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Step 0 in optimization

It all starts with a set 𝑆𝑆 and a function 𝑓𝑓: 𝑆𝑆 → 𝐑𝐑:

min
𝑥𝑥∈𝑆𝑆

𝑓𝑓 𝑥𝑥

These bare objects fully specify the problem.

Any additional structure on 𝑆𝑆 and 𝑓𝑓 may (and should) be exploited 
for algorithmic purposes but is not part of the problem.
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Classical unconstrained optimization

The search space is a linear space, e.g., 𝑆𝑆 = 𝐑𝐑𝑛𝑛:

min
𝑥𝑥∈𝐑𝐑𝑛𝑛

𝑓𝑓 𝑥𝑥

We can choose to turn 𝐑𝐑𝑛𝑛 into a Euclidean space: 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣.

If 𝑓𝑓 is differentiable, this provides gradients ∇𝑓𝑓 and Hessians ∇2𝑓𝑓.
These objects underpin algorithms: gradient descent, Newton’s method...
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∇𝑓𝑓 𝑥𝑥 , 𝑣𝑣 = D𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − 𝑓𝑓 𝑥𝑥
𝑡𝑡

∇2𝑓𝑓 𝑥𝑥 𝑣𝑣 = D ∇𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

∇𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ∇𝑓𝑓 𝑥𝑥
𝑡𝑡



Extend to optimization on manifolds

The search space is a smooth manifold, 𝑆𝑆 = ℳ:

min
𝑥𝑥∈ℳ

𝑓𝑓 𝑥𝑥

We can choose to turn ℳ into a Riemannian manifold.

If 𝑓𝑓 is differentiable, this provides Riemannian gradients and Hessians.
These objects underpin algorithms: gradient descent, Newton’s method...

Around since the 70s; practical since the 90s.
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What is a manifold? Take one:
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What is a manifold? Take two:

A few manifolds that come up in the wild
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7https://www.popsci.com/new-roomba-knows-location
http://emanual.robotis.com/docs/en/platform/turtlebot3/slam

Orthonormal frames and rotations

Stiefel manifold: ℳ = 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑝𝑝:𝑋𝑋⊤𝑋𝑋 = 𝐼𝐼𝑝𝑝

Rotation group: ℳ = 𝑋𝑋 ∈ 𝐑𝐑3×3:𝑋𝑋⊤𝑋𝑋 = 𝐼𝐼3 and det 𝑋𝑋 = +1

Applications in sparse PCA, Structure-from-Motion, SLAM (robotics)...

The singularities of Euler angles (gimbal lock) are artificial: the rotation group is smooth.



Subspaces and fixed-rank matrices

Grassman manifold: ℳ = subspaces of dimension 𝑑𝑑 in 𝐑𝐑𝑛𝑛

Fixed-rank matrices:ℳ = 𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 = 𝑟𝑟

Applications to linear dimensionality reduction, data completion and denoising, 
large-scale matrix equations, ...

Optimization allows us to go beyond PCA (least-squares loss ≡ truncated SVD):
can handle outlier-robust loss functions and missing data.
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Positive matrices and hyperbolic space

Positive definite matrices: ℳ = 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛:𝑋𝑋 = 𝑋𝑋⊤ and 𝑋𝑋 ≻ 0

Hyperbolic space: ℳ = 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛+1: 𝑥𝑥02 = 1 + 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2

Used in metric learning, Gaussian mixture models, tree-like embeddings...

With appropriate metrics, these are Cartan-Hadamard manifolds:
Complete, simply connected, with non-positive (intrinsic) curvature.
Great playground for geodesic convexity.

9
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A tour of technical tools
Restricted to embedded submanifolds

What is a manifold?
Tangent spaces
Smooth maps
Differentials
Retractions
Riemannian manifolds
Gradients
Hessians
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A subset ℳ of a linear space ℰ of dimension 𝑑𝑑 is
a smooth embedded submanifold of dimension 𝑛𝑛 if:

For all 𝑥𝑥 ∈ ℳ, there exists a neighborhood 𝑈𝑈 of 𝑥𝑥 in ℰ, an open set 𝑉𝑉 ⊆ 𝐑𝐑𝑑𝑑 and 
a diffeomorphism 𝜓𝜓:𝑈𝑈 → 𝑉𝑉 such that 𝜓𝜓 𝑈𝑈 ∩ℳ = 𝑉𝑉 ∩ 𝐸𝐸 where 𝐸𝐸 is a linear 
subspace of dimension 𝑛𝑛.

We call ℰ the embedding space.

What is a manifold? Take three:
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? ?

𝜓𝜓

ℳ

𝑈𝑈 𝜓𝜓 𝑈𝑈 = 𝑉𝑉

𝐑𝐑𝑑𝑑

ℰ ≡ 𝐑𝐑𝑑𝑑
𝑥𝑥

𝜓𝜓 𝑥𝑥



Matrix sets in our list are manifolds: orthonormal, fixed-rank, positive definite...

Linear subspaces are manifolds.

Open subsets of manifolds are manifolds.

Products of manifolds are manifolds.

What is a manifold? Quick facts:
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𝜓𝜓

ℳ

𝑈𝑈 𝜓𝜓 𝑈𝑈 = 𝑉𝑉

𝐑𝐑𝑑𝑑

𝑥𝑥
𝜓𝜓 𝑥𝑥ℰ ≡ 𝐑𝐑𝑑𝑑



ℳ
T𝑥𝑥ℳ

𝑥𝑥

Tangent vectors of ℳ embedded in ℰ
A tangent vector at 𝑥𝑥 is the velocity 𝑐𝑐′ 0 = lim

𝑡𝑡→0
𝑐𝑐 𝑡𝑡 −𝑐𝑐 0

𝑡𝑡
of a curve 𝑐𝑐:𝐑𝐑 →ℳ with 𝑐𝑐 0 = 𝑥𝑥.

The tangent space T𝑥𝑥ℳ is the set of all tangent vectors of ℳ at 𝑥𝑥.
It is a linear subspace of ℰ of the same dimension as ℳ.

If ℳ = 𝑥𝑥:ℎ 𝑥𝑥 = 0 with ℎ:ℰ → 𝐑𝐑𝑘𝑘 smooth and rank Dℎ 𝑥𝑥 = 𝑘𝑘, then T𝑥𝑥ℳ = ker Dℎ 𝑥𝑥 .

ℎ 𝑥𝑥 = 𝑥𝑥⊤𝑥𝑥 − 1 = 0
ker Dℎ 𝑥𝑥 = 𝑣𝑣: 𝑥𝑥⊤𝑣𝑣 = 0
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Smooth maps on/to manifolds
Let ℳ,ℳ′ be (smooth, embedded) submanifolds of linear spaces ℰ,ℰ′.

A map 𝐹𝐹:ℳ →ℳ′ is smooth if it has a smooth extension, i.e., if there exists a 
neighborhood 𝑈𝑈 of ℳ in ℰ and a smooth map �𝐹𝐹:𝑈𝑈 → ℰ′ such that 𝐹𝐹 = �𝐹𝐹|ℳ .

Example: a cost function 𝑓𝑓:ℳ → 𝐑𝐑 is smooth if it is the restriction of a smooth ̅𝑓𝑓:𝑈𝑈 → 𝐑𝐑.

Composition preserves smoothness.
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̅𝑓𝑓
ℳ

ℰ

𝑈𝑈

𝐑𝐑

𝑓𝑓 = ̅𝑓𝑓|ℳ



Differential of a smooth map 𝐹𝐹:ℳ →ℳ′

The differential of 𝐹𝐹 at 𝑥𝑥 is the map D𝐹𝐹 𝑥𝑥 : T𝑥𝑥ℳ → T𝐹𝐹 𝑥𝑥 ℳ′ defined by:

D𝐹𝐹 𝑥𝑥 𝑣𝑣 = 𝐹𝐹 ∘ 𝑐𝑐 ′ 0 = lim
𝑡𝑡→0

𝐹𝐹 𝑐𝑐 𝑡𝑡 − 𝐹𝐹 𝑥𝑥
𝑡𝑡

where 𝑐𝑐:𝐑𝐑 →ℳ satisfies 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

Claim: D𝐹𝐹 𝑥𝑥 is well defined and linear, and we have a chain rule.
If �𝐹𝐹 is a smooth extension of 𝐹𝐹, then D𝐹𝐹 𝑥𝑥 = D �𝐹𝐹 𝑥𝑥 |T𝑥𝑥ℳ .
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Retractions: moving around on ℳ
The tangent bundle is the set

Tℳ = 𝑥𝑥, 𝑣𝑣 : 𝑥𝑥 ∈ ℳ and 𝑣𝑣 ∈ T𝑥𝑥ℳ .
Claim: Tℳ is a smooth manifold embedded in ℰ × ℰ.

A retraction is a smooth map 𝑅𝑅: Tℳ →ℳ: 𝑥𝑥, 𝑣𝑣 ↦ 𝑅𝑅𝑥𝑥 𝑣𝑣
such that each curve

𝑐𝑐 𝑡𝑡 = 𝑅𝑅𝑥𝑥 𝑡𝑡𝑣𝑣
satisfies 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

E.g., metric projection: 𝑅𝑅𝑥𝑥 𝑣𝑣 is the projection of 𝑥𝑥 + 𝑣𝑣 to ℳ.
ℳ = 𝐑𝐑𝑛𝑛: 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥 + 𝑣𝑣;              ℳ = 𝑥𝑥: 𝑥𝑥 = 1 : 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥+𝑣𝑣

𝑥𝑥+𝑣𝑣
;

ℳ = 𝑋𝑋: rank 𝑋𝑋 = 𝑟𝑟 : 𝑅𝑅𝑋𝑋 𝑉𝑉 = SVD𝑟𝑟 𝑋𝑋 + 𝑉𝑉 .
23
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𝑥𝑥 + 𝑣𝑣
𝑥𝑥 + 𝑣𝑣



Riemannian manifolds

Each tangent space T𝑥𝑥ℳ is a linear space.
Endow each one with an inner product: 𝑢𝑢, 𝑣𝑣 𝑥𝑥 for 𝑢𝑢, 𝑣𝑣 ∈ T𝑥𝑥ℳ.

A vector field is a map 𝑉𝑉:ℳ → Tℳ such that 𝑉𝑉 𝑥𝑥 is tangent at 𝑥𝑥 for all 𝑥𝑥.
We say the inner products ⋅,⋅ 𝑥𝑥 vary smoothly with 𝑥𝑥 if 𝑥𝑥 ↦ 𝑈𝑈 𝑥𝑥 ,𝑉𝑉 𝑥𝑥 𝑥𝑥 is 
smooth for all smooth vector fields 𝑈𝑈,𝑉𝑉.

If the inner products vary smoothly with 𝑥𝑥, they form a Riemannian metric.

A Riemannian manifold is a smooth manifold with a Riemannian metric.
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Riemannian structure and optimization

A Riemannian manifold is a smooth manifold with a smoothly varying choice of 
inner product on each tangent space.

A manifold can be endowed with many different Riemannian structures.

A problem min
𝑥𝑥∈ℳ

𝑓𝑓 𝑥𝑥 is defined independently of any Riemannian structure.

We choose a metric for algorithmic purposes. Akin to preconditioning.
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ℳ
T𝑥𝑥ℳ

𝑥𝑥

Riemannian submanifolds
Let the embedding space of ℳ be a Euclidean space ℰ with metric ⋅,⋅ .
For example: ℰ = 𝐑𝐑𝑛𝑛 and 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣 for all 𝑢𝑢, 𝑣𝑣 ∈ 𝐑𝐑𝑛𝑛.

A convenient choice of Riemannian structure for ℳ is to let:

𝑢𝑢, 𝑣𝑣 𝑥𝑥 = 𝑢𝑢, 𝑣𝑣 .

This is well defined because 𝑢𝑢, 𝑣𝑣 ∈ T𝑥𝑥ℳ are, in particular, elements of ℰ.

This is a Riemannian metric. With it, ℳ is a Riemannian submanifold of ℰ.

26
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Riemannian gradients
The Riemannian gradient of a smooth 𝑓𝑓:ℳ → 𝐑𝐑 is the vector field grad𝑓𝑓 defined by:

∀ 𝑥𝑥, 𝑣𝑣 ∈ Tℳ, grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 = D𝑓𝑓 𝑥𝑥 𝑣𝑣 .

Claim: grad𝑓𝑓 is a well-defined smooth vector field.

If ℳ is a Riemannian submanifold of a Euclidean space ℰ, then

grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 ∇ ̅𝑓𝑓 𝑥𝑥 ,

where Proj𝑥𝑥 is the orthogonal projector from ℰ to T𝑥𝑥ℳ and ̅𝑓𝑓 is a smooth extension of 𝑓𝑓.

27

∇ ̅𝑓𝑓 𝑥𝑥 , 𝑣𝑣 = D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

∇2 ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = D ∇ ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

∇ ̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ∇ ̅𝑓𝑓 𝑥𝑥
𝑡𝑡



Riemannian Hessians
The Riemannian Hessian of 𝑓𝑓 at 𝑥𝑥 should be a symmetric linear map Hess𝑓𝑓 𝑥𝑥 : T𝑥𝑥ℳ → T𝑥𝑥ℳ
describing gradient change.

Since grad𝑓𝑓:ℳ → Tℳ is a smooth map from one manifold to another, a natural first attempt is:

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 =? Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 .

However, this does not produce tangent vectors in general.
To overcome this issue, we need a new derivative for vector fields: a Riemannian connection.

If ℳ is a Riemannian submanifold of Euclidean space, then:

where 𝑊𝑊 is the Weingarten map of ℳ. 28

∇ ̅𝑓𝑓 𝑥𝑥 , 𝑣𝑣 = D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

∇2 ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = D ∇ ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

∇ ̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ∇ ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣
= Proj𝑥𝑥 ∇2 ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 + 𝑊𝑊 𝑣𝑣, Proj𝑥𝑥⊥ ∇ ̅𝑓𝑓 𝑥𝑥



Compute the smallest eigenvalue of a symmetric matrix 𝐴𝐴 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛 :

min
𝑥𝑥∈ℳ

1
2𝑥𝑥

⊤𝐴𝐴𝑥𝑥 with      ℳ = 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛: 𝑥𝑥⊤𝑥𝑥 = 1

The cost function 𝑓𝑓:ℳ → 𝐑𝐑 is the restriction of the smooth function ̅𝑓𝑓 𝑥𝑥 = 1
2𝑥𝑥

⊤𝐴𝐴𝑥𝑥 from 𝐑𝐑𝑛𝑛 to ℳ.
Tangent spaces T𝑥𝑥ℳ = 𝑣𝑣 ∈ 𝐑𝐑𝑛𝑛: 𝑥𝑥⊤𝑣𝑣 = 0 .
Make ℳ into a Riemannian submanifold of 𝐑𝐑𝑛𝑛 with 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣.
Projection to T𝑥𝑥ℳ: Proj𝑥𝑥 𝑧𝑧 = 𝑧𝑧 − 𝑥𝑥⊤𝑧𝑧 𝑥𝑥.
Gradient of ̅𝑓𝑓: ∇ ̅𝑓𝑓 𝑥𝑥 = 𝐴𝐴𝑥𝑥.

Gradient of 𝑓𝑓: grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 ∇ ̅𝑓𝑓 𝑥𝑥 = 𝐴𝐴𝑥𝑥 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑥𝑥.

Differential of grad𝑓𝑓: Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 = 𝐴𝐴𝑣𝑣 − 𝑣𝑣⊤𝐴𝐴𝑥𝑥 + 𝑥𝑥⊤𝐴𝐴𝑣𝑣 𝑥𝑥 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑣𝑣.
Hessian of 𝑓𝑓: Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 𝐴𝐴𝑣𝑣 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑣𝑣.

Example: Rayleigh quotient optimization

29

The following are equivalent for 𝑥𝑥 ∈ ℳ: 𝑥𝑥 is a global minimizer; 𝑥𝑥 is a unit-norm eigenvector of 𝐴𝐴 for the least eigenvalue; grad𝑓𝑓 𝑥𝑥 = 0 and Hess𝑓𝑓 𝑥𝑥 ≽ 0.



Basic optimization algorithms
Algorithms hop around the manifold using a retraction:

𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘
with some algorithm-specific tangent vector 𝑠𝑠𝑘𝑘 ∈ T𝑥𝑥𝑘𝑘ℳ.
E.g., gradient descent: 𝑠𝑠𝑘𝑘 = −𝑡𝑡𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘

Newton’s method: Hess𝑓𝑓 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘 = −grad𝑓𝑓 𝑥𝑥𝑘𝑘

Convergence analyses rely on Taylor expansions of 𝑓𝑓 along retractions.
For second-order retractions (e.g., metric projection on Riemannian submanifold):

𝑓𝑓 𝑅𝑅𝑥𝑥 𝑠𝑠 = 𝑓𝑓 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑠𝑠 𝑥𝑥 +
1
2

Hess𝑓𝑓 𝑥𝑥 𝑠𝑠 , 𝑠𝑠 𝑥𝑥 + 𝑂𝑂 𝑠𝑠 𝑥𝑥
3
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A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ

A2 𝑓𝑓 𝑅𝑅𝑥𝑥 𝑠𝑠 ≤ 𝑓𝑓 𝑥𝑥 + 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 𝑥𝑥 + 𝐿𝐿
2
𝑠𝑠 𝑥𝑥

2

Algorithm: 𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: min
𝑘𝑘<𝐾𝐾

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 −𝑓𝑓low
𝐾𝐾

(same as Euclidean case)

A2 ⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≤ 𝑓𝑓 𝑥𝑥𝑘𝑘 −
1
𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2 +

1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓 𝑥𝑥𝐾𝐾 = �
𝑘𝑘=0

𝐾𝐾−1

𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
𝐾𝐾
2𝐿𝐿

min
𝑘𝑘<𝐾𝐾

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

Gradient descent on ℳ
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Manopt: user-friendly software
Manopt is a family of toolboxes for Riemannian optimization.
Go to www.manopt.org for code, a tutorial, a forum, and a list of other software.

Matlab example for min
𝑥𝑥 =1

𝑥𝑥⊤𝐴𝐴𝑥𝑥:

problem.M = spherefactory(n);

problem.cost = @(x) x'*A*x;

problem.egrad = @(x) 2*A*x;

x = trustregions(problem);
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Active research directions

• More algorithms: nonsmooth, stochastic, parallel, quasi-Newton, ...
• Constrained optimization on manifolds
• Applications, old and new (electronic structure, deep learning)
• Complexity (upper and lower bounds)
• Role of curvature
• Geodesic convexity
• Randomized algorithms
• Broader generalizations: manifolds with a boundary, algebraic varieties
• Benign non-convexity
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“… in fact, the great watershed in  optimization isn't between linearity  

and nonlinearity, but convexity and non-convexity.”

R. T. Rockafellar, in SIAM Review, 1993



𝑥𝑥

Non-convex just means not convex.
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Non-convexity can be benign

This can mean various things. Theorem templates are on a spectrum:

“If {conditions}, necessary optimality conditions are sufficient.”
⋮

“If {conditions}, we can initialize a specific algorithm well.”

The conditions (often on data) may be generous (e.g., genericity) or less 
so (e.g., high-probability event for non-adversarial distribution.)

Geometry and symmetry seem to play an outsized role.
See for example Zhang, Qu & Wright, arxiv:2007.06753, for a review.
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