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Step 0 1n optimization

It all starts withaset S and a f:S—->R:
T/

These bare objects fully specify the problem.

Any additional on S and f may (and should) be exploited
for but is not part of the problem.



Classical unconstrained optimization

The search space is a ,eg., S =R™
min f(x)
We can choose to turn R" into a {u,v) =u'v.
If f is differentiable, this provides Vf and V4f.
These objects underpin : gradient descent, Newton’s method...

(VF(x),v) = DF(x)[v] = ymf (x + tv) — f(x)

-0

t
V2f()[v] = DVA ()] = lim Vf(x + tv) — Vf(x)

t




Extend to optimization on manifolds

The search space is a , S =M:

min f (x)

We can choose to turn M into a

If f is differentiable, this provides and
These objects underpin : gradient descent, Newton’s method...

Around since the 70s; practical since the 90s.



What is a manifold? Take one:




What is a manifold? Take two:

A few that come up



Orthonormal frames and rotations

Stiefel manifold: M = {X € RWP: XTX = p}

Rotation group: M ={X e R3*3:X"X = I; and det(X) = +1}

Applications in sparse PCA, Structure-from-Motion, SLAM (robotics)...




Subspaces and fixed-rank matrices

Grassman manifold: M = {subspaces of dimension d in R}

Fixed-rank matrices: M = {X € R™*™: rank(X) = r}

Applications to linear dimensionality reduction, data completion and denoising,
large-scale matrix equations, ...

Optimization allows us to go beyond PCA (least-squares loss = truncated SVD):

can handle outlier-robust loss functions and missing data.

Picture: https://365datascience.com/tutorials/python-tutorials/principal-components-analysis/



Positive matrices and hyperbolic space
M ={XeR":X=X"and X > 0}

:]V[:{xER"“:xg=1+x12+---+x,%}

Used in metric learning, Gaussian mixture models, tree-like embeddings...

With appropriate metrics, these are
Complete, simply connected, with non-positive (intrinsic) curvature.

Great playground for

Picture: https://bjlkeng.github.io/posts/hyperbolic-geometry-and-poincare-embeddings



A tour of technical tools
Restricted to embedded submanifolds

What is a manifold?
Tangent spaces
Smooth maps
Differentials
Retractions
Riemannian manifolds
Gradients

Hessians




What is a manifold? Take three:

A subset M of a linear space € of dimension d is
a of dimension n if:

For all x € M, there exists a neighborhood U of x in £, an open setV C R< and

a Y: U — Vsuch that (U N M) =V N E where E is a linear
subspace of dimension n.

We call € the . u W) =V

E=R4 e

?7?




What is a manifold? Quick facts:

are manifolds: orthonormal, fixed-rank, positive definite...
are manifolds.
of manifolds are manifolds.

of manifolds are manifolds.

v Yp(U) =V

£ = R4 1/J(x).




Tangent vectors of M' embedded in €

c(t)—c(0)

A at x is the velocity ¢’ (0) = ll_r)l(l) - of a curve c: R - M with ¢(0) = x.
The T, M is the set of all tangent vectors of M at x.
It of the same dimension as M.
If M = {x: } with h: € = R¥ smooth and rank Dh(x) = k, then
N
A =xTx—1=0

" kerDh(x) = {v:x"v =0}




Smooth maps on/to manifolds

Let M, M’ be (smooth, embedded) submanifolds of linear spaces &, €.

Amap F: M - M'is if it has a ,i.e., if there exists a
neighborhood U of M in £ and a smooth map F: U — £’ such that

Example: a f: M — Ris smooth if it is the restriction of a smooth f: U — R.

preserves smoothness.




Differential of a smooth map F: M - M’

The is the map DF (x): T, M — Tr,) M defined by:

F(c(t)) — F(x)
t

DF(x)[v] = (F 2 c)'(0) = lim
where c: R > M satisfies ¢(0) = x and ¢’ (0) = v.

Claim: DF(x) is well defined and ,and we have a

If F is a smooth extension of F, then




Retractions: moving around on M

The is the set
TM ={(x,v):x € M and v € T, M }.
Claim: TM is a smooth manifold embedded in € X &.

A is a smooth map R: TM - M: (x,v) » R, (v)
such that each curve
c(t) = R, (tv)

satisfies c(0) = x and ¢’ (0) = v.

E.g., : R,.(v) is the projection of x + v to M.
M =R"™R,(v) =x+ v; M ={x:||x|| = 1}: R, (v) =
M = {X:rank(X) =r}: Ry (V) = SVD..(X + V).

xX+v

[x+v||




Riemannian manifolds

Each tangent space is a linear space.
: (u,v), foru,v € T, M.

A isamap V: M — TM such that V(x) is tangent at x for all x.
We say with x if x » (U(x),V(x)), is
smooth for all smooth vector fields U, V.

If the inner products vary smoothly with x, they form a

A is a smooth manifold with a Riemannian metric.



Riemannian structure and optimization

A is a smooth manifold with a smoothly varying choice of
inner product on each tangent space.

A manifold can be endowed with different Riemannian structures.

A problem rreu]\r/} f (x) is defined independently of any Riemannian structure.
X

for algorithmic purposes. Akin to



Riemannian manifolds

Let the of M be a E with metric
For example: £ = R" and (u, v) = u'v for all u, v € R™. o
A for M is to let:

(w, ), = (u,v).
This is well defined because u, v € T, M are, in particular, elements of £.

This is a Riemannian metric. With it, M is a of E.

I' A Riemannian submanifold is not just a submanifold that is Riemannian !!



Riemannian gradients

The of a smooth f: M — R s the vector field gradf defined by:

V(x,v) € TM, (gradf (x),v), = Df (x)|v].

Claim: gradf is a well-defined smooth vector field.

M is a Riemannian manifold of a Euclidean space &, then

gradf (x) = Proj, (Vf (%)),

where is the orthogonal projector from £ to T, M and f is a of f.

(Vf(x),v) = Df(x)[v] _ ltimf(x + tv) — f(x)

-0 t

V2f(0[v] = D(V)(@)[v] = lim Vf(x + tv) — Vf(x)

-0 t




Riemannian Hessians

The of f at x should be a Hessf (x): T,M — T, M
describing gradient change.

Since gradf: M — TM is a smooth map from one manifold to another, a natural first attempt is:

Hessf (x)[v] = Dgradf (x)[v].

, this does not produce tangent vectors in general.
To overcome this issue, we need a new derivative for vector fields: a

M is a Riemannian manifold of Euclidean space, then:

Hessf (x)[v] = Proj,(Dgradf (x)[v])
= Proj, (V2 f () [v]) + W (v, Projx (Vf(x)))

where W is the Weingarten map of M.

lim f(x+tv) f(x)

-0

(Vf(x),v) = Df(0)[v] =




Example: Rayleigh quotient optimization

Compute the smallest eigenvalue of a symmetric matrix A € R"*" ;

min=x"Ax with M={xeR%x"x =1}

XEM 2
The cost function f: M — R is the restriction of the smooth function f(x) = %xTAx from R™ to M.
Tangent spaces T,M ={v e R":x"v = 0}.
Make M into a Riemannian submanifold of R™ with {(u, v) = u"v.
Projection to T, M Proj,(z) = z — (x " 2)x.
Gradient of f: Vf(x) = Ax.
Gradient of f: gradf (x) = Proj, (Vf(x)) = Ax — (x T Ax)x.
Differential of gradf: Dgradf (x)[v] = Av — (WTAx + xTAv)x — (x T Ax)v.
Hessian of f: Hessf (x)[v] = Proj,(Dgradf (x)[v]) = Proj,(4v) — (x T Ax)v.

The following are equivalent for x € M: x is a global minimizer; x is a unit-norm eigenvector of A for the least eigenvalue; gradf (x) = 0 and Hessf (x) > 0.



Basic optimization algorithms

Algorithms hop around the manifold using a retraction:
Xk+1 = ka(Sk,)
with some algorithm-specific tangent vector s, € T,, M.
E.g., : s, = —tigradf (x;)
Hessf (x)[si] = —gradf (x)

Convergence analyses rely on of f along retractions.

For (e.g., metric projection on Riemannian submanifold):

1
f(Rx(s)) = f(x) +{gradf (x),s), + - (Hessf(0)[s], s}y + O(llsllz)



Al F(x) > fio, forall x € M Gradient descent on M

A2 f(R.(5)) < f() + (s, gradf (), + = 15|12

Algorithm: =R, (— % gradf (xk)) /'""Rx(s)

- 2L(f (Xo)—f1ow)
Complexity: [g{rgﬁlllgradf(xk)llxk] < \/ p

(same as Euclidean case)

A2 = f( ) < flxp) — = ||gradf(xk)||xk + ||g1‘61df(xk)||x,c

= () = f( ) = Z lgradf ()%,

- K
A1 f(x0) = fiow = f00) = fGi) = ) f(r) = f(ve1) = 5 minllgradf ()12,
k=0



Manopt: user-friendly software

Manopt is a family of toolboxes for Riemannian optimization.

Go to www.manopt.org for code, a tutorial, a forum, and a list of other software.

Matlab example for ||1rn”in1 x " Ax:
xXll=

spherefactory (n) ;
Q(x) X"*A*x;
Q(x) 2*A*x;

trustregions (problem) ;

problem.M =
problem.cost =
problem.egrad =

X:

With Bamdev Mishra,
P.-A. Absil & R. Sepulchre

Manopt | #Home | ATutorial & Downloads @ Forum & About @ Contact

Welcome to Manopt!

Toolboxes for optimization on manifolds and matrices

Optimization on manifolds is a powerful igm to address i ization problems.
With Manopt, it is easy to deal with various types of constraints and symmetries which arise naturally in /

applications, such as orthonormality, low rank, positivity and invariance under group actions.

These tools are also perfectly suited for unconstrained optimization with vectors and matrices.

Lead by Ronny Bergmann

Lead by J. Townsend,
N. Koep & S. Weichwald
32


http://www.manopt.org/

Active research directions

* More algorithms: nonsmooth, stochastic, parallel, quasi-Newton, ...

* Constrained optimization on manifolds

* Applications, old and new (electronic structure, deep learning)

* Complexity (upper and lower bounds)

* Role of curvature

* Geodesic convexity

* Randomized algorithms

* Broader generalizations: manifolds with a boundary, algebraic varieties
* Benign



“.. In fact, the great watershed injoptimization isn't between linearity

and nonlinearity, but CONVeXxIity land

R. T. Rockafellar, in SIAM Review, 1993




Non-convex just means not convex.

35



“.. In fact, the great watershed injopt

and nonlinearity, but CONVeXxIity land

zation isn't between linearity

V24

R. T. Rockafellar, { SIAM Review, 1993



Non-convexity can be

This can mean various things. are on a spectrum:

“If {conditions}, necessary optimality conditions are sufficient.”

“If {conditions}, we can initialize a specific algorithm well.”

The conditions (often on data) may be generous (e.g., ) or less
so (e.g, event for non-adversarial distribution.)
and seem to play an outsized role.

See for example Zhang, Qu & Wright, arxiv:2007.06753, for a review.
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