)$ and the value F^* of max flow is known.
Electrical vs. maximum flows

Fix some resistances \(r \) and consider the elect. flow \(f_E \) of value \(F^* \)

We don’t expect \(f_E \) to obey all capacity constraints (i.e., we can have \(|f_E(e)| >> 1 \) for some edge \(e \))

Still, \(f_E \) obeys these constraints in a certain sense...

We have:

\[
\sum_e r_e |f_E(e)| \leq \sum_e r_e
\]

In other words: Capacity constraints are preserved on average (weighted wrt to \(r_e \)s)
Electrical vs. maximum flows

This gives rise to a **very fast** algorithm for the following task:

‘Feasibility on average’:

Given weights \(w \) compute a flow \(f \) of value \(F^* \) s.t.

\[
\sum_e w_e \ |f(e)| \leq \sum_e w_e
\]

Key point: We already know how to make such a crude algorithm useful to us!
Multiplicative weights update method
[FS ’97, PST ’95, AHK ’05]

‘Technique for turning weak algorithms into strong ones’

In our setting:

Crude algorithm computing ‘**feasible on average**’ flows

\[\downarrow \]

(1-\(\epsilon\))-approx. max flow

\[\left[(1+\epsilon)-\text{approx. feasibility everywhere} \right] \]

How does this method work?
Underlying idea

Crude algorithm

Maintain weights w

(Initially, all weights $w_e = 1$)

Update weights
(based on f^1)

Update weights
(based on f^2)

(Process continues for N rounds)

At the end: Return the average of all f_is
(This is still a flow of value F^*)
Update step: For each e
\[
w_e^i \leftarrow w_e^{i-1} \frac{(1+\varepsilon |f_i(e)|)}{\rho_i}
\]

Maximum congestion in f^i
\[
\rho_i = \max_e |f^i(e)|
\]

Want this term to be between 1 and $1+\varepsilon$
Updating weights

Weights w^{i-1}

w^i ← $w^{i-1}(1+\varepsilon |f^i(e)|/\rho_i)$

Underlying dynamics:

Edge e suffers large overflow \rightarrow w_e grows rapidly

Average overflow small \rightarrow $\Sigma_e w_e$ grows slowly

\downarrow

No edge suffers large overflow too often \rightarrow averaging out yields (almost) no overflow
[AHK ’05]: It suffices to repeat this step \(N = \tilde{O}(\rho^2 \varepsilon^{-2}) \) times to get a \((1-\varepsilon)\)-approximation to max flow.

Think: \(\rho \) measures the electrical vs. max flow discrepancy.

Note: Linear dependence on \(\rho \) is unavoidable.
Bottom line:

\[A = \text{Battery} \]

Electrical flow primitive gives us the crude algorithm.

We can use MWU framework to fill in our blanks!
Our algorithm

→ Treat edges as resistors of resistance $r_e = 1$
→ Compute electrical flow f of value F^*
→ **Increase resistances** on overflowing edges
 Repeat
Our algorithm

→ Treat edges as resistors of resistance $r_e = 1$
→ Compute electrical flow f of value F^*
→ Increase resistances: for each e,
 \[r_e^i \leftarrow r_e^{i-1}(1+\varepsilon |f^i(e)|/\rho_i) \]
Repeat $N=\tilde{O}(\rho\varepsilon^{-2})$ times
→ At the end: Take an average of all the flows as the final answer

Resistances r_e evolve as weights w_e
Convergence condition: “execute N rounds”
Our algorithm

→ Treat edges as resistors of resistance $r_e = 1$
→ Compute electrical flow f of value F^*
→ Increase resistances: for each e,
 $$r_e^i \leftarrow r_e^{i-1}(1 + \varepsilon |f^i(e)|/\rho_i)$$

Repeat $N = \tilde{O}(\rho\varepsilon^{-2})$ times

→ At the end: Take an average of all the flows as the final answer

Result: This algorithm gives us an $(1-\varepsilon)$-approx. max flow in $\tilde{O}(\rho\varepsilon^{-2}) \cdot \tilde{O}(n) = \tilde{O}(n\rho\varepsilon^{-2})$ time

Crucial question: How large the worst-case overflow ρ can be?
Our question: Let f be an electric flow of value F^* wrt resist. r_e
How large $\rho = \max_e |f(e)|$ can be?

In general: ρ can be very large
(Think: one edge having an extremely small resistance)

Fix: Regularize the resistances with a uniform distribution
$$r_e' \leftarrow r_e + \varepsilon \frac{|r|_1}{m}$$

Can show: ρ is bounded by $O(n^{\frac{1}{2}} \varepsilon^{-1})$ then

This gives a $(1-\varepsilon)$-approx. $\tilde{O}(n^{3/2} \varepsilon^{-3})$-time algorithm
Going beyond the $\tilde{O}(n^{3/2})$ Barrier
Speeding up our algorithm

Running time is dominated by $\approx \rho$ elect. flow computations

Can we improve our $O(n^{\frac{1}{2}} \epsilon^{-1})$ bound on ρ?

Not really...

$\approx n^{\frac{1}{2}}$ paths with $\approx n^{\frac{1}{2}}$ vertices each

one edge
Speeding up our algorithm

Running time is dominated by $\approx \rho$ elect. flow computations.

Can we improve our $O(n^{\frac{1}{2}} \varepsilon^{-1})$ bound on ρ?

Not really...

$\approx n^{\frac{1}{2}}$ paths with $\approx n^{\frac{1}{2}}$ vertices each

Max flow:

$F^* \approx n^{\frac{1}{2}}$

one edge
Speeding up our algorithm

Running time is dominated by $\approx \rho$ elect. flow computations

Can we improve our $O(n^{1/2} \varepsilon^{-1})$ bound on ρ?

Not really...

Electr. flow:

$\rho \approx n^{1/2}$
Speeding up our algorithm

Key observation: If we remove this bad edge...

→ The max flow does not change much
Key observation: If we remove this bad edge...

→ The **max flow** does not change much
→ But the resulting **electrical flow** is much better behaved!

Can we turn this observation into an algorithmic idea?
Speeding up our algorithm

Idea: Let our electrical flow oracle **self-enforce** a smaller overflow $\rho' \ll \rho$

Modification of the oracle: If the computed electrical flow has some edge e flow more than ρ':

→ **Remove** this edge from the graph (permanently)
→ **Recompute** the electrical flow

Note: If this oracle always **successfully** terminates, its effective overflow is ρ'
Speeding up our algorithm

Crucial question: What is the right setting of ρ'?

→ We want ρ' to be as small as possible
→ But if it becomes too small the edge removal might be too aggressive and cut too many of them

Sweet spot: $\rho' \approx n^{\frac{1}{3}}$

Key reason: Removal of edges that flow a lot
→ significantly increases the **energy** of the electr. flow
→ But perturbs the **max flow** only slightly
Speeding up our algorithm

Our potential: The energy $E_r(f)$ of the electrical flow f wrt current resistances r

Can show:
→ $E_r(f)$ is not too small initially and cannot become too large (as long as we remove no more than $\approx \varepsilon F^*$ edges)
→ As the resistances only increase, $E_r(f)$ never decreases

This makes $E_r(f)$ a convenient potential

Remaining piece: Removal of an overflowing edge increases $E_r(f)$ significantly

This gives the $\tilde{O}(n^{4/3}\varepsilon^{-3})$-time $(1-\varepsilon)$-approx. algorithm
Thank you

Afternoon: Computing an exact max flow